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Voorwoord 

Met dit boekje zet ik een punt achter 10 jaar boerekot. Het waren bijzonder mooie jaren tijdens 

dewelke ik heel wat heb geleerd en talrijke mensen heb ontmoet. Nochtans was de keuze 

voor een bio-ingenieursopleiding niet gemakkelijk. Ik heb immers maandenlang getwijfeld 

tussen de opleiding politieke (no kidding) en bio-ingenieurswetenschappen. Uiteindelijk koos 

ik, mede door toedoen van Yves en Francis, voor het laatste. Het bleek een goeie keuze want 

ik reken graag, en dat kon ik bij de bio-ingenieurs van harte doen. Ik bedenk me bovendien 

dat ik het gemis aan sociale wetenschappen heb proberen compenseren tijdens mijn 

doctoraat. Politieke wetenschappers onderzoeken immers interacties tussen mensen, en ik 

onderzocht interacties tussen algen. Dat is toch een beetje hetzelfde? 

In dit doctoraat bespreek ik relaties tussen algen, maar het doctoraat zelf is in de eerste plaats 

het resultaat van interacties tussen mensen. Het is dan ook niet meer dan gepast om deze 

mensen te bedanken. Beginnen doe ik met mijn promotoren. Frederik, je hebt talloze uren 

met me doorgebracht om resultaten te bespreken en minstens evenveel uren om mijn papers 

na te lezen en te verbeteren. Je hebt me geleerd kritisch te denken en gevat maar duidelijk te 

communiceren. Telkens weer toon je een geweldig enthousiasme over nieuwe ideeën en 

resultaten. De liefde die je voor je vak uitstraalt is enorm enthousiasmerend en eveneens een 

beetje benijdenswaardig! Bedankt Colin, voor je input en je luisterend oor op moeilijke 

momenten tijdens het doctoraat. Het was fijn om in je labo te werken. I like to give special 

thanks to the members of the examination committee for their insightful comments and 

suggestions. I especially want to thank professor Schtickzelle for welcoming me in his lab. 

Unfortunately, the active movement experiments did not work out. However, as they say, the 

road of success is paved with failures. Ook Gisèle en Nancy wil ik bedanken voor hun hulp in 

het labo. Zonder hen was ik nooit door die 226 erlenmeyers geraakt. 

De voorbije jaren ging ik (bijna) altijd graag naar het lab en dat had vooral te maken met mijn 

vele collega’s daar. Ik kijk met plezier terug naar het weekend in de Ardennen, de jaarlijkse 

quiz, kerstetentjes en barbecues. Bedankt aan alle organisatoren hiervan! De samenstelling 

binnen ons labo veranderde snel en ik kan dan ook niet iedereen bedanken. Toch wil ik enkele 

personen in het bijzonder vermelden. Zo wil ik Marianne bedanken, als mijn steun en 

toeverlaat op zowel persoonlijk, financieel en paperassen vlak. Ook wil ik alle mensen in het 

labo bedanken voor de vele lunch - en koffiebabbels. Emmy, Jolien, Gisèle en Marc, jullie zijn 

een topteam! Ook mijn bureaumaatjes op de plateau, Dimitri en Jan wil ik bedanken. Jan, de 

eerste 2 jaren van mijn doctoraat was je zowat een “semi-promotor” van mij. Zonder jou had 

ik nooit zo ver gestaan. Je hebt me enorm veel geleerd, bedankt hiervoor. Ook mijn 



 

ii 
 

eilandgenootjes Sharon, Karel en Josef wil ik hier vermelden. Zij hebben me de laatste jaren 

vooral horen zuchten en zagen, maar toch denk ik dat ze me nu een beetje gaan missen. 

I also had some very nice colleagues in Namur. Special thanks to Marie for welcoming met in 

the lab. I only spent a few months with you, but the cooperation was really great. Good luck 

Jürg, Wouter and everyone else with finishing your PhD! 

Ik vertel geen geheimen dat mijn leven zich niet enkel in het labo afspeelde. Ik had tal van 

fantastische mensen om me heen die me steunden en met wie ik talrijke leuke momenten 

beleefde. Mijn tijd als coördinator van Verkeerd Geparkeerd was 1 van de mooiste van mijn 

leven. Ik heb er van alles kunnen realiseren, maar vooral, ik heb er heel wat mensen ontmoet. 

Bij deze wil ik alle kernleden bedanken met wie ik heb samen kunnen werken. Enkele van 

hen zijn goede vrienden geworden. Bart, elk jaar kijk ik weer uit naar onze uitstap in mei. 

Binnenkort mag je eindelijk eens komen eten bij me, beloofd! Bedankt Cedric om me het 

voorbije jaar onderdak aan te bieden. Sorry voor het gezaag soms bij mijn thuiskomst, je hebt 

me net leren kennen in een vrij stressy periode. Hakim, we hebben al heel wat beleefd samen, 

leuke en minder leuke momenten, maar ik hoop dat we er van beide nog veel samen kunnen 

beleven. En dan is er natuurlijk ook Ilias. Ilias, m’n medekernlid, m’n collega, m’n goeie vriend. 

We hebben al enorm veel tijd met elkaar besteed, in het labo (bedankt voor de hulp!), maar 

nog veel meer daarbuiten. Soms zagen we elkaar 7 dagen/7. Dat zal de komende maanden 

jammer genoeg minderen, maar ik hoop dat de tijd die we samen doorbrengen kwalitatiever 

zal zijn dan de voorbije maanden. Dankjewel Lieven, voor de vele feestjes en de uitjes naar 

de opera. Gaan we blijven doen! Dankjewel Andreas, voor je eerlijkheid, maar vooral voor je 

oprechte vriendschap! Dankjewel Ward voor de vele gesprekken van de voorbije jaren. Dat 

gebeurt tegenwoordig wat minder, moeten we terug vaker doen! Dankjewel Brecht voor je 

ongezouten maar oprechte mening! Ook bedankt aan Thomas, Arno en zoveel anderen voor 

de voorbije jaren! 

Sommige vriendschappen duren kort, andere blijven jaren duren. Yves, we kennen elkaar al 

zowat een eeuwigheid. Je bent altijd een enorme steun geweest voor mij. Een rots in de soms 

woelige branding. Francis, nogmaals bedankt dat ik je getuige mocht zijn vorige zomer. Niet 

alleen voor jou en Lisa, maar ook voor mij was dit de mooiste dag van een verder nogal 

somber 2018. Yves en Francis, onze wegen scheiden zich na bijna 16 jaar samen aan 

dezelfde school en universiteit. Amai, we zijn veranderd sinds toen! Ik denk dat we alle drie al 

heel trots kunnen zijn op wat we bereikt hebben. Ook merci aan Peter, mijn huisgenoot tijdens 

de eerste drie jaar van mijn doctoraat. Samenwonen was niet altijd gemakkelijk (ik kan nogal 

een tornado zijn als ik thuiskom van een zware dag), maar het waren 3 toffe jaren! Lieve Lies, 
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dank je voor de vele babbels en de steun wanneer ik het de voorbije jaren zwaar had. Je bent 

er altijd als ik het nodig heb (en gelukkig ook vaak genoeg wanneer niet!). 

Het leven gaat over het ontmoeten van heel wat mensen, maar jammer genoeg ook over 

afscheid nemen. Daar werd ik de voorbije jaren helaas niet van gespaard. Ik zal de 

herinneringen aan mijn opa, oma en bompa altijd met me mee blijven dragen. Mensen 

verdwijnen, herinneringen niet en ik weet dat ze verdomd trots zouden geweest zijn. Lieve 

bomma, sterk zijn, er zijn nog zoveel mooie dagen, zoals deze, om te beleven. 

Wouter, vaak zijn we water en vuur maar eveneens brand er altijd dat vlammetje om het voor 

elkaar op te nemen en elkaar te steunen. Dank je daar voor! Mijn ouders hebben me altijd 

gesteund in mijn beslissingen en de persoon die ik geworden ben. Ik heb altijd mezelf kunnen 

zijn bij hen en wil hen daar dan ook superhard voor bedanken. 

Ruben, Ruby, het voorbije jaar was niet gemakkelijk. Ik zat vaak met mijn hoofd elders, en dat 

terwijl we heel wat moeilijke beslissingen moesten nemen. De tornado die ik soms ben als ik 

thuis kom, moet jij binnenkort wel elke dag het hoofd weten te bieden. Jij ben mijn Sancho 

Panza die, terwijl ik de strijd wil aangaan voor de windmolens, mij terug met beide voeten op 

de grond zet. Ik heb soms iets van een naïeve wereldverbeteraar, maar uiteindelijk is het 

vooral jouw wereld die ik wil verbeteren. Bedankt voor alle steun en al je geduld het voorbije 

jaar! 
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1.1 A global decline in biodiversity 

The earth is experiencing drastic changes in global biodiversity (Butchart et al. 2010, Barnosky 

et al. 2011, Dornelas et al. 2014, Pimm et al. 2014, Newbol et al. 2016, IUCN 2017). Today, 

the species extinction rate is estimated to be approximately 1000 times faster than the 

background extinction value (Pimm et al. 2014) and an increasing number of species is 

threatened by extinction (IUCN 2017). The global decline of biodiversity is mainly the result of 

human-induced environmental changes, such as climate change, changing nutrient cycles, 

habitat destruction, invasive species and the release of chemical stressors (Rockstrom et al. 

2009, Butchart et al. 2010). Among these, habitat destruction is considered to be a main cause 

of species extinction (Pimm and Raven 2000). It includes the reduction, fragmentation, and 

degradation of habitats, often for the purpose of agriculture, mining or urban expansion. 

Habitat destruction does not only decrease the inhabitable area for organisms, it also declines 

the number of species in the remnant habitat patches by restricting movement and reducing 

genetic diversity (Lenore Fahring 2003, Ewers and Didham 2006). One factor that affects land 

degradation is the release of nutrients and anthropogenic chemicals such as metals, 

pesticides and polycyclic aromatic hydrocarbons. Those agents can impose serious threats 

to water security and biodiversity (Vörösmarty et al. 2010). In a continental risk assessment 

in Europe, organic chemicals were reported to be present at concentrations that likely exert 

acute lethal and chronic long-term effects on sensitive fish, invertebrate, and algae species in 

freshwater (Malaj et al. 2014). 

While there is a general consensus that diversity is declining on a global scale, there is much 

debate about how the diversity of local communities evolves (Sax and Gaines 2003, Vellend 

et al. 2013, Dornelas et al. 2014, Gonzalez et al. 2016). Meta-analyses of temporal changes 

of local diversity indicate that diversity does not show an overall time-trend (Vellend et al. 

2013, Dornelas et al. 2014), but that the way diversity changes over time has a high variability 

among discrete areas, running from negative to positive. For instance, succession 

experiments after a major disturbance as fire or severe storms often show increases of 

diversity over time, while areas that are affected by climate change show decreases of 

diversity (Vellend et al. 2013). Moreover, while most studies consider richness as a measure 

of diversity (e.g. Vellend et al. 2013, Dornelas et al. 2014), environmental change can also 

affect other measures of diversity, such as evenness, which describes how equal in numbers 

the species in a community are (box 1) (Hillebrand et al. 2008, Mensens et al. 2015). Last, 

environmental change does not necessarily change all diversity metrics. Analyses show a 

turnover in local species composition in time in many local communities, which indicates rather 

a substitution of taxa than a systematic loss (Dornelas et al. 2014). This turnover can be 
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caused by changing environmental conditions (De Laender et al. 2016), as well as by 

immigration of nonnative species (Dornelas et al. 2014). Moreover, environmental change can 

affect productivity without affecting diversity (De Laender et al. 2016, Spaak et al. 2017). 

1.2 Local processes in isolated communities  

1.2.1 Local drivers of coexistence and diversity 

Organisms are not randomly distributed. The presence of a species depends on abiotic 

(temperature, resources…) and biotic factors (predation, facilitation, competition…), which 

determine a species’ niche. The niche concept has many definitions, but in this thesis, I will 

use the definition of Chase and Leibold (2003): a niche of a species is made up of the 

requirement and impact niche. The requirement niche is made up of the environmental 

conditions that allows a species to satisfy its minimum requirements so that the birth rate of a 

local population is equal to or greater than its death rate. The impact niche consists of the set 

of per capita impacts that species have on those environmental conditions. For instance, 

species consume resources and thus decrease the resource level.  

When species have a similar niche and thus compete for the same limiting resources, 

interspecific competition may result in the exclusion of less-competitive species (Tilman 1977). 

However, when niche differences are sufficiently large, coexistence is possible (Chesson 

2000, Adler et al. 2007). By occupying different niches, species may limit their own population 

more than they limit the population of other species, which generates stronger interactions 

within (i.e. intraspecific interactions) than among (i.e. interspecific interactions) species. 

Therefore, when the abundance of a species increases, its per capita growth rate decreases 

compared to the per capita growth rate of the other species. Therefore, niche differences can 

lead to coexistence, also named stabilizing mechanisms (Fig. 1.1) (Chesson 2000). However, 

stabilizing mechanisms alone do not ensure stable coexistence as coexistence also depends 

on the fitness differences among species (Fig. 1.1). When species have a nearly identical 

fitness, species turnover is low and mainly caused by stochastic extinctions and speciation 

rather than the selection of the competitive strongest species (Hubbell 2001). Low fitness 

differences that facilitate coexistence are named equalizing mechanisms (Chesson 2000). 

When fitness differences are large, strong stabilizing effects are needed to insure coexistence. 

In contrast, when stabilizing effects are low, low fitness differences can generate coexistence.  
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Box 1. Measuring biodiversity 

The word biodiversity is a contraction of biological diversity, and is a measure of the 

complexity (amount and variability) at different levels of biological organization (Purvis and 

Hector 2000). It can be measured at different levels, going from genes to species and 

ecosystems. In this dissertation, I focus on species (taxonomic) diversity. Taxonomic 

diversity is composed of two components: species richness and species evenness. The 

first is the quantification of the number of species, which is the commonly used approach. 

The second is a measure of how equal the species abundances are. Diversity can be 

calculated using several metrics that contain both components (Whittaker 1972). Of these 

metrics, the Simpson diversity and Shannon-Wiener index are most commonly used. 

Diversity can be measured at several spatial scales: alpha or local diversity is defined as 

the diversity at the habitat-patch-level, whereas gamma or regional diversity is defined as 

the diversity at the landscape level. Beta-diversity expresses the diversity among habitat 

patches. Beta-diversity can be calculated using the additive definition of diversity 𝐻 (Jost 

2006):  

𝐻𝛽 = 𝐻𝛾 − 𝐻𝛼 (Eq. 1.1) 

Beta-diversity can also be calculated using dissimilarity indices, such as the Bray-Curtis 

dissimilarity index (Bray and Curtis 1957) and the Jaccard’s index (Jaccard 1912). 

1.2.2 The effect of stress on composition and diversity 

A special case of abiotic factors that influence community composition are agents that expose 

organisms to stress. Stress can be defined as a negative physiological or functional response 

towards the environment when the environment exceeds its range of normal variation (Barrett 

et al. 1976) (Box 2). There are many types of environmental stress, such as drought, heat and 

chemical stress. Chemical stress is the result of the release of chemical stressors such as 

pesticides and heavy metals in the environment, mainly through anthropogenic activities. The 

ecological risk assessment of chemicals aims to determine the exposure of organisms by 

chemicals in the environment and to assess the effects of chemicals on living organisms on 

several levels of biological organization from cells to species and ecosystems. 
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Fig. 1.1. Representation of equalizing and stabilizing mechanisms using two species (full and 

dashed line). The difference in per capita growth rate in the absence of stabilization is the fitness 

difference (grey lines). The smaller the difference is fitness, the higher the equalizing mechanisms 

are. A negative slope of the relationship between per capita population growth rate and the species’ 

relative frequency (black lines) represent the degree of stabilization. The stronger the slope, the 

stronger the stabilizing mechanisms. Redrawn from Adler et al. (2007). 

Stress affects species directly by decreasing their birth or increasing their death rates. 

Environmental change may generate a variety of environmental responses among species as 

species occupy different niches along an environmental gradient. Therefore, environmental 

change can decrease the performance of some species (exposing those species to stress), 

while it may increase the performance of others (Woodward et al. 2010). Moreover, 

environmental niches may be smaller for some species than for others. Therefore, 

environmental change can induce a strong stress response in some species, while it may only 

generate a weak response in others (Chase and Leibold 2003, Bolnick et al. 2010, De Laender 

et al. 2016). 

Next to direct effects, stress may also have indirect effects through species interactions. 

According to the stress-gradient hypothesis, the number of facilitative interactions increases 

across gradients of physical stress (Grime 1973, Maestre et al. 2009). For instance, in water-

limited environments, plants can increase water availability by hydraulic lifting or by increasing 

water availability in the top soil by shading surface areas. However, the stress-gradient 

hypothesis is often criticized (Chesson and Huntly 1997). Studies have shown that extreme 

stress can decrease or cease facilitative effects (Michalet et al. 2006) and that the transition 

from competition to facilitation depends on the species identity (Choler et al. 2001) and the 

stress type (Kawai and Tokeshi 2007, Maestre et al. 2009) that are tested. 

Environmental stress decreases diversity when stress-sensitive species are not able to persist 

locally or when environmental stress reduces the abundance of a locally subdominant species 
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more than the abundance of the dominant species (Odum 1985, Johnston and Roberts 2009). 

However, environmental stress can also increase diversity by reducing the abundance of a 

locally competitive dominant species more than that of the subdominant species (Odum 1985, 

De Laender et al. 2016). 

1.2.3 The relationship between diversity and productivity 

A vast number of studies have demonstrated that richness increases ecosystem functions 

such as productivity (Naeem et al. 1994, Tilman and Downing 1994, Tilman et al. 1997, Loreau 

et al. 2001, Hooper et al. 2005, Cardinale et al. 2013a). Biodiversity affects ecosystem 

functioning because of two mechanisms: complementarity and selection effects (Loreau and 

Hector 2001). Complementarity effects occur because of niche differentiation and facilitative 

interactions. First, when species differ in their niche, competition between organisms of 

different species is lower than between organisms of the same species. Niche differentiation 

therefore reduces the strength of competition, increasing productivity. While niche 

differentiation is the avoidance of competitive (negative) interactions, facilitative interactions 

increase positive interactions among species (e.g. flower-pollinator interactions). Under both 

niche differentiation and facilitative interactions, high-diverse systems can sustain a higher 

number of individuals and hence have a higher productivity than low-diverse systems. 

Selection effects occur when productivity is driven by high functional contributions of species 

with particular traits. Under selection effects, the species with those particular traits will 

contribute most to productivity, while the species that do not possess those traits will contribute 

less. Selection effects are likely to generate local extinctions of less-productive species, 

decreasing diversity. However, a high initial diversity increases selection effects because of a 

sampling effect i.e. a high initial diversity increases the probability that a very productive 

species is locally present. There is some evidence that selection effects increase under stress 

(Baert et al. 2016a). A high diversity increases the probability that a stress-tolerant species is 

present which can replace stress-sensitive species. As such, diversity may provide insurance 

against a negative effect of stress on productivity (Yachi and Loreau 1999, Fernandes et al. 

2011, Steudel et al. 2012, Baert et al. 2016a). 

The strength of selection and complementarity effects depends on which species are initially 

present in a community (Huston 1997). However classic diversity-productivity studies cannot 

explain why certain species are initially present and which factors may determine initial 

diversity. Expanding the scope to how local processes interact with regional processes is 

therefore a logical next step to understand how diversity affects the productivity of 

communities (Mouquet and Loreau 2003, Loreau et al. 2003a, Gonzalez and Loreau 2009, 

Leibold et al. 2017). 
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1.3 Effect of regional processes on species composition 

Organisms can interact at different spatial scales (Robert and Wilson 1967, Levin 1992, Chase 

and Leibold 2002, Leibold et al. 2004). A patch is an area of the habitat that can contain a 

local population or community (Leibold et al. 2004). A region is a larger area of the habitat, 

containing multiple patches and being capable of supporting a set of local populations or 

communities (Leibold et al. 2004). There are multiple ways in which such a region can be 

structured. One way is the classic mainland-island system, where local dynamics only occur 

within the islands (Robert and Wilson 1967). Those local dynamics can drive the species on 

the islands to extinction. However, local diversity is influenced, and potentially saved, by 

immigration from the mainland. Another way is the Levins metapopulation system, which is a 

set of identical local populations with finite and equal probabilities of extinction and 

immigration (Levins 1969). An extension of this system is the metacommunity system (Wilson 

1992, Leibold et al. 2004). A metacommunity is a set of local communities that are linked by 

dispersal of multiple potentially interacting species (Leibold et al. 2004). The way regional 

processes change local processes in metacommunities depends on connectivity (dispersal), 

the regional species pool, disturbance and environmental heterogeneity and variability 

(Leibold et al. 2017) (box 2). Those processes determine which community assembly 

processes will regulate diversity and productivity on a local (community) and a regional 

(metacommunity, landscape) scale (Fig. 1.1). 

1.3.1 Community assembly mechanism 1: neutral model 

According to the neutral model, the environment is completely homogeneous and all species 

have identical traits (Fig. 1.2) (Hubbell 2001). Processes such as birth and death are random 

processes, which generate random species extinctions. Diversity is maintained as local 

extinctions are compensated by the dispersal of species from other communities and by 

speciation (Hubbell 2001, Vellend 2010). The neutral model is valuable as it can be considered 

a null hypothesis, or describe dynamics where fitness differences among species are small 

and transient dynamics are long-lived (Leibold et al. 2004, Vellend et al. 2014). 
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Box 2. Factors that determine the community assembly processes 

Dispersal is the movement and incorporation of organisms between populations and 

communities (Ronce O. 2007, Edelaar and Bolnick 2012). It contains several stages: 

departure, transfer and settlement. Dispersal can be active or passive (Edelaar and 

Bolnick 2012). Dispersal shows a high interspecific and intraspecific variability (Baguette 

et al. 2013, Cote et al. 2016, Bonte and Dahirel 2017) and might be condition-dependent 

(Edelaar and Bolnick 2012, Fronhofer et al. 2015a, 2015b). In this dissertation, I use 

dispersal rate as the number or proportion of organisms that move from one community 

to another. 

Connectivity is the degree to which the landscape facilitates or impedes movement 

among resource patches (Taylor et al. 1993). Connectivity encompasses structural 

connectivity (the physical arrangements of patches) and functional connectivity (the 

movement of individuals among patches) (Brooks 2003, Baguette et al. 2013). The 

degree to which a landscape is connected determines the amount of dispersal among 

patches. In this dissertation, I use connectivity as the number of connections among the 

patches of a landscape. 

The regional species pool is the set of species in a region that could potentially colonize 

and establish within a community (Lessard et al. 2012). The region is defined as a large 

area containing multiple patches and is capable of supporting a metacommunity (Leibold 

et al. 2004). In reality, it is an area that is intermediate in extent between the entire globe 

and small study plots (Sax and Gaines 2003), such as a stream, drainage basin or an 

ecoregion (Heino et al. 2015). The identity of the species in the species pool will 

determine how communities will interact with e.g. environmental conditions (Lessard et 

al. 2012, Fukami 2015).  

Environmental heterogeneity encompasses different kinds of spatial heterogeneity, 

complexity, diversity, structure, or variability in the environment (Stein and Kreft 2015). 

Environmental heterogeneity contains biotic and abiotic components such as land cover, 

vegetation, climate, soil, and topography. A high environmental heterogeneity is generally 

expected to generate a high regional diversity because of an increase of the available 

niche space (Chesson and Warner 1981, Hortal et al. 2009, Stein et al. 2014). 

Disturbance is generally described as the total or partial disruption of biomass (Grime 

1979). It is a relatively discrete event in time that is characterized by a frequency, 

intensity, and severity outside a predictable range, and that disrupts an ecosystem, 

community, or population and changes resources or the physical environment (Resh et 

https://en.wikipedia.org/wiki/Landscape
https://en.wikipedia.org/wiki/Natural_resource
https://en.wikipedia.org/wiki/Biological_dispersal
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al. 1988). Because of disturbances, communities depart from their steady state and enter 

the exponential growth rate (Battisti et al. 2016). 

Stress can be defined as the reduction of the biomass growth rate (Grime 1979). More 

general, it is a negative physiological or functional response towards the environment 

when the environment exceeds its range of normal variation (Barrett et al. 1976). Stress 

is a species-specific response as environmental stressors, such as chemicals or drought 

might severely stress some species, while not affecting other species (Van Straalen 

2003, De Laender et al. 2016). 

 

Fig. 1.2. The effect of diversity on productivity according to the metacommunity framework (Leibold 

et al. 2004, 2017). Metacommunity assembly processes are influenced by the species pool, the 

environment and connectivity and influence diversity. Species pool, environmental heterogeneity 

and connectivity can also directly influence productivity, but these relations are not shown as they 

are usually not directly considered within metacommunity theory. Figure after Leibold et al. (2017). 

 

Fig. 1.3. The area of the four metacommunity assembly mechanisms where they are applicable. 

The mechanisms depend on environmental heterogeneity, fitness equivalence and dispersal rate. 

Abbreviations: NM, neutral model; PD patch-dynamics; SS, species sorting; ME, mass effects. 

Redrawn from Logue et al. (2011). 
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1.3.2 Community assembly mechanism 2: patch-dynamics 

According to the patch-dynamic perspective, the environment is completely homogeneous 

and species are affected by local stochastic and deterministic extinctions that are 

counteracted by dispersal (Fig. 1.2) (Leibold et al. 2004). Coexistence is possible under a 

competition-colonization trade-off, in which some species colonize empty patches more 

efficiently, while others are better competitors and can locally outcompete the best colonizer 

(Levins and Culver 1971, Tilman 1994, Livingston et al. 2012). The trade-off between the 

species’ colonizing and competitive ability reduces the ratio of interspecific to intraspecific 

competition and allows coexistence without environmental heterogeneity among patches 

(Amarasekare 2003). However, when the difference in dispersal rate is low, the best 

competitor will exclude the best colonizer. Likewise, when the difference in dispersal rate is 

too high, the best colonizer will exclude the best competitor (Livingston et al. 2012). An 

important feature needed to permit coexistence is that disturbance, such as habitat 

destruction, removes better competitors from local patches, opening new available patches 

for the better colonizers (Nee and May 1992). The existence of a competition-colonization 

trade-off has been found for some species combinations (Mouquet et al. 2004, Cadotte et al. 

2006b), but not for many other species combinations (Yu and Wilson 2001, Jakobsson and 

Eriksson 2003, Limberger and Wickham 2011). 

1.3.3 Community assembly mechanism 3: species sorting 

The species sorting mechanism presumes a spatially heterogeneous environment, in which 

species sort among patches according to their performance and competitive abilities under 

local environmental conditions (Fig. 1.2) (Tilman 1982, Chase and Leibold 2003, Leibold et 

al. 2004, 2017). Optimal species sorting is achieved when each patch contains the species 

from the regional species pool that are best adapted to the local environmental conditions. 

Therefore, there is a strong relationship between the variability in composition and the 

variability in environmental conditions among patches (Cottenie 2005, Langenheder et al. 

2012, Soininen 2014, Leibold et al. 2017).  

There are at least three factors that can avoid the most competitive species to be present in 

its optimal patch. First, under dispersal limitation, dispersal rates can be too low to achieve 

optimal species sorting (Cornell and Lawton 1992, Tilman 1994, Shurin 2000). Dispersal 

limitation occurs when colonization or extinction rates are smaller than the rates of 

environmental changes, which reduces the propensity for species to find their favored 

environmental conditions (Germain et al. 2017, Leibold et al. 2017). Therefore, communities 

are dominated by subdominant species that can only persist when the dominant species is 

not present. 
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Second, historical processes can influence community assembly. The way species affect each 

other may depend on the order and timing in which species arrive in a local community. This 

effect of timing on community assembly is also referred to as priority effects (Chase 2003, 

Fukami 2015). By influencing community assembly, priority effects can lead to different 

community compositions and functioning among patches, although those patches may have 

identical environmental conditions (Shulman et al. 1983, Chase 2003, Zhang and Zhang 2007, 

Tan et al. 2012, Vellend et al. 2014). The different compositions that are generated by priority 

effects are not necessarily stable, but may also be transient (Fukami 2015). The mechanisms 

that generate priority effects are discussed in box 3. 

Third, dispersal rates can be too high, which leads to mass effects. 

1.3.4. Community assembly mechanism 4: Mass effects 

The mass effect paradigm presumes a spatially heterogeneous environment in which species 

are moved from patches where they have a high growth rate and perform well, to patches 

where they have a low growth rate and perform worse (Fig. 1.2) (Loreau and Mouquet 1999, 

Amarasekare and Nisbet 2001, Mouquet and Loreau 2003). As a result, a species has a higher 

loss rate in the source community and a higher birth rate in the sink community than in isolated 

conditions. Mass effects occur at high dispersal rates, when dispersal prevails over local 

community dynamics such as competitive exclusion (Logue et al. 2011). 

1.4 The effect of dispersal on diversity and productivity 

In the previous paragraph, I discussed that dispersal can change local and regional 

coexistence through four different assembly mechanisms. By changing coexistence, dispersal 

also potentially affects diversity and productivity (Fig. 1.1), which it can do in various ways. 

Grainger and Gilbert (2016) reported in a recent meta-analysis a high variation in relationships 

between dispersal and diversity. Most studies that were included in the meta-analysis reported 

a positive relationship between dispersal and local (alpha) diversity (measured as richness). 

Other studies found negative, hump-shaped or no significant relationships. Studies were more 

consistent about how dispersal affects among-community (beta) diversity, reporting mainly 

negative relationships. In contrast, studies showed a high variation in how dispersal affects 

regional (gamma) diversity. Most studies reported no significant effect of dispersal on regional 

diversity, while others found a positive or negative effect. Most studies that were included into 

the analysis used richness as a measure of diversity, while studies about evenness are largely 

lacking (Hillebrand et al. 2008). Nevertheless, there is experimental evidence that dispersal 

might affect evenness more than richness because local or regional processes often rather 
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change the relative abundance of certain species than driving species to extinction 

(Matthiessen et al. 2010a, Limberger et al. 2014, Mensens et al. 2015).  

Dispersal can also affect productivity. Although Loreau et al. (2003b) already showed 

theoretically that dispersal can affect productivity, experimental evidence is not conclusive. 

Moreover, the experimental studies that investigated the relationship between dispersal and 

productivity show a high variation in possible relationships. Positive (e.g. Thompson and 

Shurin 2012, Steiner 2014), hump-shaped (e.g. Matthiessen and Hillebrand 2006, Howeth 

and Leibold 2010) and negative (e.g. Eggers et al. 2012, de Boer et al. 2014) relationships 

between dispersal and local and regional productivity have been found. A high variety in 

dispersal effects on diversity and productivity is not surprising, as the effect of dispersal on 

diversity and productivity depends on many factors such as environmental heterogeneity, 

material fluxes and network structure. 

1.4.1. The effect of dispersal on diversity 

When environmental conditions are equal in all communities, the environment is 

homogeneous. In a homogeneous environment, species compositions among patches can 

differ because of stochastic extinctions. While species get locally extinct, dispersal introduces 

new species and thereby increases local diversity (i.e. neutral model, Leibold et al. 2004). 

However, in many experiments, differences in composition in homogeneous environments 

through stochastic dynamics are weak and dispersal hence does not affect diversity or 

productivity (Matthiessen et al. 2010a, Limberger et al. 2014, Guelzow et al. 2014). 

Under the patch-dynamic mechanism, competition-colonization trade-offs can affect diversity. 

A competition-colonization trade-off generates the highest diversity at intermediate dispersal 

rates (Livingston et al. 2012). When dispersal is too low, the best competitor hardly moves 

among patches, and the best colonizer is the dominant species. However, when dispersal is 

too high, the difference in the colonizing ability decreases and the best competitor then 

regionally excludes the best colonizer. 

An important factor that can influence how dispersal affects diversity in homogeneous 

landscapes is if the starting communities are heterogeneous (i.e. have a different 

composition). Under such conditions, species that are initially present may facilitate or inhibit 

the colonization of later-arriving species (Matthiessen and Hillebrand 2006, Fukami 2015). 

Moreover, increasing dispersal can enable species to colonize new patches, increasing 

diversity (Gonzalez et al. 1998), while high dispersal rates can enable a dominant competitor 

to reach all patches, decreasing diversity (Cadotte and Fukami 2005, Cadotte 2006). 

Therefore, heterogeneous starting communities might increase the probability to find hump-

shaped relationships between dispersal and diversity (Grainger and Gilbert 2016). 
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Box 3. Priority effects. 

Priority effects are caused by two mechanisms: niche preemption and niche 

modification. 

Niche preemption inhibits the colonization of later-arriving species because their 

reproduction and survival rates were reduced by a low resource availability. Resource 

availability was low because resources were consumed by the early-arriving species 

(Fukami 2015). Niche preemption is stronger when species have a similar resource use, 

such as algae (Zhang and Zhang 2007) or amphipods (Little and Altermatt 2018) or when 

they have a similar fitness, which acts as an equalizing mechanism (Chesson 2000). 

Without niche preemption, the order of arrival would not be important, and species sorting 

effects would create communities that are dominated by the same species (Leibold et al. 

2004). Because niche preemption is based on equalizing mechanisms, it generates no 

stable but only transient states (Adler et al. 2007, Fukami 2015). 

Niche modification inhibits the colonization of late-arriving species or changes the 

identity of the late-arriving species because early-arriving species modified the 

environment. (Fukami 2015). For instance, early arriving species can change the soil 

conditions by bioturbation, creating a niche for other sea organisms (Meysman et al. 

2006) or plants (Fukami and Nakajima 2011). Niche modification can lead to alternative 

stable (Pertraitis 2009), as well as transient states (Fukami and Nakajima 2013). 

Priority effects are promoted by a number of local and regional factors. 

First, priority effects are promoted by a rapid growth of the early-arriving species 

(Fukami 2015). A high growth rate assures that the habitat is substantially preempted or 

modified before the late-arriving species arrive. The growth rate must be considered 

relative to the dispersal rate. The higher the dispersal rate, the less time the early-arriving 

colonizers have to preempt or modify the niche, so the higher their growth rate must be 

(Chase 2003, Fukami 2005). Priority effects are thus facilitated when growth rates 

increase, for instance through a smaller patch size, which allows species to reach their 

carrying capacity earlier (Fukami 2004) or through a low environmental variability which 

keeps growth rates constant (Tucker and Fukami 2014). In contrast, growth rates 

decrease when communities are stressed. For instance, recurrent disturbances are 

shown to decrease priority effects (Chase 2003, Symons and Arnott 2014). 

Second, the higher the number of species in the species pool, the more species there 

are to fill a certain niche, which increases the possibility for priority effects (Law and 
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Morton 1996). However, when only a few species are able to persist in a local patch, for 

instance through stress, the possibility for priority effects decreases (Chase 2003). 

Third, the traits of the species are important (Tan et al. 2012, Fukami 2015). For 

instance, priority effects are expected to be high when resource overlap is high. 

Moreover, dispersal rates should be similar, increasing the variability in arrival order 

among patches. 

Fourth, there should be a decoupling of the species from local dynamics (Fukami 

2015). When all communities are connected, such as in the metacommunity perspective 

of Leibold et al. (2004), all communities are homogenized when dispersal is high and will 

likely obtain the most frequent community composition (Chase 2003). In a mainland-

island system, the species composition of the mainland is not influenced by local 

dynamics (Robert and Wilson 1967). All species are thus able to invade the island, 

increasing the possibility for priority effects. 

Different environmental conditions among patches create heterogeneous landscapes where 

patches hold different communities by maintaining the species that are best adapted to the 

local conditions. In empirical studies, environmental heterogeneity is generally created by 

varying disturbance intensity (Matthiessen et al. 2010b, Altermatt et al. 2011b, Carrara et al. 

2012), resource availability (Forbes and Chase 2002, Davies et al. 2009, Souffreau et al. 

2014), temperature (Eggers et al. 2012, Limberger et al. 2014, de Boer et al. 2014) or light 

intensity (Eggers et al. 2012, de Boer et al. 2014, Guelzow et al. 2014) among local patches. 

Applying disturbances differs from the others factors as it does not affect species randomly 

towards their contribution to ecosystem functioning. Indeed, as disturbance is mostly applied 

by removing a fixed proportion of a community, it affects the high-productive species most. 

In contrast, the effect of manipulating resource availability, temperature or light intensity 

depends on how species respond to the changing environment conditions. Although patch 

dynamics, neutral dynamics, species-sorting effects and mass effects can occur together, 

the last two are generally considered to be the main driving mechanisms of diversity in 

heterogeneous landscapes. 

When dispersal increases, an increasing number of species can colonize a local patch (Shurin 

2000). Low dispersal can generate species sorting, enabling species to track suitable patches. 

Species sorting may generate several effects on local diversity. First, dispersal can increase 

diversity when it adds species that are good competitors under the local environmental 

conditions. Second, dispersal might have no effect on diversity when the addition of a good 

local competitor induces the exclusion of a poor resident competitor. Last, dispersal can 
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decrease diversity when it introduces a competitive dominant species that excludes most of 

the local subdominant species (Leibold et al. 2017). Dispersal may also generate several 

effects on among-community diversity. Dispersal may decrease beta-diversity as species can 

reach more patches (Bender et al. 2017). In contrast, optimal species sorting increases beta-

diversity when each patch is dominated by a different species (Gianuca et al. 2016, Leibold 

et al. 2017). 

Increasing dispersal may induce mass effects. Under mass effects, dispersal is expected to 

show a hump-shaped relationship with local richness (Fig. 1.3) (Mouquet and Loreau 2003, 

Loreau et al. 2003a). When dispersal is absent, local diversity is low as each community 

consists of the species that are best adapted to the local environmental conditions. When 

dispersal increases, it may introduce species to patches where they could not survive without 

dispersal. When dispersal is high, dispersal decreases local diversity as it distributes a 

regional dominant competitor that excludes the regional subdominant competitors. However, 

many studies that manipulate dispersal under mass effects did not find any effect of dispersal 

on local richness (Matthiessen et al. 2010a, Altermatt et al. 2011a, Eggers et al. 2012, 

Limberger et al. 2014). However, some of these studies found a negative effect of dispersal 

on local evenness (Matthiessen et al. 2010a, Eggers et al. 2012). This negative effect occurs 

when dispersal promotes a regional dominant species as predicted by theory.  

As dispersal homogenizes composition under mass effects, it is expected to decrease beta-

diversity (Mouquet and Loreau 2003), which has been confirmed in several experiments 

(Matthiessen et al. 2010a, Carrara et al. 2012, Eggers et al. 2012). Last, high dispersal rates 

are also predicted to decrease regional diversity (Mouquet and Loreau 2003). Only a few 

studies found a negative relationship between dispersal and regional diversity (e.g. 

Matthiessen et al. 2010a), while a majority of studies did not find a significant relationship 

between dispersal and regional diversity (e.g. Eggers et al. 2012, Limberger et al. 2014). 

1.4.2 The effect of dispersal on productivity 

Dispersal can increase productivity by adding new species to local communities. When 

dispersal adds new species, complementarity effects and selection effects may increase 

(Matthiessen and Hillebrand 2006, Leibold et al. 2017). Complementarity effects increase 

productivity through niche partitioning. How selection effects change productivity depends on 

the identity of the competitive dominant species (Loreau and Hector 2001, Fox 2005). When 

the dominant species is also most productive, selection effects increase productivity. 

However, selection effects may also be negative and decrease productivity. 
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Fig. 1.4. Predicted relationships between dispersal and richness according to the model simulation 

of Mouquet and Loreau (2003). The relationships are the result of dispersal-induced mass effects. 

The relationship between dispersal and local (𝛼) richness was predicted to be hump-shaped 

because low dispersal initially supplies new species while high dispersal generates extinctions of 

regionally subdominant species. Because of the regional exclusion of subdominant species at high 

dispersal, the relationship between dispersal and regional (γ) diversity was found to be negative. 

Finally, the relationship between dispersal and among-community (β) diversity was found to be 

negative because of an increasing homogenization. 

When environmental conditions fluctuate through time, dispersal can increase compensatory 

dynamics by increasing local diversity. By increasing compensatory dynamics, dispersal 

increases productivity, providing spatial insurance under changing environmental conditions 

(Loreau et al. 2003a, Brown et al. 2016). Increasing compensatory dynamics have been 

empirically found in communities where asynchronous pH fluctuations were applied (Steiner 

et al. 2011) and in communities under salt stress (Thompson and Shurin 2012). Dispersal may 

also increase productivity by generating a spatial averaging effect which means that a regional 

dominant competitor will always find a patch where it can perform well and averages out 

environmental variations across the various local patches (Loreau et al. 2003a). For instance, 

spatial averaging has been found in metacommunities under a pulsed inflow of nutrients 

(Smeti et al. 2016). 

Dispersal can also decrease productivity. Under mass effects, dispersal is predicted to 

decrease biomass because it moves organisms to patches in which they are less productive 

and replaces those organisms with organisms that are less productive (Mouquet and Loreau 

2003). However, empirical evidence for this is limited (Leibold et al. 2017). Negative effects of 

dispersal on local and regional productivity have mainly been confirmed at high dispersal rates 

(Howeth and Leibold 2010a, Lindström and Östman 2011), but also at low dispersal rates for 

algae metacommunities (Eggers et al. 2012, de Boer et al. 2014). 
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1.4.3 Material fluxes 

Not only organisms, but also materials and energy can move across a landscape (Loreau et 

al. 2003b, Massol et al. 2011, 2017). Systems in which dispersal and material fluxes are 

investigated together are named metaecosystems. By changing the environmental conditions, 

material fluxes are predicted to change the relationship between dispersal and diversity 

(Loreau et al. 2003b, Massol et al. 2011, 2017). Haegeman and Loreau (2014) found a 

resource flux to change the relationship between dispersal and local diversity from positive to 

hump-shaped because the combination of dispersal and a resource flux facilitated a regional 

dominant competitor to exclude other species. A resource flux is also shown to change 

productivity. For instance, a resource flux between an autotrophic and heterotrophic patch can 

increase the productivity of both communities (Harvey et al. 2016, Gounand et al. 2017). 

However, empirical studies that investigate the combined effect of dispersal and material 

fluxes on diversity and productivity are lacking (Massol et al. 2017).  

1.4.4 Network structure 

Most studies that investigate the effect of dispersal on diversity and productivity in landscapes 

only contain two or three patches (e.g. Matthiessen et al. 2010a, Pedruski and Arnott 2011, 

Eggers et al. 2012, Limberger et al. 2014, Souffreau et al. 2014). However, real landscapes 

are spatially extended, containing multiple patches (Davies et al. 2009, Carrara et al. 2012, 

2014). In such landscapes, the position of the patch within the network is demonstrated to 

influence the diversity of the patch (Carrara et al. 2012, Seymour et al. 2015). Patches that 

occupy a central position in a network are shown to have the highest diversity as they are 

more strongly connected to other patches than peripheral patches (Carrara et al. 2014). 

Moreover, in spatially extended landscapes, also the direction of dispersal is an important 

determinant of diversity. For instance, in patches that were affected by random disturbances, 

Altermatt et al. (2011b) found that dispersal in one direction decreased local richness more 

than when dispersal occurred in all directions. This effect was stronger when dispersal was 

biased away from the disturbed patches. Spatially-extended networks are a better 

representation of real landscapes than simple two-or three patch metacommunities. However, 

the effect of dispersal on diversity or productivity has hardly been investigated in such 

landscapes (Grainger and Gilbert 2016). 

1.5 Rationale, research objectives and thesis outline 

Environmental change is predicted to be a main driver of alterations in the composition of 

communities, influencing community diversity and productivity (Cardinale et al. 2012, Pimm 

et al. 2014, Baert et al. 2016a, De Laender et al. 2016, Spaak et al. 2017). The way 



Chapter 1. General introduction 

18 

 

environmental change affects diversity and productivity depends on both local (i.e. species 

responses and competitive interactions) and regional processes (Robert and Wilson 1967, 

Mouquet and Loreau 2003, Leibold et al. 2004). However, how environmental change and 

dispersal combine in affecting diversity and productivity is still poorly understood. Several 

studies have investigated how dispersal affects diversity or productivity when environmental 

heterogeneity creates different compositions among communities (Grainger and Gilbert 

2016). The extent to which environmental change creates different compositions depends on 

the strength of environmental heterogeneity and the species responses to environmental 

change. However, the magnitude of compositional changes that are needed to create 

dispersal effects on diversity and productivity is still poorly understood. Moreover, 

environmental change may not only generate differences in composition by generating 

species turnovers, but also alter population sizes. How changes in population size alter 

dispersal effects on diversity and productivity has hardly been examined until now. An 

important group of environmental-change drivers that affect both the composition and 

population size of communities are environmental stressors such as chemicals. In this 

dissertation, I investigate how chemical stress and dispersal combine in affecting diversity and 

productivity. I formulate four research questions, which are each addressed in a different 

chapter. The experimental set-ups that were applied to investigate the research questions are 

represented in Fig. 1.4. 

Environmental stress induces shifts in community composition and reduces productivity by 

decreasing the growth rate of species. Dispersal may introduce stress tolerant species, 

changing composition and compensating for the stressor-induced productivity loss (Loreau et 

al. 2003a). However, the colonization of new species might be hindered by priority effects 

(Chase 2003, Fukami 2015). Until now, it has not been investigated how chemical stress and 

dispersal combine in affecting community assembly and how this affects the diversity and 

productivity of communities. In chapter 2, I therefore address the question: “How does 

dispersal affect the assembly, diversity and productivity of communities at different levels of 

chemical stress?”. I performed a laboratory microcosm experiment in which I exposed marine 

micro-algae communities to chemical stress and dispersal using a full-factorial design. For the 

experiment (as well for the experiments in chapters 4 and 5), I used marine micro-algae 

communities of the class Bacillariophyceae (diatoms). These micro-algae were sampled in 

the North Sea where they form the basis of the marine food web (Mommaerts 1973, Gypens 

et al. 2007). Under laboratory conditions micro-algae communities are characterized by high 

competitive interactions, often resulting in the dominance of a few algae species (Giller et al. 

2004, Mensens et al. 2015, Baert et al. 2016a). Micro-algae have a high growth rate, which 

enables studying multiple generations in less than a month. Moreover, they have a high 
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interspecific variation in response towards herbicides (Mensens et al. 2015). In chapter 2, I 

exposed the micro-algae communities to chemical stress using the herbicide atrazine, which 

is a triazine herbicide that targets photosynthesis. While its application has been forbidden in 

Europe since 2004 (European Commission 2004), it is still a widely used pesticide in many 

other areas. For instance, in the US, concentrations of atrazine in exposed watersheds 

typically vary between 1 and 3 µg/l (Mahler et al. 2017), although also concentration peak 

concentrations of 100 µg/l have been recorded (Graymore et al. 2001). Atrazine has a high 

half-life value (several weeks or months, Salomon et al. (2010)), which facilitates studying the 

effect of atrazine while keeping its concentration relatively constant over time. Dispersal was 

performed according to a mainland-island design (Robert and Wilson 1967). I measured the 

species abundances throughout the experiment and calculated the diversity, productivity and 

the abundance of the initial species as a measure for the priority effect. 

In chapter 2, I introduced species to communities without allowing them to emigrate from those 

communities. Moreover, the identity of the introduced species did not emerge from community 

processes. In reality, species move among communities, and the identity and the number of 

organisms that immigrate depend on the composition of the source communities. Stress 

heterogeneity is an important factor that generates different compositions among communities 

and as such influences the relationship between dispersal and diversity. The extent to which 

stress heterogeneity creates different compositions among communities, depends on the 

interspecific variation in stress response. Moreover, differences in composition may also be 

due to heterogeneous initial communities. As such, heterogeneous initial communities may 

generate different dispersal effects on diversity than homogeneous initial communities. In 

chapter 3, I therefore address the question: “How does the relationship between dispersal 

and local richness change at different magnitudes of stress heterogeneity?” I used a 

theoretical model to simulate the relationship between dispersal and diversity in 

metacommunities where stress intensity varied among two communities. Using a full factorial 

design, I investigated how stress heterogeneity, interspecific variation in stress response and 

the composition of the initial communities (homogeneous versus heterogeneous) affected the 

relationship between dispersal and diversity. 
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Fig. 1.5. Experimental set-up in each research chapter. Each colored circle represents a patch (i.e 

an algae community). Colors represent the different stressor levels (from low to high: blue, green, 

yellow, orange and red). A thicker line represents a higher dispersal rate. In chapter 2, algae were 

moved at a fixed density (3 levels) from the monocultures to the communities that initially contained 

4 algae and that were exposed to three levels of atrazine. In reality, the number of organisms that 

disperses is often the result of interactions in the community from which the organisms emigrate. 

Therefore, in chapter 3, I moved organisms between two communities that had a different stress 

intensity. While in chapter 2 and 3 only organisms were dispersed, also materials such as chemical 

stressors can move among communities. In chapter 4, I therefore crossed 5 dispersal levels with 4 

stressor flux levels in two-patch metacommunities. Finally, in contrast to the two-patch 

metacommunities that were used in chapters 3 and 4, organisms were dispersed in chapter 5 

between patches in spatially extended landscapes. 8-patch landscapes were hence exposed to 2 

levels of atrazine and algae were dispersed between patches according to different connectivity 

schemes. 

In chapters 2 and 3, the dispersal of organisms was the only flux that was considered. Many 

landscapes, however, are not only characterized by fluxes of organisms, but also by fluxes of 

materials, such resources and chemical stressors (Massol et al. 2017), which can introduce 

temporal changes of stressors. Although such fluxes have been theoretically shown to change 

the relationship between dispersal and diversity (Haegeman and Loreau 2014), only one 

experimental study so far has combined dispersal and a resource flux (Harvey et al. 2016). In 
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chapter 4, I therefore address the question “How does a stressor flux alter the relationship 

between beta-diversity and regional productivity?”. To answer this question, I used an 

experimental approach in which I independently manipulated dispersal and a stressor flux in 

two-patch metaecosystems of micro-algae. 

In chapters 3 and 4, I investigated the effect of stress and dispersal on local and regional 

diversity and productivity in two-patch metacommunities, where dispersal was manipulated by 

applying different dispersal rates among patches. However, communities are typically 

embedded in spatially-connected landscapes. Many of those landscapes are subject to 

decreasing connectivity through habitat destruction and increasing fragmentation. Studies are 

thus needed that manipulate the number of connections among communities. Some studies 

have recently addressed how connectivity affects diversity in spatially-extended landscapes, 

mainly using homogeneous (Seymour et al. 2015) or heterogeneous landscapes where patch 

sizes or disturbance intensity was manipulated (Carrara et al. 2012, 2014). However, studies 

in which heterogeneity is manipulated by agents that show species-specific effects, such as 

chemical stressors, are lacking. Moreover, previous studies only applied 2 connectivity levels, 

which might be too low to find high-order, such as hump-shaped relationships among 

dispersal and diversity or dispersal and productivity. In chapter 5, I therefore address the 

question: “How does connectivity affect the diversity and productivity in spatially connected 

landscapes exposed to chemical stress?”. To deal with this question, I manipulated stressor 

exposure and connectivity in complex landscapes with communities of micro-algae and 

determined the effect of connectivity on local and regional diversity during the experiment. 

In chapter 6, I summarize the main results of this dissertation. Furthermore, I describe the 

main contribution of my studies in ecological research, and I formulate some 

recommendations for future work. Last, I also discuss how this dissertation may have 

consequences for the ecological risk assessment of chemicals. 
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stress on structure, evenness and biovolume 
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Abstract 

Changes in environmental conditions can impose stress that alters the structure and function 

of communities. However, ecologists are only starting to explore how stress can interact with 

dispersal. In this study, we tested how dispersal affects the structure, diversity (evenness) and 

function (productivity) of marine diatom communities (Bacillariophyceae) exposed to herbicide 

stress using a mainland-island framework. In a microcosm experiment, we manipulated the 

sequence (5 levels) and speed (two dispersal levels) of species arrival under no-stress 

conditions and two levels of stress. When stress was absent or low, priority effects regulated 

community dynamics, keeping the densities of new arrivers low. Consequently, evenness was 

lower in dispersed than non-dispersed communities. Moreover, because of strong local 

interactions, dispersal decreased productivity under no-stress conditions and low stress. 

Under high stress, the selection for tolerant species regulated community dynamics. This 

generated a decrease in evenness but buffered productivity by compensating for the loss of 

sensitive species. Our results show that (1) dispersal reduced evenness, but that the 

underlying mechanisms depend on the stress-level, (2) dispersal can function as a spatial 

insurance against local changes in environmental conditions. Accounting for regional 

processes is therefore essential for estimating the consequences of environmental changes 

for ecosystem functions.  
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2.1 Introduction 

Anthropogenic factors of environmental change such as eutrophication, chemical pollution, or 

climate warming are major drivers of community dynamics (Vörösmarty et al. 2010, Malaj et 

al. 2014, Pimm et al. 2014). The way environmental change affects community structure 

depends on local processes, i.e. the response of the locally occurring species and their 

interactions (Ives 1995, Naeem and Li 1997). Environmental change alters community 

structure by affecting species differently. These changes in fitness lead to a species turnover 

and shifts in relative abundances, which can result in altered evenness and local extinctions 

of stress sensitive species (Hillebrand et al. 2008, Viaene et al. 2013, Mensens et al. 2015). 

How species turnover affects productivity depends on the capacity of tolerant species to 

compensate for the functional loss of sensitive species (May 1974, Flöder et al. 2010). The 

probability for such functional compensation increases with initial richness because of the 

higher probability that a stress tolerant species is present (Naeem and Li 1997, Yachi and 

Loreau 1999, Steudel et al. 2012). 

Not only local, but also regional processes such as dispersal and colonization can alter 

community dynamics. If dispersal rates are very low, dispersal limitation hinders the 

introduction of new species into a local site. As a result, most species remain absent from that 

site (Cornell and Lawton 1992, Tilman 1994). When the dispersal rate increases, new species 

can be introduced into a local site, but their colonization success depends on local conditions 

(Drake 1991, Law and Morton 1996). Hence, dispersal can add a species to a local community 

only if dispersal rates exceed that species’ local extinction probability (Shurin 2000). 

There is mounting evidence that the influence of regional processes on community dynamics 

can depend on the order and timing of past events, termed historical contingency (Chase 

2003, Fukami and Morin 2003, Fukami et al. 2010, Fukami 2015). In that case, the effect of 

dispersal depends on the order and timing of species introductions. A different order of 

introduction can lead to different interactions between species and can thus cause large 

differences in community structure (Chase 2003, Fukami 2015). When early-arriving species 

prevent the colonization of later arriving colonizers, these differences are called priority effects 

(Shulman et al. 1983, Chase 2003, Fukami 2015). Those priority effects are the result of a 

rapid monopolization of resources, leading to high interspecific interactions. Increasing 

dispersal rates reduce the time for resident species to monopolize those resources, and they 

therefore reduce priority effects (Fukami 2015). 

Effects of regional processes on community dynamics can lead to both increases and 

decreases of local evenness. First, dispersal can promote evenness when dispersal 

introduces species that are locally less abundant (Hillebrand et al. 2008). Second, dispersal 
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reduces evenness when a strong dominant competitor is introduced. Such a negative effect 

of dispersal on evenness is found in most micro-algae microcosm experiments (Matthiessen 

et al. 2010a, Eggers et al. 2012). Dispersal can also affect productivity. When dispersal 

increases local richness by the introduction of new species, dispersal leads to changing 

complementary and selection effects on productivity (Loreau and Hector 2001, Fox 2005). 

These effects often result in positive richness-productivity relationships (Cardinale et al. 2012, 

2013b), but can also affect productivity negatively (Loreau and Hector 2001). 

When combined, theory indicated that stress and dispersal can have non-additive effects on 

community structure. When dispersal introduces stress resistant species into a local 

community, local species that are maladapted to stressful conditions can be replaced by newly 

introduced species that are stress resistant (Loreau et al. 2003a). Moreover, community 

structure is also affected when stress reduces the strength of priority effects, through a 

decrease in the rate of local community dynamics (Chase 2007, Fukami 2015). Effects on 

community structure should often lead to non-additive effects of stress and dispersal on 

evenness as well, but this has not yet been empirically observed. Finally, stress and dispersal 

can have non-additive effects on productivity. Theory suggests that dispersal can assure 

spatial insurance against locally changing environments (Loreau et al. 2003a). Such spatial 

insurance effects have been demonstrated in several experiments (Thompson and Shurin 

2012, de Boer et al. 2014). 

Until now, several experiments have investigated interactive effects of stress and dispersal on 

diversity and productivity (Thompson and Shurin 2012, Eggers et al. 2012, de Boer et al. 

2014). However, existing experimental set-ups did not allow to distinguish between resident 

and colonizing species. Moreover, most studies that investigated interactive effects of stress 

and dispersal used a metacommunity approach in which the abundances of the incoming 

species are the result of regional processes (e.g. Eggers et al., 2012; de Boer et al., 2014). 

Such experimental set-ups are realistic but hamper the evaluation of the role of priority effects 

in dispersal-stress interactions. Studies that simultaneously investigate priority effects, 

diversity and productivity are thus required (Zhang and Zhang 2007, Fukami 2015). Here, we 

present experimental data showing how dispersal and stress affect community structure, 

diversity (evenness) and productivity during the assembly process. To this end, we exposed 

five marine diatom communities (Bacillariophyceae) to the herbicide atrazine. We manipulated 

the timing of species introductions at 3 different dispersal regimes using a mainland-island 

framework. This experimental set-up enabled precise control of the dispersal rates because 

species could be added at equal abundances and at the same rate, irrespective of their 

identity. We first tested the species’ sensitivities to the stressor. Then, we hypothesized that 

priority effects would decrease with increasing stress and dispersal levels (hypothesis 1). We 
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tested this hypothesis by investigating the effect of day of introduction (DoI) on the species’ 

relative abundances, and by analyzing the effects of stress and dispersal on the contribution 

of the initial species to final structure. Next, we hypothesized that dispersal would reduce 

evenness in no-stress communities because of the supply of a dominant competitor. Similarly, 

we predicted a decrease of evenness in high-stress communities because of the introduction 

of stress tolerant species (hypothesis 2). Finally, we also predicted that dispersal would 

positively affect productivity in all treatments, but that dispersal effects would be considerably 

stronger in communities under high stress (hypothesis 3). 

2.2 Materials and methods 

2.2.1 Algae strains 

Naturally co-occurring marine diatoms (Bacillariophyceae) were sampled in the Belgian part 

of the Southern Bight of the North Sea in March and September 2013 using a phytoplankton 

net (10 μm mesh size). All viable cells from these samples were isolated according to the 

protocol of Andersen (2005) and grown in f/2 medium (Guillard and Ryther 1962) composed 

of artificial seawater (Instant Ocean®, Aquarium Systems) supplemented with silica (30 mg L-

1 𝑁𝑎2𝑆𝑖𝑂3. 9𝐻2𝑂). Taxa were identified to the genus level under a light microscope and cell 

volumes were calculated according to Hillebrand et al. (1999). Cultures were kept in a climate 

room (20 ± 1°C) with a 16h photoperiod at 35 ± 5 µmol photons m-2s-1 light intensity (Lumilux® 

Coolwhite, Osram). New cultures were inoculated every week to keep the cultures in the 

exponential or early stationary growth phase. 

2.2.2 Microcosm experiment 

12 species were randomly selected from the isolated strains (Appendix A1 Table A1.1). To 

distinguish treatment effects from identity effects, 5 different initial communities consisting of 

four from the twelve selected taxa were randomly composed (Tilman 1999) (Appendix A1 

Table A1.2). In addition to the no-stress no-dispersal (control) treatment, we exposed the 

communities to two levels of both environmental stress and dispersal for 4 weeks in a full-

factorial design. Atrazine, a photosystem II inhibitor, was used as an environmental stressor, 

and two levels (25 and 250 μg L-1) were selected based on preliminary tests to represent low 

and high stress. The two dispersal levels (low and high) correspond to one and two dispersal 

events per week. At each dispersal event, a fixed biovolume of 4 randomly chosen species 

was introduced into the community from atrazine-free stock cultures. There was no restriction 

on species identities, so species could disperse several times to the same community. For 

each community a different immigration order was randomly selected. Each treatment was 

replicated 3 times, resulting in a total of 135 microcosms (Appendix A1 Table A1.2-1.4). 
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100 mL Erlenmeyer flasks were used as microcosms and filled with 35 mL f/2 medium 

containing the appropriate atrazine concentration (Sigma Aldrich). An initial biovolume of 4 x 

108 μm3, evenly distributed over the 4 initial species, was inoculated in each flask. Flasks were 

placed in a climate room (20 ± 1°C) at a 16h (35 ± 5 µmol photons m-2s-1) photoperiod. 

Erlenmeyer flasks were repositioned every few days to eliminate potential differential light 

effects in the climate room. At each dispersal event, 4 x 108 μm3 biovolume, evenly distributed 

over the 4 species, was added. Measurements of phosphate, nitrate and silicate 

concentrations have been taken weekly (Appendix A1 Table A1.5) and showed that nutrient 

concentrations decreased rapidly. To avoid nutrient depletion, 60% of the growth medium was 

therefore replaced weekly. Moreover, medium replacement prevented stress-reduction 

through atrazine photolysis. Replacement of medium was performed after centrifuging 80% 

of medium in glass tubes at 800 rpm (acceleration 5 m s-², deceleration 3 m s-²) to settle the 

cells (centrifuging at these settings had no detectable effect on cell viability or growth). Twice 

a week, 1 ml samples for biomass calculation were taken, fixed with formaldehyde (6% final 

concentration) and stored in 24 well plates (VWR) at 4°C until analysis. Cell densities were 

weekly counted using an inverse microscope and Whipple grid and biovolumes were 

calculated from the average cell volume (Appendix A1 Table A1.1). 

2.2.3 Data analysis 

Biovolume was weekly determined by cell counts as described above. Since abundances of 

rare species were difficult to determine accurately because of the small sample sizes, the 

Simpson’s evenness index 𝐸1
𝐷⁄  was used (Eq. 2.1) as it is less sensitive for species with low 

abundances (compared to the Shannon-Wiener index; Hill et al. 2003). It is noted that the 

latter has been used in a majority of earlier biodiversity experiments (e.g. Eggers et al. 2012, 

Guelzow et al. 2014). 

 
𝐸1

𝐷⁄ =  
1

𝑆 × ∑ 𝑝𝑖
2𝑛

𝑖=1

 Eq. 2.1 

With 𝑆 the richness and 𝑝𝑖 the relative abundance of species 𝑖.  

Statistical analyses were performed using mixed effect models with all models including the 

initial composition as a random intercept. First, statistical analyses on the species’ relative 

abundances were considered separately for the no-dispersal and dispersal treatments. This 

procedure was followed because the day of introduction (DoI) of the species is a significant 

predictor in the dispersal treatments, while it has no meaning in the no-dispersal treatments. 

We used mixed effect models to determine the effect of stress on the relative and absolute 

abundance of all species for the no-dispersal treatments. Relative abundances are limited to 

the [0,1] interval and we therefore used a binomial model with a logit link function. We also 
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added a random intercept to incorporate the effect of initial composition. Calculations were 

done using the MASS package in R (Venables and Ripley 2002). Absolute abundances 

followed a normal distribution and we therefore used a linear mixed effects model with initial 

composition as a random intercept. Moreover, an appropriate variance structure was added 

to correct for heteroscedasticity. Calculations were done using the nlme package (Pinheiro et 

al. 2014). The effect of stress, dispersal and DoI on the relative abundance of 7 species for 

the low- and high-dispersal treatments was determined using a mixed effects model using a 

binomial distribution with a logit link function and a random intercept for each initial 

composition. These calculations were done using the MASS package in R (Venables and 

Ripley 2002). For the analysis, we only considered seven species, since they produced over 

95% of total biomass together, while the contribution of the other species was marginal. To 

study the effects of time, stress, and dispersal on evenness, a binomial model with a temporal 

correlation structure was applied, using the geepack package in R (Yan 2002, Yan and Fine 

2004, Højsgaard et al. 2006). Biovolume was log transformed and effects of time, stress and 

dispersal on log biovolume were analyzed using a linear mixed effects model with a temporal 

correlation structure and an appropriate variance structure to correct for heteroscedasticity 

using the nlme package in R (Pinheiro et al. 2014).  

For the regression models of evenness, biovolume and the absolute species abundances, 

backward model selection was applied, based on Akaike’s Information Criterion using the 

protocol of Zuur et al. (2009). The normality and homoscedasticity assumptions for model 

residuals were tested by a QQ-plot and by plotting the residuals against each predictor. The 

glmmPQL function in the MASS package does not allow the calculation of the Akaike’s 

Information Criterion because the MASS package does not use a likelihood estimation for 

parameter estimations. Instead, it used a penalized quasi-likelihood estimation based on 

Laplace’s approximation and Taylor series expansions. Hence, we selected the appropriate 

model by deleting the non-significant terms (10% confidence interval). Afterwards, we 

checked the model fit by plotting the residuals and experimental data against each predictor. 

All models and model validation figures are presented in Appendix A2.  

2.3 Results 

2.3.1 Species tolerance to stress 

Species were differently affected by stress (Fig. 2.1, Appendix A1 Table A1.6-A1.7). Those 

differences were caused by both direct responses to the toxicant and indirect responses by 

altered species interactions. A majority of the species was negatively affected by stress and 

had lower biovolumes and lower relative abundances. However, the effect on the absolute 

abundances was strongest for species 2, 4 and 5, which were most sensitive (Appendix A1 
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Table A1.7). In contrast, some species were positively affected by stress (species 7 and 8) 

and obtained higher biovolumes and relative abundances in stress than no-stress treatments. 

Other species were barely affected by the toxicant. Because the initial communities were 

composed differently, each community was affected differently by the stressor. This resulted 

in small shifts in community structure for 2 initial species compositions (A and C) and strong 

shifts in community structure for the 3 other initial species compositions (B, D and E). 

2.3.2 Effect of the day of introduction on the species’ relative abundances 

The effect of the day of introduction (DoI) on the relative species abundances in open 

communities was only considered for the seven species that together produced at least 95% 

of total biovolume, while the contribution of the other species was marginal (about 1% per 

species). The square root of the day of introduction (DoI) was a significant predictor of the 

abundance of all species, with a later introduction (higher square root-transformed DoI) 

leading to a lower relative abundance, thus suggesting a priority effect (Fig. 2.2, Table 2.1, 

Appendix A1 Table A1.8). For five out of the seven species, there was a positive interactive 

effect between high stress and DoI, confirming hypothesis 1 and thus suggesting a weaker 

priority effect at higher stress. For 2 species, there was a positive interactive effect between 

high dispersal and DoI, suggesting a weaker priority effect at higher dispersal. 

2.3.3 Contribution of initial species to final community structure 

Stress and dispersal negatively affected the contribution of initial species to final community 

structure (Fig. 2.3a, Table 2.2). This again indicates weakening of priority effects with 

increasing stress and dispersal levels (hypothesis 1). However, there was an interactive effect 

between stress and dispersal. This resulted in a slightly positive effect of low stress on the 

contribution of initial species at high dispersal. Moreover, the negative effect of high stress 

was stronger at low than at high dispersal. 

2.3.4 Evenness 

Dispersal reduced evenness, regardless of the stress level (hypothesis 2) (Fig. 2.3b, Table 

2.3). This reduction was generally slightly stronger in the no-stress than stress communities. 

In communities without dispersal, we did not find any effect of stress on evenness. 
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Fig. 2.1. Sensitivity of the 12 species as function of their cell biovolume. Sensitivity was calculated 

using a regression model of (a) the effect of high stress on the species’ absolute densities in the 

no-dispersal treatments (log scale); (b) the effect of high stress on the species’ relative densities in 

the no-dispersal treatments (logit scale). For the results of the statistical analyses, see Appendix 

A1 Table A1.6-S1.7. The number next to each symbol represents the respective species (Appendix 

A1 Table A1.1) and each species is depicted in the figure as many times as it appears in a 

community. Communities are represented by symbols. 

 

Fig. 2.2. Effect of the square root of stress, dispersal, Day of Introduction (DoI) and the interactions 

on the relative densities of seven species in the dispersal treatments. A stronger effect of DoI 

indicates stronger priority effects. Results are only shown when significant. 

  



Chapter 2. The effect of dispersal and chemical stress on structure, evenness and productivity 

32 

 

Table 2.1. Results of the linear models of relative species abundances using a binomial model with 

logit link function. The number and symbol represent the slope of the corresponding factor and the 

significance level respectively. Significance levels: ***p<0.001, **p<0.01, *p<0.05, †p<0.10. ‘Dol’: 

Day of introduction. ‘-‘: Statistical test did not include this factor into the analysis. 

 

 

Fig. 2.3. (a) Contribution of initial species, (b) final evenness and (c) final biovolume as function of 

stress level for 3 dispersal levels on day 28. A high contribution of initial species indicates strong 

priority effects. 

  

factor Species 

1 

Species 

5 

Species 

6 

Species 

7 

Species 

10 

Species 

11 

Species 

12 

Low stress 0.212 1.662 *** 0.220 -1.620*** -2.61*** 0.003 1.594* 

High stress -2.934*** -1.743* 0.335 1.873*** -6.67*** -2.676*** -0.997† 

High dispersal -0.542** -0.658† 0.473 -2.271*** -1.15** -0.616** 0.394 

DoI -1.172*** -0.577* -1.148*** -1.797*** -1.97*** -1.677*** -1.146*** 

Low stress x DoI  0.614** -0.457 0.037 0.987** 0.70** 0.612 -0.314 

High stress x DoI 0.540* 0.676* 0.280† 0.421 0.37*** 1.473*** 1.048*** 

High dispersal x DoI - - - 0.902 * 1.65*** - - 

Low stress x high 

dispersal 

- - -0.222 1.645* - - -1.231† 

High stress x high 

dispersal x DoI 

- - 0.830* 1.933*** - - -1.339* 

Low stress x high 

dispersal 

- - - -1.653 - - - 

Low stress x high 

dispersal x DoI 

- - - -0.805† - - - 
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Table 2.2. Result of the linear model of the contribution of initial species to final biovolume on day 

28 using a binomial model with logit link function. 

factor mean sd. p-value 

Intercept 2.913 0.770 <0.001 

Low stress -0.935 0.519 0.076 

High stress -2.988 0.506 <0.001 

High dispersal -2.456 0.506 <0.001 

Low stress x high dispersal 1.434 0.646 0.029 

High stress x high dispersal 2.405 0.625 <0.001 

Table 2.3. Results of the linear models of evenness using a binomial function, and of the logarithm 

of biovolume using a generalized linear model. Time 0 corresponds to day 7 (first day of 

measurement). ‘-‘: this factor was not included into the analysis based on the Wald-test. 

 Evenness Log biovolume 

factor Value Sd. p-value Value Sd. p-value 

Intercept 1.252 0.168 <0.001 9.551 0.063 <0.001 

Time -0.060 0.008 <0.001 0.063 0.009 <0.001 

Time^2 - - - -0.002 0.000 <0.001 

Low stress 0.117 0.143 0.417 0.131 0.109 0.227 

High stress -0.278 0.206 0.176 -0.890 0.129 <0.001 

Low dispersal -0.997 0.139 <0.001 0.047 0.078 0.544 

High dispersal -1.021 0.128 <0.001 0.138 0.075 0.067 

Time x low stress - - - -0.015 0.015 0.347 

Time x high stress - - - -0.048 0.018 0.007 

Time^2 x low stress - - - 0.001 0.001 0.292 

Time^2 x high stress - - - 0.002 0.001 0.003 

Time x low dispersal - - - -0.023 0.006 <0.001 

Time x high dispersal - - - -0.037 0.006 <0.001 

Low stress x low dispersal 0.181 0.095 0.056 0.053 0.135 0.694 

High stress x low dispersal 0.440 0.163 0.007 -0.020 0.159 0.900 

Low stress x high dispersal -0.018 0.149 0.904 -0.186 0.130 0.153 

High stress x high dispersal 0.398 0.225 0.077 -0.280 0.153 0.070 

Time x Low stress x low dispersal - - - 0.006 0.010 0.590 

Time x Low stress x high dispersal - - - 0.012 0.010 0.220 

Time x high stress x low dispersal - - - 0.051 0.012 <0.001 

Time x high stress x high dispersal - - - 0.042 0.012 <0.001 
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2.3.5 Biovolume 

Except for day 7, dispersal reduced productivity in the no-stress treatments but affected 

productivity positively in the high-stress treatments (Fig. 2.3c, Table 2.3). The negative effect 

of dispersal on productivity after day 7 is the result of a productivity decrease for low and high 

dispersal. In contrast, biovolume increased during the whole experiment in the no-dispersal 

treatments.Stress had a negative effect on biovolume (Fig 2.3c, Table 2.3). However, we 

found significant interactions between time, stress, and dispersal, suggesting that stress and 

dispersal had a non-additive positive effect on biovolume that became stronger with time. 

2.4 Discussion 

2.4.1 The combined effects of stress and dispersal on community structure 

The effect of day of introduction on the species relative abundances and the high contribution 

of initial species indicate strong priority effects in the low-dispersal no-stress communities. 

However, the effects of both predictors became weaker at high stress and high dispersal, 

which indicates a decrease of priority effects with stress and dispersal (hypothesis 1). 

Coexistence theory states that competition for a common resource can lead to the competitive 

exclusion of all but the most dominant species (Tilman 1982, Chesson 2000). In our 

experiment, all species are marine diatoms, using the same macro-nutrients (Bruno et al. 

2006, Schmidtke et al. 2010, Mensens et al. 2015). Therefore, one would expect to find 

dominance of the best competitive species and thus low priority effects across all factor 

combinations. However, a high similarity in traits among species can benefit priority effects. 

For example, Zhang & Zhang (2007) demonstrated that relatively small differences in 

monoculture yield can lead to long-lasting priority effects in two-species algae communities. 

Nevertheless, slight differences in competitive strength are expected to ultimately result in the 

dominance of the strongest competitor, erasing priority effects. Even so, in the case of only 

small differences in competitive strength, transient phenomena can be very long-lasting 

(Hastings 2004) and are thus also important for understanding historical contingency in 

community assembly (Fukami and Nakajima 2011). 

The negative effect of high dispersal on priority effects corroborates the theoretical finding 

that, when dispersal rates increase, communities exhibit weaker priority effects (Fukami 

2015). Similar results were found in both plant and zooplankton communities in which longer 

delays between subsequent species arrivals resulted in stronger priority effects (Körner et al. 

2008, Symons and Arnott 2014). 
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The lower priority effects we found at high stress are due to various reasons (Chase 2003, 

2007). First, species that are very sensitive to the stressor are not able to persist (e.g. species 

4, 5 and 8; Fig. 2.1). Because fewer species can persist, there are fewer possible community 

compositions (Chase 2007). Second, stress decreases growth rates. It thus takes longer for 

the early-introduced species to achieve high densities (Table 2.3). Therefore, early-introduced 

species only use a small amount of the resources, which are consequently available for later 

arriving species (Gross et al. 2005, Symons and Arnott 2014). Third, species that are tolerant 

to stress are often poorer competitors because of trade-offs (Tilman 1994). Therefore, they 

are less likely to hinder establishment of other species through interspecific interactions. 

Unfortunately, we cannot verify this in our experimental system, as we did not measure 

competitive strength among species.  

Surprisingly, low stress had a small positive effect on the abundance of initial species at high 

dispersal. This can be due to a higher productivity on day 4 (day of first dispersal event at high 

dispersal) in the low- than in the no-stress community. Such a slightly higher productivity could 

have decreased the colonization opportunity for species that arrived on day 4. This 

phenomenon, in which stress generates a higher productivity at low than no stress, is termed 

the hormesis effect (Kaiser 2003) and has been observed before in algae communities 

exposed to chemical stressors (Pomati and Nizzetto 2013). Finally, the abundance of the initial 

species to final biovolume was not affected by dispersal at high stress. This was probably due 

to the very weak priority effects at high stress.  

2.4.2 The combined effects of stress and dispersal on evenness 

As was predicted, dispersal affected evenness negatively (hypothesis 2). Negative effects of 

dispersal on evenness are commonly caused by the regional distribution of a dominant 

species (Matthiessen et al. 2010a, Eggers et al. 2012). However, in our experiment, such a 

negative effect was caused by the strong priority effects in the no- and low-stress 

communities. Those priority effects generated large differences in abundance between initially 

present species and later arriving species. Such a discrepancy in abundance caused the low 

evenness we observed. 

As priority effects were low in high-stress communities, they cannot explain the negative effect 

of dispersal on evenness in those communities. Instead, dispersal reduced evenness in high-

stress communities because of the introduction of stress-tolerant species that dominated the 

communities at the expense of the stress-sensitive species. Similar results were found by 

Eggers et al. (2012) in communities affected by a heat wave. Thompson & Shurin (2012) found 

no effects of dispersal on diversity in communities under salt stress, and positive dispersal 

effects in communities under heat stress. However, this positive effect was largely caused by 



Chapter 2. The effect of dispersal and chemical stress on structure, evenness and productivity 

36 

 

an increase in richness, while a separate analysis on how dispersal affects evenness was not 

presented. This demonstrates the need for studies that examine stress and/or dispersal 

effects on evenness (Hillebrand et al. 2008).  

The absence of a stressor effect on evenness at no dispersal was unexpected, because stress 

strongly affected community structure. In order to understand this result, it should be noted 

that stress can have both positive and negative effects on evenness, where the sign of this 

effect is community-dependent. Stress affects evenness negatively when it increases fitness 

differences because of a high difference in stress tolerance (e.g. community D and E, 

Appendix A1 Fig. A1.2, see also e.g. Viaene et al. 2013). In contrast, stress affects evenness 

positively when it equalizes fitness differences by suppressing the dominant species (e.g. 

community B, Appendix A1 Fig. A1.2, see also e.g. Knauert et al. 2009). In our experiments, 

we observed both types of effect (positive and negative), so that the average effect of stress 

on evenness in the no-dispersal treatments did not significantly differ from zero. 

2.4.3 The combined effects of stress and dispersal on productivity 

Hypothesis 3 postulated a positive effect of dispersal on productivity. Based on our results, 

we could not accept this hypothesis. Even though dispersal positively affected productivity at 

high stress, dispersal effects on productivity switched from positive (week 1) to negative (week 

2 to 4) at low and no stress. The initial positive effect, which is due to an earlier peaking of 

biovolume in open communities, could be explained by a rapid growth after introduction on 

day 4 because of low competition and abundant resources. The subsequent lower productivity 

in open compared to closed communities contradicts our hypothesis that dispersal would 

affect productivity positively. However, dispersal rates in most of the previous studies that 

examined dispersal-productivity relationships depended on regional dynamics (e.g. 

Matthiessen & Hillebrand, 2006; Matthiessen et al., 2010), while in our design dispersal rates 

were manipulated directly, ensuring equal dispersal abilities among species. Therefore, the 

lower biovolume in open treatments observed in our study was probably induced by strong 

local competitive dynamics. As dispersal increased local richness and productivity in the first 

week, interspecific competition may have increased, consequently reducing productivity. This 

negative relation between richness and functioning is commonly found in phytoplankton 

communities because of a strong niche overlap and strong interspecific interactions (Bruno et 

al. 2006, Schmidtke et al. 2010, Mensens et al. 2015). 

Even though dispersal and high stress decreased productivity, the combination of both 

attenuated these negative effects. This suggests that combined dispersal and stress is non-

additive, i.e. dispersal buffers productivity against toxicity. Such buffering effect can be a 

consequence of functional compensation (Tilman et al. 1997) in which stress-tolerant species 
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compensate for the loss of sensitive species. A higher dispersal rate – and thus a higher local 

richness – increased the probability that stress-tolerant species were present, which facilitated 

functional compensation. For example, in composition A, none of the initial species was stress 

tolerant, leading to a low biovolume at no dispersal (Appendix A1 Fig. A1.1). When stress 

tolerant species 6 and 12 entered the community, biovolume increased (Appendix A1 Fig. 

A1.1-A1.2). Dispersal thus created spatial insurance by increasing diversity (Loreau et al. 

2003a), as was already demonstrated in studies with algae (de Boer et al. 2014) and 

zooplankton (Thompson and Shurin 2012, Symons and Arnott 2013) communities.  

In our study, functional compensation was also observed in closed communities under stress. 

Here, productivity was relatively well preserved in communities where the most dominant 

species was stress tolerant (e.g. composition C, where biovolume at high stress was 20% of 

the control; Fig. 2.1, Appendix A1 Fig. A2.1-A2.2), or the loss in functioning of the sensitive 

dominant species was compensated by a tolerant species (e.g. composition B, where 

biovolume at high stress was 69% of the control; Fig. 2.1; Appendix A1 Fig. A1.1-A1.2). Such 

a compensation by the resident species limits the compensatory role of dispersal. 

2.4.4 Conclusion and outlook 

In this study, we demonstrated that stress affected the community assembly process by 

simultaneously weakening priority effects and strengthening selection. This resulted in strong 

negative effects of dispersal on evenness and non-additive effects between stress and 

dispersal on productivity. Strong priority effects were due to large niche overlap in our study 

system. Further studies are therefore needed to investigate if selection factors can mediate 

priority effects during community assembly in communities governed by weaker (e.g. 

grasslands, Hector et al., 1999; De Boeck et al., 2008) or even positive interactions (e.g. 

facilitation, Brooker et al., 2008). 

We showed that dispersal can maintain productivity in stressed conditions because of the 

introduction of stress tolerant species. However, our results indicate that the consequent shifts 

in community structure can also have negative effects on the dynamics following release from 

stress, which we did not test here. Indeed, when stressor concentrations decrease, stress 

tolerant species can hinder the introduction of the species that were present before the stress 

event because of the same priority effects we observed here. Such mechanisms could have 

a major impact for restauration decisions.  

Many communities today suffer exposure to and effects from environmental stressors, 

including organic chemicals (Beketov et al. 2013, Malaj et al. 2014). Our results show that the 

effects of dispersal, and the potential interactions with selective stress, need to be accounted 
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for to allow a better understanding of how biodiversity and ecosystem functioning respond to 

stress.
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Abstract 

Many theoretical models predict a hump-shaped relationship between dispersal and local 

diversity in heterogeneous environments. However, the effects of the underlying factors (the 

degree of environmental heterogeneity, the interspecific variation in stress response, and 

heterogeneous starting compositions among patches) on this relationship is less well 

understood. We used a game-theoretic metacommunity model to simulate the relationship 

between dispersal and diversity for 200 metacommunities to investigate the proportion of 

hump-shaped relationships between dispersal and diversity across various factor 

combinations: stress heterogeneity, interspecific variation in stress response and 

heterogeneity of the starting composition. The proportion of hump-shaped relationships was 

highest at an intermediate stress heterogeneity for the low-stressed community, but increased 

with an increasing stress heterogeneity for the high-stressed community. The effect of stress 

heterogeneity on the proportion of hump-shaped relationships increased when the 

interspecific variation of the stress response increased. Moreover, when the starting 

composition was heterogeneous, hump-shaped relationships also appeared at a low stress 

heterogeneity. These results suggest that the prevalence of the often-assumed hump-shaped 

relationship between dispersal and diversity strongly depends on how environmental and 

biological spatial heterogeneity interact with local community dynamics under stress.  
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3.1 Introduction 

The composition and diversity of communities is regulated by both local and regional 

processes (Robert and Wilson 1967, Levin 1992, Leibold et al. 2004). How those processes 

interact is investigated using the metacommunity framework (Leibold et al. 2004, Holyoak et 

al. 2005). This framework proposes dispersal to show a hump-shaped relationship with 

diversity in heterogeneous landscapes through mass effects (Mouquet and Loreau 2002, 

2003, Loreau et al. 2003a, Mouquet et al. 2006). When dispersal is absent, environmental 

heterogeneity creates spatial differences in community composition, generating a low local 

diversity as competitive superiors dominate their preferred local community. Increases in 

dispersal generate a higher local diversity as dispersal introduces immigrants, allowing the 

persistence of species that would otherwise have been excluded (Mouquet and Loreau 2003, 

Leibold et al. 2004). Large increases of dispersal cause local diversity to decrease again 

because dispersal homogenizes the metacommunity and the strongest regionally dominant 

species starts excluding regionally subdominant species. Hump-shaped relationships are 

expected to mainly occur at an intermediate environmental heterogeneity (Kunin 1998, 

Mouquet et al. 2006). When environmental heterogeneity is too low to create spatial 

differences in composition, no hump-shaped dispersal-diversity relationships appear. When 

environmental heterogeneity is too strong, species differ so strongly in competitive abilities 

that no regional exclusion occurs. 

Differences in stress intensity among patches create environmental heterogeneity by affecting 

composition and population sizes. First, how stress affects the composition of communities, 

depends on the response of the species to stress. Species occupy different niches along an 

environmental gradient. Therefore, a change of the environment can expose some species to 

stress, decreasing the performance of those species, while it may increase the performance 

of others (Colwell and Fuentes 1975, Woodward et al. 2010). Moreover, species may show a 

variation in niche widths along an environmental gradient. Hence, a change of the 

environment can induce a strong stress response in some species, while it may only generate 

a weak response in others (Bolnick et al. 2010, De Laender et al. 2016). As the interspecific 

variation in stress responses affects composition, it also influences the effect of dispersal on 

diversity (Gilbert 2012). By reducing population sizes, stress is likely to reduce the number of 

organisms that emigrate from a stressed community, reducing mass effects. Moreover, when 

population sizes are small, these populations are more vulnerable to stochastic extinctions 

(Lande 1993, Schreiber and Lloyd‐Smith 2009, Huang et al. 2015). Stress might hence affect 

the number of species that can emigrate from high-stressed communities.  
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When the starting composition is homogeneous, all species are initially present in all 

communities. As a result, species sort along the communities and competitive superiors 

dominate their preferred local community (Mouquet and Loreau 2002, 2003). However, when 

the starting composition is heterogeneous, dispersal limitation prevents species from 

colonizing their suitable patch (Shurin 2000). Hence, a higher dispersal rate is expected to 

increase local diversity by introducing species to patches where they were initially not present. 

High dispersal then decreases local diversity when dispersal redistributes dominant species 

while excluding regionally subdominant species, generating a hump-shaped relationship 

between dispersal and diversity (Kneitel and Miller 2011, Severin et al. 2013). 

Despite the high number of theoretical studies that investigate the relationship between 

dispersal and diversity in heterogeneous landscapes (Mouquet and Loreau 2003, Loreau et 

al. 2003a, Mouquet et al. 2006, Haegeman and Loreau 2014), no studies exist that investigate 

how stress heterogeneity influences this relationship. In contrast to theoretical studies, 

empirical studies do exist that investigate the relationship between dispersal and local 

diversity by manipulating factors such as random disturbances, light intensity, temperature or 

chemical stress. These studies can be considered to create stress heterogeneity, generating 

differences in community composition and population sizes (e.g. Matthiessen et al. 2010a, b, 

Altermatt et al. 2011, Eggers et al. 2012, Limberger et al. 2014). Moreover, theoretical models 

do mostly not integrate how the interspecific variation in responses to environmental 

heterogeneity affect diversity-dispersal relationships. However, environmental niches have a 

strong effect on community composition, potentially affecting the relationship between 

dispersal and diversity (Gilbert 2012). Last, most theoretical studies start with the assumption 

that without dispersal each community is dominated by the strongest competitor (Mouquet 

and Loreau 2003, Loreau et al. 2003a, Haegeman and Loreau 2014). However, starting 

compositions in empirical studies are often heterogeneous among communities (Grainger and 

Gilbert 2016), and dispersal might affect the relationship between dispersal and diversity by 

adding new species in their suitable patch (Kneitel and Miller 2011).  

In the present study, we investigate how stress heterogeneity, interspecific variation in stress 

response and starting composition affect the relationship between dispersal and local 

diversity. To do so, we used a stochastic model (Huang et al. 2015). We performed 200 

iterations, each iteration representing a metacommunity of micro-algae. We defined 

environmental stress on a community level as a reduction of the average per-capita birth rates. 

Stress heterogeneity was applied in two-patch metacommunities containing a low-stressed 

and high-stressed community. We manipulated the magnitude of the stress heterogeneity, the 

interspecific variation of the stress response, and the starting composition (homogeneous vs 

heterogeneous) according to a full-factorial design. Per iteration and factor combination we 
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then simulated community dynamics at several dispersal rates and tested if the relationship 

between dispersal and diversity was positive, negative or hump-shaped. This allowed us to 

examine if the proportion of hump-shaped relationships depended on the considered factors. 

Last, we examined if the dissimilarity in composition and abundance ratio between the low-

stressed and high-stressed community could explain our results.  

We expected that the magnitude of stress heterogeneity would change the proportion of 

hump-shaped relationships between dispersal and diversity. For the high-stressed 

community, the proportion of hump-shaped relationships is expected to be highest at a high 

stress heterogeneity because of an increasing dissimilarity in community composition. For the 

low-stressed community, the proportion of hump-shaped relationships is expected to be 

highest at an intermediate stress heterogeneity. At a low stress heterogeneity, the proportion 

of hump-shaped relationships would increase because of an increase in dissimilarity in 

composition in the unstressed and stressed communities. However, at a high stress 

heterogeneity, the proportion of hump-shaped relationships would decrease in the low-

stressed community because of a lower population size in the high-stressed than in the low-

stressed community. We also expected that an increasing interspecific variation of the stress 

response would increase the proportion of hump-shaped relationships as species would 

respond more differently to a change in stress intensity. Last, we expected that a 

heterogeneous starting composition would increase the proportion of hump-shaped 

relationships. 

3.2 Methods 

3.2.1 Model  

The model is an extension of the stochastic community model of Huang et al. (2015). In the 

original model, local community dynamics are assumed to be driven by birth (1), death (2) and 

species interactions (3, 4), resulting in 4 different processes: 

𝑋𝑖,𝑗 → 𝑋𝑖,𝑗 + 𝑋𝑖,𝑗 (1) 𝑋𝑖,𝑗 → 0 (2) 

𝑋𝑖,𝑗 + 𝑋𝑘,𝑗 → 𝑋𝑘,𝑗 (3) 𝑋𝑖,𝑗 + 𝑋𝑘,𝑗 → 𝑋𝑖,𝑗 (4) 

With 𝑋𝑖,𝑗, 𝑋𝑘,𝑗 an individual of species 𝑖 and 𝑘 respectively, 𝑖, 𝑘 ∈ {1, … , 𝑛} with 𝑛 the number 

of species, in community 𝑗 with 𝑗 ∈ {1,2} for a two-patch metacommunity. Processes 1 and 2 

occur at the birth rate 𝑏𝑖,𝑗 [𝑑−1] and the death rate 𝑑𝑖,𝑗  [𝑑−1] respectively. Rates of competitive 

displacement in (3) and (4) occur at a rate 𝑎𝑖,𝑘,𝑗 [𝑑−1] and 𝑎𝑘,𝑖,𝑗 [𝑑−1] respectively (Huang et 

al. 2015). 



Chapter 3. The effect of stress heterogeneity on the relationship between dispersal and diversity 

44 

 

We extended this model with two regional processes: in two-patch metacommunities, every 

individual can move from patch 1 to patch 2 and vice versa (5, 6). 

𝑋𝑖,1 → 𝑋𝑖,2 (5) 𝑋𝑖,2 → 𝑋𝑖,1 (6) 

Processes 5 and 6 occur at a rate 𝑚𝑖,1→2 [𝑑−1] and 𝑚𝑖,2→1 [𝑑−1] respectively. If the death rate 

𝑑𝑖,𝑗 and interaction rate 𝑎𝑖,𝑘,𝑗 do not depend on patch identity, and the dispersal rates 𝑚𝑖,1→2 

and 𝑚𝑖,2→1 are independent of both patch and species identity, the transition rates can be 

written as:  

𝑇𝑖,𝑗
𝑙+ = 𝑏𝑖,𝑗𝑁𝑖,𝑗 Eq. 3.1 

𝑇𝑖,𝑗
𝑙− = 𝑑𝑖𝑁𝑖,𝑗 + 𝑁𝑖,𝑗 ∑ 𝑎𝑖,𝑘

𝑛

𝑘=1

𝑁𝑘,𝑗 Eq. 3.2 

𝑇𝑖,1
𝑟+ = 𝑇𝑖,2

𝑟− = 𝑚𝑁𝑖,2 Eq. 3.3 

𝑇𝑖,2
𝑟+ = 𝑇𝑖,1

𝑟− = 𝑚𝑁𝑖,1 Eq. 3.4 

With 𝑏𝑖,𝑗 the patch-dependent birth rate. 𝑇𝑖,𝑗
𝑙+ and 𝑇𝑖,𝑗

𝑙− represent the rate at which each species 

𝑖 in community 𝑗 respectively increases or decreases its abundance 𝑁𝑖,𝑗 by one individual 

through local processes 𝑙. 𝑇𝑖,1
𝑟+, 𝑇𝑖,2

𝑟+, 𝑇𝑖,1
𝑟− and 𝑇𝑖,2

𝑟− represent the rate at which each species 𝑖 

in community 1 or 2 respectively increases or decreases its abundance 𝑁𝑖,𝑗 by one individual 

through regional processes 𝑟. The Master and differential equations are given in Appendix B1. 

Stochastic fluctuations occur around the equilibrium population abundance in the system 

which can be determined using a spatially-extended Lotka-Volterra model (Altermatt et al. 

2011b). Appendix B2 represents the comparison of the output of the stochastic model and the 

spatially-extended Lotka-Volterra model. The birth rate 𝑏𝑖,𝑗 is the only parameter that depends 

on patch identity, as it is a function of the environmental value 𝐸 in patch 𝑗. 𝑏𝑖,𝑗 is a function of 

the environment according to: 

𝑏𝑖,𝑗 = 𝑏0,𝑖𝑓𝑖(𝐸𝑗) Eq. 3.5 

With 𝑏0,𝑖 the birth rate of species 𝑖 in optimal conditions. 𝑓𝑖 is the species-specific response of 

the birth rate along the environmental gradient and also represents the environmental niche 

of species 𝑖. We used a normalized gamma distribution to restrict 𝑓𝑖 between 0 and 1 and to 

allow for both symmetrical and asymmetrical responses of the birth rate to the environment. 

𝑓𝑖(𝐸) = (
𝐸

𝜃𝑖(𝑘𝑖 − 1)
)

𝑘𝑖−1

𝑒
−

𝐸
𝜃𝑖

+(𝑘𝑖−1)
 Eq. 3.6 
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The gamma distribution is determined by a shape parameter 𝑘𝑖 and scale parameter 𝜃𝑖 with 

niche mean 𝜇𝑖 = 𝑘𝑖𝜃𝑖 and variance 𝜎𝑖
2 = 𝑘𝑖𝜃𝑖

2, which represents the width of the niche. 

We defined stress intensity at the community level. It was quantified along the environmental 

axis as a function of the species’ environmental niches: 

𝑆𝐼(𝐸𝑗) = 1 −
∑ 𝑓𝑖(𝐸𝑗)𝑛

𝑖=1

max
𝐸

(∑ 𝑓𝑖(𝐸)𝑛
𝑖=1 )

 Eq. 3.7 

The stress intensity ranged from 0 (when species performed on average optimally) to 1 

(severely stressed conditions when species performed on average worst). Because the 

environmental niches follow a gamma-distribution, the stress-intensity follows a unimodal or 

multimodal pattern along the environmental gradient (Fig. 3.1). As such, the stress-intensity 

can obtain an identical value at different positions along the environmental gradient 𝐸. 

3.2.2 Design and parameterization 

We simulated community dynamics for two-patch metacommunities. We used a full-factorial 

design with the following factors: dispersal rate, stress heterogeneity, the interspecific 

variation of the stress response (niche mean and niche width) and the initial community 

composition. We considered 7 levels of the dispersal rate, which varied between 10−6 and 

100 in a logarithmic scale in steps of 10 and was equal for all species. We considered 6 levels 

of stress heterogeneity. To manipulate stress heterogeneity, stress intensity differed between 

two communities within the same metacommunity, while the average stress intensity was 

equal among metacommunities (Fig. 3.1). We created stress heterogeneity by exposing one 

community to a low stress intensity (low-stressed community) and one community to a high 

stress intensity (high-stressed community). We thus varied stress heterogeneity from low 

(stress intensity equal in the low- and high-stressed community) to high (stress intensity close 

to 0 in the low-stressed and close to 1 in the high-stressed community). The stress intensity 

𝑆𝐼 was given by {𝑆𝐼1, 𝑆𝐼2} ∈ {{0.5,0.5}, {0.4, 0.6}, … , {0.1, 0.9}, {0.05, 0.95}} with 𝑆𝐼1 and 𝑆𝐼2 the 

stress intensity in the low-stressed and high-stressed community respectively. Hence, the 

average stress intensity over the entire metacommunity was 0.5 across all levels of stress 

heterogeneity. 𝐸𝑗 , the position of community 𝑗 along the environmental axis depended on the 

stress-intensity in a community 𝑗 (Fig. 3.1). Because an identical stress-intensity value could 

be obtained at different positions along the environmental axis, we adopted the following 

procedure to attain only one environmental value 𝐸𝑗 per stress-intensity level. First, we 

determined 𝐸𝑆𝐼=0, which is the position along the environmental axis where the stress-intensity 

is 0. Next, we measured the skewness of the slope of the stress-intensity curve at both sides 

of 𝐸𝑆𝐼=0. We then selected the environmental values at the side of the curve with the highest 
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skewness. All environmental values were selected in a consecutive order. In other words, 

when skewness was highest at the left side of the stress intensity curve, a higher stress 

intensity resulted in a lower value of 𝐸𝑗. In contrast, when skewness was highest at the right 

side of the stress intensity curve, a higher stress intensity resulted in a higher value of 𝐸𝑗 (Fig. 

3.2). The niche mean and niche width of the environmental niche each contained three levels, 

each factor ranging from a low variation to a high variation. The niche mean and niche 

optimum were sampled from uniform and gamma distributions, respectively. The parameters 

of these distributions depended on the factor level that was considered. The niche mean 𝜇𝑖 

was randomly selected from 𝑈(95,105), 𝑈(85,115), 𝑈(55,145) for a low, average and high 

variation of the niche mean, respectively. The niche variance 𝜎𝑖
2 was randomly sampled from 

the gamma distributions 𝐺(𝜃 = 0.2, 𝑘 = 500), 𝐺(𝜃 = 5, 𝑘 = 20), 𝐺(𝜃 = 125, 𝑘 = 0.8) for a low, 

average and high variation of the niche width, respectively. These gamma distributions have 

an identical mean but different variance (20, 500 and 12500 respectively). The values of the 

niche mean and niche variance determined the species’ environmental niche and the shape 

of stress-intensity curve according to Eq. 3.6-3.7 (Fig. 3.1). Last, the initial community 

composition contained two levels. When the initial community composition was 

homogeneous, each community initially contained the same species. When the initial 

community composition was heterogeneous, local richness was initially equal, but the species 

composition varied so that the communities only had two species in common. The initially 

homogeneous and heterogeneous metacommunities had an identical regional richness. 

The maximum birth rates 𝑏0,𝑖 and per capita morality rates 𝑑𝑖 were randomly sampled from 

𝑈(0,1) and 𝑈(0.01, 0.1)𝑏0,𝑖, respectively. Similar to Baert et al. (2018), the strength of the 

intraspecific interactions, 𝑎𝑖𝑖, was sampled from 𝑈(10−4, 10−3). The strength of interspecific 

interactions was subsequently sampled from 𝑈(−0.01, 2)𝑎𝑖𝑖.  

3.2.3 Simulations 

We used a Monte-Carlo simulation approach in which we performed 200 iterations per factor 

combination. For each iteration, we generated 10 species by randomly drawing values for 

𝑏0,𝑖 , 𝑑𝑖 , 𝑎𝑖𝑖 , 𝑎𝑖𝑗. The initial total abundance per community was 100 and was evenly distributed 

over all species in homogeneous metacommunities. We constructed the heterogeneous 

metacommunities by randomly drawing two species that were present in both communities. 

Next, we randomly selected four species for the low-stressed community and assigned the 

remaining four species to the high-stressed community. 
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Fig. 3.1. Work flow for the design and parameterization of the model. First we randomly selected 

parameter values for 𝑑𝑖 , 𝑎𝑖,𝑗 , 𝑏0,𝑖 and 𝜇𝑖 from uniform distributions and 𝜎𝑖 from a gamma distribution 

(a, b, c, d, e, f). From  𝜇𝑖 and 𝜎𝑖, we determined the shape and scale parameter (g) to calculate the 

environmental niches along the environmental axis using Eq. 3.6 (h). These environmental niches 

are depicted in blue. Note we calculated the environmental niches for 10 species in total, while the 

environmental niche of only 2 species is depicted for clarity. Next, we calculated the stress intensity 

(black) along the environmental axis using Eq. 3.7 (i). Then we selected two stress intensities (low: 

green, high: red) and determined the corresponding niche values 𝑓𝑖(𝐸1), 𝑓𝑖(𝐸2) at the respective 

environmental values 𝐸1 and 𝐸2 (j). We obtained environmental values for the 10 species at a high 

(red) and a low (green) stress intensity (k). Next, optimal birth rates 𝑏0,𝑖 were multiplied with the 

environmental values 𝑓𝑖(𝐸𝑗) (l). Parameters were used to perform model simulations at 7 dispersal 

rates (m). Next, local richness was calculated for each community and richness values were used 

to fit a positive, negative or hump-shaped relationship. 

Community dynamics were simulated using the Gillespie algorithm (Gillespie 1977) using the 

GillespieSSA package in R (Pineda-Krch 2008). We applied the tau-loup method with a fixed 

step size (0.02) to limit simulation times. Population dynamics reached their stationary 

distribution around 𝑡 = 341. We selected this time point because it was the lowest time 𝑡𝑚𝑖𝑛 

for which the number of species changed on average with less than 1 species within the time 

interval [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑖𝑛 + 100]. Each combination per iteration was repeated 12 times to minimize 

the number of factorial combinations for which no convergence of the stationary distribution 

could be reached. All simulations were performed using R (R. Core Team 2016).  
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Fig. 3.2. Species environmental niche 𝑓𝑖(𝐸) (blue) and the stress intensity SI (black) along an 

environmental gradient for 5 species. In (a) all species have a similar variation of the niche mean 

and niche width. We applied an interspecific variation of the stress response using two approaches: 

In (b) we introduced the interspecific variation of the niche mean; In (c) we introduced the 

interspecific variation of the niche width (c). We selected the stress intensity values on the side of 

the stress intensity curve with the highest skewness. For instance, in panel b, we selected the stress 

intensity values at the right side of the environmental minimum 𝐸𝑆𝐼=0, selecting the stress values at 

the side of the stress intensity curve with the highest skewness. 

3.2.4 Analysis 

For each community we measured diversity (local richness) using the vegan package in R 

(Oksanen et al. 2014). We then calculated the average richness of all replicates for the time 

interval [341, 350]. Next, we determined the relationship between dispersal and local richness 

for each community and measured the proportion of hump-shaped, positive and negative 

relationships and the proportion of relationships that did not belong to any of the previous 

categories (“other”) per factorial combination and for the low-stressed and high-stressed 

community separately. Relationships for which no convergence was achieved for at least one 

dispersal level were not included into the analysis (<3% of the relationships). 

First, a relationship was appointed to the category “other” when the difference of the highest 

and lowest richness was smaller than a threshold value of 1 species. Selecting a lower 

threshold value increased the number of positive, negative and hump-shaped relationships, 

but did not change the effect of stress heterogeneity, niche mean, niche width or starting 

community on the proportion of hump-shaped or positive relationships (Appendix B3, Fig. 

B3.1, B3.2). For the remaining relationships, we determined if the relationship was 

monotonically increasing (i.e. positive), monotonically decreasing (i.e. negative) or if it had 

one maximum (i.e. hump-shaped). We defined a maximum as a value below which dispersal 
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monotonically increased diversity and above which dispersal monotonically decreased 

diversity. Next, we performed a second analysis by using the remaining relationships. We 

fitted a first and second-order model with richness as the response variable and the log 

transformed dispersal rate as predictor variable. If the regression coefficient was higher than 

0.7 for the first-order model, the relationship was assigned as positive or negative. Next, when 

the regression coefficient of the second-order model was higher than 0.7, then the relationship 

was assigned as hump-shaped. A change of the regression coefficient within the interval 

[0.6,0.8] did not change the results. Last, all remaining relationships were assigned as “other”. 

The subsequent application of both analyses was necessary to distinguish the different types 

of relationships as the first method did not allow for small deviations from increasing, 

decreasing or unimodal relationships, while the second method did not allow to distinguish 

unimodal relationships that are not symmetrical. 

Per metacommunity, we calculated the Sørensen dissimilarity index (based on presence-

absence data) using the betapart package (Baselga et al. 2013). We also distinguished the 

nestedness and replacement component of the Sørensen index (Baselga and Orme 2012). 

The first indicates a different richness among communities, while the other indicates a species 

turnover. Next, we determined the ratio of the abundance of the high-stressed and low-

stressed community. We plotted the proportion of hump-shaped relationships as function of 

the dissimilarity index and log transformed abundance ratio (rounded to one decimal) for the 

low-stressed and high-stressed community. We also determined the average (over all 

iterations) dissimilarity index (and its components) and the average log transformed 

abundance ratio per factorial combination and for the low-stressed and high-stressed 

community separately. 

3.3 Results 

For the low-stressed community, we found that the proportion of hump-shaped relationships 

between dispersal and diversity (local richness) was highest at an intermediate stress 

heterogeneity (Fig. 3.3). Furthermore, for the high-stressed community, the proportion of 

hump-shaped relationships increased when stress heterogeneity increased (Fig. 3.3). Hence, 

the proportion of hump-shaped relationships was generally higher for the high-stressed than 

for the low-stressed community. 
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Fig.3.3. Proportion of hump-shaped relationships in function of stress heterogeneity. Abbreviations: 

homogen start/heterogen start: homogeneous or heterogeneous starting composition; low SI/high 

SI: low-stressed and high-stressed community; var: variation. 

The variation of the niche mean and niche width had a positive effect on the proportion of 

hump-shaped relationships, and mostly at an intermediate stress heterogeneity. The 

proportion of hump-shaped relationships increased when the starting composition was 

heterogeneous, but only when stress heterogeneity was low and the variation of the niche 

mean was small (Fig. 3.3). As a result, when the starting composition was heterogeneous, 

hump-shaped relationships also appeared in the absence of stress heterogeneity. 

The proportion of positive relationships was lower than the proportion of hump-shaped 

relationships (Fig. 3.4). For the low-stressed community, the proportion of positive 

relationships showed similar trends as for the hump-shaped relationships when the starting 

composition was homogeneous. For the high-stressed community, or when the starting 

composition was heterogeneous, the effect of stress heterogeneity on the proportion of 

positive relationships did not show a clear trend. Moreover, the proportion of positive 

relationships did not depend on the interspecific variation of the stress response. Negative 

relationships between dispersal and diversity were scarce (Appendix B3 Fig. B3.3).  
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Fig. 3.4. Proportion of positive relationships in function of the stress heterogeneity. Note the other 

y-axis than in Fig. 3.2. Abbreviations: homogen start/heterogen start: homogeneous or 

heterogeneous starting composition; small SI/high SI: low-stressed and high-stressed community; 

var: variation. 

The proportion of hump-shaped relationships increased with the dissimilarity in composition 

between the low-stressed and high-stressed community, but this increase was weaker for the 

low-stressed than for the high-stressed community (Fig. 3.5). Dissimilarity increased with the 

magnitude of stress heterogeneity, the variation of the interspecific response to stress and 

was greater when the starting community composition was heterogeneous. An increasing 

stress heterogeneity increased the nestedness component of composition dissimilarity 

(Appendix B3 Fig. B3.4c), and this was mainly due to a lower richness in the high-stressed 

community (Appendix B3 Fig. B3.5).  

For the low-stressed community, the proportion of hump-shaped relationships increased with 

an increasing abundance ratio between the high-stressed and low-stressed community (Fig. 

3.6). For the high-stressed community, the proportion of hump-shaped relationships did not 

vary in a consistent way with the abundance ratio (Fig. 3.6). A stronger stress heterogeneity 

increased the abundance ratio between the high- and low-stressed community (Appendix B3 
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Fig. B3.4). A higher variation of the interspecific response to stress reduced the rate at which 

the difference in abundance increased when stress heterogeneity increased. Starting 

composition hardly affected the abundance ratio. 

3.4 Discussion 

3.4.1 Stress heterogeneity 

As expected, we found that the proportion of hump-shaped relationships increased with stress 

heterogeneity for the high-stressed community, but was highest at an intermediate stress 

heterogeneity for the low-stressed community (Fig. 3.3). For the high-stressed community, an 

increasing stress heterogeneity increased the proportion of hump-shaped relationships 

between dispersal and diversity by increasing dissimilarity in composition between the low-

stressed and high-stressed community (Fig. 3.5). This increase in dissimilarity was the results 

of the different stress intensity among communities which selected for the locally best adapted 

species (Appendix B3 Fig. B3.4a). Because of these differences in composition, dispersal 

generated mass effects, increasing local diversity at an intermediate rate by introducing 

species that were locally excluded and decreasing diversity at a high rate through 

metacommunity homogenization (Mouquet and Loreau 2003, Mouquet et al. 2006). 

For the low-stressed community, the proportion of hump-shaped relationships between 

dispersal and diversity increased at a low and intermediate stress heterogeneity, but 

decreased at a high stress-heterogeneity. An increasing stress heterogeneity increased the 

proportion of hump-shaped relationships between dispersal and diversity because dispersal 

created mass effects when the dissimilarity in composition between the low-stressed and high-

stressed community increased. However, at a high stress heterogeneity, the proportion of 

hump-shaped relationships was low despite the high dissimilarity in composition (Appendix 

B3 Fig. B3.4a). Indeed, for the low-stressed community, the proportion of hump-shaped 

relationships was low, even at a maximal dissimilarity (Fig. 3.5). In contrast, the proportion of 

hump-shaped relationships for the low-stressed community was strongly affected by the 

abundance ratio between the high- and low stressed community: the lowest proportion of 

hump-shaped relationships was found at a low abundance ratio (Fig. 3.6). Stress 

heterogeneity decreased the abundance ratio between the high- and low stressed community 

as it strongly decreased the productivity of the high-stressed community while increasing the 

abundance of the low-stressed community. 
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Fig. 3.5. The proportion of hump-shaped relationships as function of the Sørensen dissimilarity 

index (rounded to one decimal) for the low-stressed and high-stressed community. The gray-values 

represent the absolute number of hump-shaped relationships at the corresponding dissimilarity 

index. 

 

Fig. 3.6. The proportion of hump-shaped relationships as function of the log transformed abundance 

ratio (high-stressed to low-stressed) (rounded to one decimal) for the low-stressed and high-

stressed community. The gray-values represent the absolute number of hump-shaped relationships 

at the corresponding abundance ratio. 
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There are two reasons why the proportion of hump-shaped relationships for the low-stressed 

community was lowest at a low abundance ratio. First, because we manipulated the fraction 

of dispersed organisms, a high stress intensity reduced the number of organisms that 

dispersed from the high- to the low-stressed community. Hence, at a high stress 

heterogeneity, organisms were introduced at a slower rate than they were excluded from the 

low-stressed community. Therefore, dispersal did not increase diversity and no hump-shaped 

relationships appeared for the low-stressed community. Second, a high stress heterogeneity 

increased the nestedness component of dissimilarity, meaning that the number of unique 

species in the high-stressed community (i.e. species that were not present in the low-stress 

community) was small (Appendix B3 Fig. B3.4c, Fig. B3.5). The nestedness component 

increased because the death rate of most species exceeded their birth rate and stochastic 

extinctions were more likely because of the small population sizes (Eriksson et al. 2013, 

Huang et al. 2015). When the high-stressed community had little to no unique species, 

dispersal could not introduce new species to the low-stressed community and as such it did 

not affect diversity for the low-stress community. 

An often considered type of environmental stress is the random removal of organisms. These 

random removals reduce the average growth rate of the populations, independent of species 

identity. Therefore, the effect of random removals is similar to our model scenario where the 

variation of the niche optimum and niche width were small, i.e. all species are – on average – 

equally sensitive. Altermatt et al. (2011) investigated the effect of dispersal (absence vs. 

presence) in metacommunities where patches were exposed to different levels of random 

removals. While dispersal did not affect local richness in the undisturbed patches, dispersal 

increased diversity in the disturbed patches. This is consistent with our results showing that 

the proportion of positive or hump-shaped relationships is higher for a high-stressed than for 

a low-stressed community. 

3.4.2 Interspecific variation in stress response 

As expected, more hump-shaped relationships appeared at a higher interspecific variation of 

the niche mean and the niche width. This was due to a more rapid species turnover, and 

therefore a more rapid increase of composition dissimilarity when stress heterogeneity 

increased (Appendix B3 Fig. B3.4a).  

Our study indicates that the relationship between dispersal and diversity can only emerge 

when the environmental conditions affect species differently among patches. However, data 

on how species respond to local environmental conditions are often not included in studies 

testing the influence of dispersal on local diversity. In the few studies that include such 

information, no hump-shaped relationship was found. In the study of Matthiessen et al. (2010), 
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for instance, stress heterogeneity was low (approximately 5%, based on the growth rate of the 

most abundant algae strains) and species showed similar sensitivities towards a change of 

the environmental conditions. Our results indeed suggest that under such conditions the 

probability to find a hump-shaped relationship between dispersal and diversity is low. In 

contrast, Limberger et al. (2014) applied a stress heterogeneity of 35% by applying a 

temperature gradient (based on the ratio of the average growth rate at a low and high 

temperature). Species showed a different sensitivity towards the temperature change which 

resulted in the exclusion of one species at the highest temperature. According to our results, 

these conditions have a high probability to generate a hump-shaped relationship. A possible 

reason why Limberger et al. (2014) did not find a hump-shaped relationship was that dispersal 

was probably too weak to generate mass effects. Also, they applied only two dispersal levels, 

which are too few to find a hump-shaped relationship. In general, there is still a lack of studies 

that apply a strong stress heterogeneity. Therefore, it is not possible to thoroughly validate 

our theoretical results empirically. Moreover, it should be noted that in the studies of 

Matthiessen et al. (2010) and Limberger et al. (2014), stress heterogeneity hardly affected 

richness. A possible reason for this is that competitive exclusion took longer than the 

experiment duration and that species were not yet at their equilibrium density at the end of the 

experiment (Hillebrand et al. 2008). This might explain why so few hump-shaped relationships 

were found in experiments (Grainger and Gilbert 2016), while they are often predicted by 

models (Mouquet and Loreau 2003, Loreau et al. 2003a, Gilbert 2012). 

3.4.3 Heterogeneity in starting composition 

As expected, a heterogeneous starting composition increased the proportion of hump-shaped 

relationships between dispersal and local richness and, to a lesser extent, the proportion of 

negative relationships. Even without stress heterogeneity, a heterogeneous starting 

composition created a high dissimilarity among the communities because some species were 

initially present in one community, but not in the other (Appendix B3 Fig. B3.4a). Such 

differences in composition are common in empirical metacommunity experiments, when 

communities are composed of species drawn from natural communities, pooled sources or 

natural colonization. These differences might be generated stochastically, as in our study, or 

by historical processes such as priority effects. 

When starting compositions are heterogeneous, positive relationships between dispersal and 

local richness appeared because of two reasons. First, dispersal may increase diversity by 

introducing dispersal-limited species, which did not occur when the starting composition was 

homogeneous. Second, dispersal can increase diversity by keeping weak competitors in 

patches. Hump-shaped relationships might then appear when a high dispersal rate enables 

the regional dominant competitor to invade each community, excluding subdominant species. 
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Such hump-shaped relationships have been found in several experiments with heterogeneous 

starting compositions (Cadotte 2006, Matthiessen and Hillebrand 2006, Kneitel and Miller 

2011). However, in some of these studies, the hump-shaped relationship might have been the 

result of competition-colonization trade-offs (Cadotte 2006, Matthiessen and Hillebrand 2006), 

which were not considered in our simulations. We also found that dispersal often increased 

diversity, without homogenizing the metacommunity at a high dispersal rate. Consistent to our 

theoretical results, many empirical studies that used heterogeneous compositions found 

positive relationships between dispersal and diversity, even when environmental conditions 

were homogeneous (e.g. Gilbert et al. 1998, Gonzalez et al. 1998, Cadotte and Fukami 2005, 

Öslman et al. 2006). Nevertheless, dispersal did not always increase diversity by introducing 

dispersal-limited species. When dispersal introduced competitive dominant species, these 

species could just replace the resident species, keeping diversity constant or even reducing 

diversity. The fact that dispersal might not always affect diversity is confirmed in several 

empirical studies (e.g. Hoyle and Gilbert 2004, France and Duffy 2006, Limberger and 

Wickham 2012). 

When stress heterogeneity increased, the proportion of hump-shaped relationships was 

higher for the high-stressed than for the low-stressed community (Fig. 3.3). This seems 

consistent to Matthiessen et al. 2010b who found no hump-shaped relationships in 

communities without disturbances but found that hump-shaped relationships appear in 

communities where disturbances were applied. 

When the interspecific variation of the niche mean and niche width were high, the proportion 

of hump-shaped relationships was similar for homogeneous and heterogeneous starting 

composition. Studies that manipulate environmental heterogeneity in communities with a 

heterogeneous starting composition, are scarce and they do not report species sensitivities or 

differences in stress intensity. Pedruski and Arnott (2011) found a positive relationship 

between dispersal and diversity in both homogeneous and hetrogeneous environments where 

substrate heterogeneity was applied. In contrast, Chisholm et al. (2011) found that 

heterogeneity (wet versus dry patches) can generate a positive relationship between dispersal 

and diversity, while there was none in a homogeneous environment. Last, Forbes and Chase 

(2002) did not find any effect of nutrient heterogeneity on the relationship between dispersal 

and diversity as the relationship was never significant. Empirical studies thus show a high 

variation in relationships, which is in line with our results. However, due to a lack of empirical 

data it is not possible to experimentally validate our theoretical results for the different factor 

combinations.  
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3.4.4 The influence of dispersal rate and interaction coefficients 

In the present study, the total of positive, negative and hump-shaped relationships was below 

100% for all parameter combinations because the relationship between dispersal and diversity 

was often flat or showed a complex pattern with multiple local maxima. The relationship 

between dispersal and diversity was not only regulated by the factor combinations that were 

considered in this study (stress heterogeneity, interspecific variation in stress response, 

starting composition) but also by other factors and parameters. The per-capita interaction 

coefficients are an important determinant of the relationship between dispersal and diversity 

by regulating composition. The stronger the differences in competitive strength among 

species, the higher the variations in stress response must be to create different compositions. 

Moreover, when the strongest competitor is also the most stress-tolerant species, stress 

heterogeneity might generate no differences in composition (De Laender et al. 2016). 

Interaction coefficients are demonstrated to influence if the relationship between dispersal and 

diversity is hump-shaped or positive (Amarasekare and Nisbet 2001). In particular, hump-

shaped relationships occur when a strong regional competitor excludes subdominant species 

at a high dispersal rate (Mouquet and Loreau 2003). However, this exclusion does not occur 

under global niche partitioning when none of the species is a regional superior competitor 

(Amarasekare and Nisbet 2001). In that case, the relationship between dispersal and diversity 

might be positive. It is very likely that for certain combinations of interaction coefficients global 

niche partitioning occurs, which explains the relatively high proportion of positive relationships 

between dispersal and diversity.  

According to the stress gradient hypothesis, an increasing stress-intensity decreases 

competitive interactions while increasing facilitative interactions (Grime 1973, Maestre et al. 

2009). However, the stress gradient hypothesis is debated (Chesson and Huntly 1997). 

Moreover, Baert et al. (2016) did not find any stressor-induced changes in per-capita 

interaction coefficients in communities of micro-algae, the model organisms that we used. 

Therefore, we did not alter the per-capita interaction coefficients along the stress-intensity 

gradient in this study.  

While we tested a broad range of parameter values, we strongly controlled the dispersal rate 

as we did not allow for unequal dispersal probabilities among species and dispersal was 

asymmetric. Nevertheless, asymmetric dispersal of a competitive dominant species increases 

the probability for coexistence and thus for positive or hump-shaped relationships (Salomon 

et al. 2010, Haegeman and Loreau 2015). However, theoretical and experimental work on 

asymmetric dispersal is still scarce and should be performed in the future.  
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3.4.5 Conclusion 

Many communities today are exposed to environmental stress. These stressors are known to 

create shifts in composition and species abundances. We showed that these shifts can 

influence the shape of dispersal-diversity relationships, conditional on the local stress-intensity 

level, interspecific variation in stress response and the starting composition. Based on our 

theoretical results, we argue that empirical studies are needed to investigate the relationship 

between dispersal and diversity under stress. Moreover, these studies need to include 

information about the extent to which stress affects both the composition and species 

abundances to assess the results thoroughly.
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Abstract. 

Dispersal of organisms can influence the relationship between beta-diversity and regional 

productivity in heterogeneous environments. However, many ecosystems are also linked by 

fluxes of stressors, with an unknown influence on this relationship. In this study, we assess 

the relationship between beta-diversity (measured as Bray-Curtis dissimilarity) and regional 

productivity (measured as biovolume) under various levels of a stressor flux in meta-

ecosystems that were composed of two marine micro-algae communities. We created 

heterogeneity by exposing one of the two communities to a herbicide and manipulated 

regional diversity by applying a dispersal gradient, which decreased beta-diversity. We applied 

four stressor flux levels, which homogenized the herbicide concentration between the 

communities over time. The stressor flux changed the relationship between beta-diversity and 

regional productivity by changing the effect of dispersal on regional productivity. In absence 

of the stressor flux, the relationship between beta-diversity and regional productivity was 

positive at the end of the experiment. This positive relationship was generated by a negative 

effect of dispersal on regional productivity, probably because dispersal disrupted local 

dynamics by removing organisms from the most-productive unstressed community. In 

presence of the stressor flux, the relationship between beta-diversity and regional productivity 

was often negative as dispersal now increased regional productivity. Dispersal increased 

regional productivity by increasing the productivity of the stressed community. This positive 

effect was stronger in the presence than in the absence of the stressor flux because the 

stressor flux reduced the concentration of the herbicide in the stressed community, where it 

facilitated recovery. Our study shows that stressor fluxes can strongly interact with the effects 

of dispersal on productivity and thus influence diversity-productivity relationships.  
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4.1 Introduction 

Stressors such as global warming, habitat fragmentation or the release of chemical stressors 

are changing global biodiversity (Vörösmarty et al. 2010, Malaj et al. 2014, Pimm et al. 2014). 

To date, both theoretical and field studies have provided ample evidence that biodiversity 

changes affect ecosystem provisioning in closed systems, and that the consequences of 

biodiversity changes are altered by stressors (Cardinale et al. 2012, Hooper et al. 2012, 

Tilman et al. 2014, De Laender et al. 2016, Baert et al. 2018). However, a major open 

challenge is to unravel how biodiversity and ecosystem functioning are related at a regional 

scale. Meta-ecosystems are ecosystems in which spatial fluxes of organisms (dispersal), 

energy and materials are explicitly considered (Loreau et al. 2003b, Massol et al. 2011). Those 

fluxes can change regional and local diversity, ecosystem functioning (e.g. productivity) and 

the relationship between both (Loreau et al. 2003b, Haegeman and Loreau 2014, Leibold et 

al. 2017, Massol et al. 2017). 

A well-known component of diversity is beta-diversity, which quantifies the difference in 

community composition (Whittaker 1960). In heterogeneous environments, differences in 

composition among communities are mainly generated by local competitive processes 

(Cottenie 2005, Myers et al. 2015). Many studies have found a positive relationship between 

beta-diversity and regional productivity (Chase and Leibold 2002, Chalcraft et al. 2004, Chase 

and Ryberg 2004, Harrison et al. 2006). One possible mechanism for such a positive 

relationship is that dispersal reduces both beta-diversity and regional productivity. Dispersal 

might reduce beta-diversity for two reasons. First, dispersal can decrease the differences in 

species densities among communities (Baselga 2013, Gianuca et al. 2016). Second, dispersal 

can introduce new species from other communities or maintain species in communities where 

they would otherwise be excluded through competition (Mouquet and Loreau 2003, Baselga 

2013). The latter occurs in source-sink communities in which organisms disperse from 

communities where they are strong competitors (the source), to communities where they are 

weak competitors (the sink) (Leibold et al. 2004). Dispersal might reduce regional productivity 

in source-sink communities (Mouquet and Loreau 2003, Leibold et al. 2017) because 

dispersal can move organisms from communities where they are locally adapted (and 

therefore highly productive) to communities where they are less adapted (and therefore less 

productive) (Mouquet and Loreau 2003). Negative dispersal effects on productivity mostly 

appear at high dispersal rates (Howeth and Leibold 2010a, Lindström and Östman 2011), but 

have also been found at low dispersal rates in micro-algae communities (Eggers et al. 2012, 

de Boer et al. 2014).  
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Next to a negative effect on regional productivity, dispersal might also increase regional 

productivity by maintaining diversity under changing environmental conditions, also referred 

to as the spatial insurance effect (Loreau et al. 2003a, Steiner et al. 2011, Symons and Arnott 

2013, de Boer et al. 2014). Fluxes of materials, such as resources and chemical stressors, 

can generate spatiotemporal changes of environmental conditions, and can interfere with the 

effect of dispersal on diversity and productivity on a regional scale (Loreau et al. 2003b, 

Massol et al. 2011, Haegeman and Loreau 2014). However, empirical studies that combine 

dispersal and material fluxes are generally lacking (Massol et al. 2017). Moreover, to test how 

dispersal and material fluxes interact, there is a need for studies that manipulate dispersal 

and material fluxes independently (Massol et al. 2017). To our knowledge, so far only one 

study has done so, finding dispersal and a resource flux to increase ecosystem functioning 

(Harvey et al. 2016). However, it is unsure to what extent these results apply to other kinds of 

material fluxes. Indeed, organisms can produce or consume resources (Staddon et al. 2010, 

Harvey et al. 2016), while they are generally not able to impact environmental stressors such 

as pesticides (Chase and Leibold 2003). 

This study independently manipulates dispersal and the flux of a chemical stressor to 

investigate how both factors combine in affecting the relationship between beta-diversity and 

regional productivity. We used heterogeneous two-patch meta-ecosystems, in which both 

patches initially contained an identical micro-algae community. Within each meta-ecosystem, 

heterogeneity was created by initially exposing only one community to the photosynthesis 

inhibiting pesticide atrazine. This stressor reduced the growth of the micro-algae in a species-

specific way and therefore induced a different composition in the unstressed (no stressor 

present on day 0) than in the stressed (stressor present on day 0) community. We manipulated 

dispersal over the two-patch meta-ecosystems by moving a fixed proportion of algae between 

the unexposed and exposed community, homogenizing the composition and installing a 

gradient in beta-diversity. Next, we simulated a stressor flux (four levels) within the meta-

ecosystems. Because of this stressor flux, the stressor concentration increased in the 

unstressed community and decreased in the stressed community. 

Regardless of the stressor flux level, we expected that dispersal would reduce beta-diversity 

(Mouquet and Loreau 2003), creating a beta-diversity gradient. In the absence of the stressor 

flux we expected to find a positive relationship between beta-diversity and regional 

productivity, as found in earlier studies (e.g. Chase and Leibold 2002) (Fig. 4.1). This 

relationship is expected to appear because dispersal would decrease regional productivity by 

disrupting local community processes, as theoretically predicted by Mouquet and Loreau 

(2003) and experimentally found in other marine micro-algae communities (Eggers et al. 2012, 

de Boer et al. 2014). Conversely, in the presence of the stressor flux, we predicted that 
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dispersal would increase regional productivity by introducing better-adapted organisms in 

communities where the stressor concentration was changed by the stressor flux, generating 

a negative relationship between beta-diversity and regional productivity (Fig. 4.1). Thus, 

overall, we expected the stressor flux to change the relationship between beta-diversity and 

regional productivity from positive (without flux) to negative (with flux). 

We performed additional analyses to investigate how the stressor flux influenced the 

relationship between beta-diversity and regional productivity. First, we investigated the effect 

of dispersal on beta-diversity and on community composition (the density of the dominant 

algae strains). Second, we examined how dispersal changed regional and local productivity 

for the various stressor flux levels. Last, we also assessed the sensitivity of the dominant 

algae strains towards the stressor. 

4.2 Materials and methods 

4.2.1 Algae strains 

Marine diatoms (Bacillariophyceae) were collected from the Belgian part of the Southern Bight 

of the North Sea with a 10 µm mesh size phytoplankton net. We isolated individual algae cells 

following the protocol of Andersen and Kawachi (2005). Each algae cell thus gave rise to a 

monoclonal algae culture, indicated as strain. The algae strains were identified to the genus 

level using a light microscope and cell volumes were calculated according Hillebrand et al. 

(1999) (Supplementary Material Appendix A1, Table A1). They were grown in f/2 medium 

(Guillard and Ryther 1962) composed of artificial seawater (Instant Ocean®, Aquarium 

Systems) supplemented with 30 𝑚𝑔 𝑙−1 silicon and kept in a climate room (20 ± 1°C) with a 

16h photoperiod at 35 ± 5 𝜇𝑚𝑜𝑙 photons 𝑚−2𝑠−1 light intensity (Lumilux® Coolwhite, Osram). 

New cultures were inoculated every week to keep the cultures in the exponential or early 

stationary growth phase. From the available stock cultures, six cultures were randomly 

selected for the experiment. Each culture contained organisms of a different genus: Navicula 

sp., Thalassiosira sp., Odontella sp., Asterionellopsis sp., Asterionella sp. and Melosira sp. In 

this manuscript, these genera will hereafter be indicated as “strain”.  
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Fig. 4.1. Hypothesized relationship between beta-diversity and regional productivity in the absence 

or the presence of the stressor flux. 

4.2.2 Experimental design 

Each experimental meta-ecosystem consisted of two local patches that contained micro-algae 

grown in individual Erlenmeyer flasks at two different concentrations of the chemical stressor 

atrazine (unstressed: 0 𝜇𝑔 𝑙−1 and stressed: 250 𝜇𝑔 𝑙−1) to create stressor heterogeneity. At 

the start of the experiment, the six algae strains were added together in f/2 medium at an 

equal abundance of 5𝑥107 𝜇𝑚3 per strain to achieve a final culture volume of 30 ml per flask. 

We used a full factorial design with 4 stressor flux levels (0%, 5%, 10% and 15%, see below) 

and 5 dispersal levels (0%, 5%, 10%, 15% and 20%, see below). The stressor flux and 

dispersal were manipulated on the same day, every 4 days. All treatments were replicated 3 

times, obtaining 60 two-patch meta-ecosystems. The experiment ran for 24 days. 

At a stressor flux of x%, we simulated every four days the exchange of x% of medium 

containing the stressor between the unstressed and stressed community (Fig. 4.2). Hence, 

the concentration of the stressor in the unstressed community increased and the 

concentration of the stressor in the stressed community decreased, while the total amount 

and the mean concentration of the stressor across the meta-ecosystem remained constant 

(Appendix C, Fig. C1). We simulated the exchange of the stressor by removing old and adding 

new medium, manipulating the stressor concentration. To manipulate the stressor 

concentration, 10 ml of culture was centrifuged (Fig. 4.2) and 9 ml of supernatant was removed 

and stored for nutrient and atrazine analysis. The residue, containing the algae, was added 

back to the culture. Next, 10 ml of new medium was added to the flask. The atrazine 

concentration of the added medium depended on the stressor flux rate. The added medium 

had the appropriate atrazine concentration to obtain the same concentration as if the medium 

would have been directly exchanged between flasks (Appendix C, Table C2a-C2c). By adding 

new medium, we made sure that only the stressor was manipulated but no other compounds 

in the water, such as nutrients. Appendix C, Tables C2a, C2b, C2c provide the values of 

theoretical concentration of the stressor in the medium after a stressor flux, the concentration 
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of stressor in the added medium, and the measurements of the stressor concentrations at the 

end of the experiment (mean concentration of the three replicates within the no-dispersal 

treatment). Our measurements show small deviations between the predicted and measured 

concentrations and confirmed that a higher stressor flux increased the concentration in the 

unexposed communities, while reducing the concentration in the exposed communities. 

However, the flux did not completely homogenize the stressor concentration by the end of the 

experiment. The average concentration within each meta-ecosystem was always close to 125 

𝜇𝑔 𝑙−1 along all stressor flux levels. The added medium was not added directly to the flasks 

because the medium was used to rinse the centrifuge tubes to avoid any algae loss. 5 ml was 

used to rinse the centrifuge tube during the stressor flux phase, and 5 ml was used to rinse 

the centrifuge tube during the dispersal phase (see below). 

Next to the replacement of medium during the stressor flux, we also renewed medium two 

days after the manipulation of the stressor flux (days 2, 6, 10, 14, 18 and 22). Medium 

replacement was done for two reasons. First, atrazine had to be replaced regularly because 

it is degraded by light (half-life value between 90-120 days (Solomon et al. 1996)). By 

replacing the medium, the atrazine concentration mostly changed because of the simulated 

stressor flux rather than because of degradation. Second, medium replacement delayed 

nutrient depletion. Medium replacement was done by removing 10 ml from the upper layer of 

the culture (diatoms tend to sink to the bottom of the flask), followed by the addition of 10 ml 

of clean medium at the original atrazine concentration and manual shaking of the flasks. 

Dispersal was manipulated together with the stressor flux by moving a fixed proportion of the 

algae between the two patches of each meta-ecosystem (Fig. 4.2). First, a flask was shaken 

to homogenize the algae cultures. Next, we pipetted 0%, 5%, 10%, 15% or 20% of each 

culture into a 8 ml centrifuge tube. After centrifugation, the supernatant was added back to the 

original flask, after which only 0.2 ml of the residue remained in the centrifuge tube. Because 

the algae and medium cannot be completely separated, we rinsed the algae with new medium 

that had the same concentration as the flask where the algae dispersed to. To remove the 

rinsing medium, the tube was centrifuged again, after which the supernatant was removed 

until 0.2 ml of residue remained. After adding the residue to the target flask, the centrifuge 

tube was rinsed with 5 ml of medium, which had the appropriate concentration to reach the 

target concentration, to avoid any algae loss (see above). This rinsing medium was then also 

added to the target flask. 
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Fig. 4.2. Manipulation of the stressor flux and dispersal between an unexposed (blue) and exposed 

community (red). The stressor flux and dispersal were performed on days 4, 8, 12, 16 and 20. Thick 

arrows represent a manipulation that was performed by pipetting algae and/or medium. 

𝑐𝑜𝑛𝑐(𝑡, 𝑖, 𝑗)𝑎𝑑𝑑𝑒𝑑 is the concentration of the added medium; 𝑐𝑜𝑛𝑐(𝑡, 𝑖, 𝑗), is the target concentration 

of the medium. For clarity, the rinsing of the centrifuge tubes is not shown in the figure. 

All cultures were grown in a climate room (20±1 °C) under 35 ± 5 𝜇𝑚𝑜𝑙 photons 𝑚−2𝑠−1 light 

intensity at a 16h photoperiod. Erlenmeyer flasks were repositioned every 2 days to eliminate 
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potential differential light effects in the climate room. Every 4 days, just before manipulating 

the stressor flux and dispersal, we took 1 ml samples for algae counting. The samples thus 

show the state of the communities 4 days after the most recent manipulation of the stressor 

flux and dispersal. The samples were conserved with 0.2 ml of formaldehyde (35%) and stored 

at 4°C in 24 multiwell-plates for conservation. From each sample, a subsample was counted 

using an inverse microscope and Whipple grid. The size of the subsample depended on the 

cell density, but was sufficient to always include more than 100 cells of the most dominant 

strain. Nutrient samples were stored at 4°C and analyzed by Spectroquant® 

spectrophotometry (Appendix C, Table C3). Atrazine concentrations were determined using 

HPLC (Appendix C, Table C2a, C2b, C2c). 

Before the meta-ecosystem experiment, we determined the algae growth parameters and 

sensitivity to the chemical stressor in monoculture at 5 different concentrations of the chemical 

stressor atrazine (Sigma Aldrich) (0, 50, 100, 250, 500 𝜇𝑔 𝑙−1). Algae were grown during 14 

days in Erlenmeyer flasks under the same conditions as the two-patch experiment. Cell 

densities were determined at day 4, 7, 9, 11, and 14 from 1 ml samples using a Whipple Grid. 

4.2.3 Data analysis 

We quantified beta-diversity by measuring Bray-Curtis dissimilarity, using the betapart 

package in R (Baselga et al. 2013). Because of the variability in cell sizes among strains, 

Bray-Curtis dissimilarity was determined using the individual strains’ biomass calculated as 

biovolume (Hillebrand et al. 1999). As a measure of productivity, we used total biovolume. For 

the statistical analyses, biovolumes were log transformed to obtain normality of the residuals. 

The effects of beta-diversity, the stressor flux and time on the log transformed regional 

productivity were determined using Eq. 4.1 

𝑙𝑜𝑔 𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖

= 𝛼 +  𝛽1 ∗ 𝑏𝑒𝑡𝑎 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑖 + 𝛽2 ∗ 𝑠𝑡𝑟𝑒𝑠𝑠𝑜𝑟 𝑓𝑙𝑢𝑥𝑖 + 𝛽3

∗ 𝑡𝑖𝑚𝑒𝑖 + 𝛽4 ∗ 𝑡𝑖𝑚𝑒𝑖
2 + 𝛽5 ∗ 𝑏𝑒𝑡𝑎 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑖 ∗ 𝑠𝑡𝑟𝑒𝑠𝑠𝑜𝑟 𝑓𝑙𝑢𝑥𝑖

+ 𝛽6 ∗ 𝑏𝑒𝑡𝑎 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑖 ∗ 𝑡𝑖𝑚𝑒𝑖 + 𝛽7 ∗ 𝑏𝑒𝑡𝑎 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑖 ∗ 𝑡𝑖𝑚𝑒𝑖
2

+ 𝛽8 ∗ 𝑠𝑡𝑟𝑒𝑠𝑠𝑜𝑟 𝑓𝑙𝑢𝑥𝑖 ∗ 𝑡𝑖𝑚𝑒𝑖 + 𝛽9 ∗ 𝑠𝑡𝑟𝑒𝑠𝑠𝑜𝑟 𝑓𝑙𝑢𝑥𝑖 ∗ 𝑡𝑖𝑚𝑒𝑖
2

+ 𝜀𝑖 

(Eq. 4.1) 

With 𝛼 the estimated intercept of the linear model, and 𝛽1 … 𝛽9 the estimated slopes of the 

linear model. As data are temporally correlated, the correlation 𝑐𝑜𝑟 between the model 

residuals 𝜀𝑖 and 𝜀𝑗 is given by: 
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𝑐𝑜𝑟(𝜀𝑖 , 𝜀𝑗) = {
1    
𝜌 

𝑖𝑓 𝑖 = 𝑗
𝑒𝑙𝑠𝑒

  (Eq. 4.2) 

The addition of 𝑡𝑖𝑚𝑒𝑖
2 as a predictor variable was based on the regional productivity data - 

model prediction plot (Appendix C Fig. C2). 

The effect of dispersal, the stressor flux and time on the log transformed local productivity, as 

well as on the log transformed density of Navicula sp. and Asterionellopsis sp. was calculated 

using Eq. 4.3. Analyses were performed for the unstressed and stressed community 

separately. 

 𝑙𝑜𝑔 𝑙𝑜𝑐𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖

= 𝛼 +  𝛽1 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 + 𝛽2 ∗ 𝑠𝑡𝑟𝑒𝑠𝑠𝑜𝑟 𝑓𝑙𝑢𝑥𝑖 + 𝛽3 ∗ 𝑡𝑖𝑚𝑒𝑖 + 𝛽4

∗ 𝑡𝑖𝑚𝑒𝑖
2 + 𝛽5 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 ∗ 𝑠𝑡𝑟𝑒𝑠𝑠𝑜𝑟 𝑓𝑙𝑢𝑥𝑖 + 𝛽6 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖

∗ 𝑡𝑖𝑚𝑒𝑖 + 𝛽7 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 ∗ 𝑡𝑖𝑚𝑒𝑖
2 + 𝛽8 ∗ 𝑠𝑡𝑟𝑒𝑠𝑠𝑜𝑟 𝑓𝑙𝑢𝑥𝑖

∗ 𝑡𝑖𝑚𝑒𝑖 + 𝛽9 ∗ 𝑠𝑡𝑟𝑒𝑠𝑠𝑜𝑟 𝑓𝑙𝑢𝑥𝑖 ∗ 𝑡𝑖𝑚𝑒𝑖
2 + 𝜀𝑖 

(Eq. 4.3) 

With 𝛼 the estimated intercept of the linear model, and 𝛽1 … 𝛽9 the estimated slopes of the 

linear model. As data are temporally correlated, the correlation 𝑐𝑜𝑟 between the model 

residuals 𝜀𝑖 and 𝜀𝑗 is given by Eq. 4.2. 

Model selection was done using the protocol of Zuur et al. (2009) by comparing nested models 

using the ANOVA test in R (R. Core Team 2016). First, we added an exponential variance 

structure for the predictor variables, but only when this variance structure significantly 

increased model performance (p < 0.1). Second, we added a temporal correlation structure 

using the corCompSymm function in R (Eq. 4.2). Last, we removed the interactions terms that 

did not increase model performance using the backward selection method (p > 0.1). Model 

validations are represented in Appendix C Fig. C2-C9. All calculations were done using the 

gls function in R (R. Core Team 2016). 

To test for the effect of dispersal on beta-diversity, we fitted a beta-regression model, which 

is used when the dependent variable is a proportion between 0 and 1. We used dispersal as 

the predictor variable and the Bray-Curtis dissimilarity as the response variable by using the 

betareg package in R (Cribari-neto and Zeileis 2010). To measure the significance of the 

predictor variables, the betareg package uses the z-statistic, which is the regression 

coefficient divided by its standard error. 

The growth rate (𝜇) and carrying capacity (𝐾) of the six strains were determined by fitting a 

logistic growth curve to the monoculture data. The best model fit was calculated by minimizing 

the sum of squared errors with a simulated annealing algorithm using the GenSA package in 
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R (Xiang et al. 2013). A log-logistic dose-response curve (Eq. 4.4) was fitted to model the 

effect of atrazine on the per-capita growth rate and carrying capacity using the drc package in 

R (Ritz et al. 2015) 

 𝑓(𝑐𝑜𝑛𝑐) = (
𝑚𝑎𝑥

1 + 𝑒𝑠(𝑙𝑛(𝑐𝑜𝑛𝑐)−𝑙𝑛(𝐸𝐶50))
) (Eq. 4.4) 

With 𝑓(𝑐𝑜𝑛𝑐) the growth rate (𝜇) or carrying capacity (𝐾) as a function of the concentration of 

the chemical stressor 𝑐𝑜𝑛𝑐 (𝜇𝑔 𝑙−1), max  (𝜇𝑔 𝑙−1) the maximum value of the logistic function, 

𝑠 the slope of the dose respons curve and 𝐸𝐶50 (𝜇𝑔 𝑙−1) the concentration at which the growth 

rate or carrying capacity is reduced with 50%. All calculations were performed in R (R. Core 

Team 2016). 

4.3 Results 

4.3.1 The relationship between beta-diversity and regional productivity 

Beta-diversity significantly increased regional productivity and its effect was strongest at the 

end of the experiment (Table 4.1). This resulted in a strong positive relationship between beta-

diversity and regional productivity in the absence of the stressor flux on day 24 (Fig. 4.3). We 

also found a negative interaction effect between beta-diversity and the stressor flux (Table 

4.1). Therefore, negative relationships appeared in the presence of the stressor flux (Fig. 4.3). 

These negative relationships appeared first at the highest stressor flux and later also at a low 

and medium stressor flux level (Fig. 4.3). 
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Table 4.1. Results of the linear mixed model of the log transformed regional productivity as 

response variable and beta-diversity, stressor flux, dispersal, time, time² and their interactions as 

predictor variables. Model selection was based on the backward selection protocol of Zuur et al. 

(2009) using an ANOVA test. Significance levels: * p<0.05, ** p<0.01, *** p<0.001. 

 Estimate SD t-value 

Intercept 9.142 0.069 132.16*** 
Beta-diversity 0.691 0.091 7.58*** 
Stressor flux 1.749 0.0415 4.22*** 
Time 0.137 0.014 9.52*** 
Time^2 -0.006 0.001 -7.67*** 
Beta-diversity x stressor 
flux 

-2.651 0.604 -4.39*** 

Beta-diversity x time -0.145 0.021 -7.02*** 
Beta-diversity x time^2 0.008 0.001 6.45*** 
Stressor flux x time^2 0.004 0.001 3.25** 

 
Fig. 4.3. The log transformed regional productivity as function of beta-diversity (Bray-Curtis 

dissimilarity) between days 8 and 24 for the four stressor flux levels. Symbols represent the data, 

lines depict the regression lines based on linear models. Samples were taken just before the 

stressor flux and dispersal were manipulated. 
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4.3.2 The effect of dispersal on beta-diversity and strain abundances 

The presence of the stressor strongly decreased the density of Asterionellopsis sp. and 

Navicula sp. in the stressed community (i.e. the community where the stressor was initially 

present) (Fig. 4.4), generating a high beta-diversity in the meta-ecosystems without dispersal. 

Dispersal reduced beta-diversity across all stressor flux levels (Fig. 4.4, Appendix C, Table 

C4) by decreasing the difference in density of the strains between the unstressed and stressed 

community (Fig. 4.4). We found that dispersal increasingly reduced the abundance of Navicula 

sp. in the unstressed community over time (Appendix C, Table C5). Also the stressor flux 

reduced the abundance of Navicula sp. in the unstressed community, and this effect was 

strongest at intermediate time steps and in the absence of dispersal (Fig. 4.4, Appendix C, 

Table C5). In the stressed community, dispersal and the stressor flux increased the density of 

Asterionellopsis sp. and Navicula sp. at all stressor flux levels (Fig. 4.4, Appendix C, Table 

C5, C6). Because of a positive interaction effect between dispersal and the stressor flux, 

dispersal increased the density of Navicula sp. more in the presence than in the absence of 

the stressor flux (Table C5). 

4.3.3 The effect of dispersal on local productivity 

We found a significant interaction effect between dispersal and time² (Table 4.2). Therefore, 

negative relationships between dispersal and the local productivity of the unexposed 

community appeared at the end of the experiment (Fig. 4.5). However, we found a positive 

interaction effect between dispersal, stressor flux and time (Table 4.2), and negative 

relationships between dispersal and the local productivity in the unstressed community were 

hence weak or absent in the presence of the stressor flux (Fig. 4.5). 

Dispersal significantly increased local productivity of the exposed communities and its effect 

increased in time (Table 4.2). This resulted in a positive relationship between dispersal and 

local productivity in the stressed community across all stressor flux levels during the entire 

experiment (Fig. 4.5). We also found a significant negative interaction effect between 

dispersal, stressor flux and time². However, because the stressor flux increased the log 

transformed local productivity of the exposed communities (Table 4.2), the effect of dispersal 

on the local productivity of the stressed community on an absolute scale was stronger in the 

presence than in the absence of the stressor flux (Fig. 4.5).  
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Fig. 4.4. The log transformed local density of Asterionellopsis sp. (circle) and Navicula sp. (triangle) 

in the unexposed (blue) and exposed (red) communities as function of dispersal between days 8 

and 24 for the four stressor flux levels. Symbols represent the data, lines depict the regression lines 

based on linear models. Samples were taken just before the stressor flux and dispersal were 

manipulated. 

4.3.4 Strain sensitivities 

Asterionellopsis sp. and Navicula sp. greatly influenced community dynamics, as they 

together accounted for more than 90% of the total biovolume in the unstressed and stressed 

community (day 24 - no stressor flux, no dispersal treatment) (Fig. 4.6, Appendix C, Fig. C7). 

A monoculture bioassay showed that the growth rate of these two dominant strains had a 

similar sensitivity to the chemical stressor, while the carrying capacity of Asterionellopsis sp. 

was less sensitive than that of Navicula sp. (Fig. 4.6, Appendix C, Table C1). 
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Fig. 4.5. The log transformed local productivity in the unexposed (blue) and exposed (red) 

communities as function of dispersal between days 8 and 24 for the four stressor flux levels. 

Symbols represent the data, lines depict the regression lines based on linear models. The black 

dashed line represents the effect of dispersal on regional productivity. Data of regional productivity 

are not shown for clarity. Samples were taken just before the stressor flux and dispersal were 

manipulated.  
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Table 4.2. Results of the linear mixed effect model of the log transformed local productivity of the 

unexposed (left) and exposed (right) communities as response variable and dispersal, stressor flux, 

dispersal, time, time² and their interactions as predictor variables. Model selection was based on 

the backward selection protocol of Zuur 2009 using an ANOVA test. Significance levels: * p<0.05, 

** p<0.01, *** p<0.001. 

 Unexposed community Exposed community 
 Estimate SD t-value Estimate SD t-value 

Intercept 9.641 0.041 233.75*** 8.523 0.070 121.40*** 
Dispersal -0.429 0.337 -1.27 1.194 0.530 2.25* 
Stressor flux 0.104 0.413 0.252 -0.310 0.715 -0.43 
Time 0.011 0.009 1.20 0.061 0.010 6.33*** 
Time^2 0.001 0.001 1.90 -0.003 0.001 -4.97*** 
dispersal x stressor flux -4.43 3.34 -1.33 8.783 5.345 1.64 
Dispersal x time 0.093 0.074 1.26 0.346 0.073 4.73*** 
Dispersal x time^2 -0.012 0.004 -2.82** -0.009 0.005 -1.84 
Stressor flux x time^2    0.018 0.003 6.17*** 
Stressor flux x time -0.050 0.043 -1.15    
Dispersal x stressor flux x 
time 

1.210 0.353 3.43***    

Dispersal x stressor flux x 
time^2 

   -0.082 0.023 -3.61*** 

 

 

Fig. 4.6. The growth rate of (a) Navicula sp. and (b) Asterionellopsis sp. and the carrying capacity 

of (c) Navicula sp. and (d) Asterionellopsis sp. as function of the stressor (atrazine) concentration. 

The dots represent the data, the curve represents the fitted logistic dose-response relationship (Eq. 

4.4). The dotted line represents the 𝐸𝐶50 i.e. concentration at which the growth rate and carrying 

capacity are reduced with 50%. 

4.4 Discussion 

The obtained results empirically demonstrate that stressor fluxes can change the relationship 

between beta-diversity and regional productivity and offer insight into the underlying 

mechanisms. In our study system, this change was the result of dispersal affecting regional 

and local productivity differently in the presence of the stressor flux, compared to when no flux 

was present. In contrast, we did not find the stressor flux to alter dispersal effects on beta-

diversity as these were negative across all stressor flux levels. 
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4.4.1 The relationship between beta-diversity and regional productivity in the absence 

of the stressor flux. 

In the absence of the stressor flux, we predicted a positive relationship between beta-diversity 

and regional productivity, because dispersal would decrease both beta-diversity and regional 

productivity. Dispersal was expected to reduce regional productivity by disrupting local 

dynamics when exporting well-adapted (and therefore highly productive) organisms while 

importing less well-adapted, and thus less-productive, organisms (Mouquet and Loreau 2003). 

Contrary to this expectation, we found only found a positive relationship between beta-

diversity and regional productivity on day 24 only, while the relationship was weak or absent 

before (Fig. 4.3). At first, this seems surprising because dispersal disrupted local dynamics in 

the unstressed community by moving organisms of Asterionellopsis sp. and Navicula sp. from 

the unstressed to the stressed community. This movement was due to higher density in the 

unstressed than in the stressed community in absence of dispersal, which reflects the 

negative effects of the chemical stressor on growth. Although a reduction of the density of the 

best-adapted strains in the unstressed community is expected to decrease productivity, 

dispersal did not induce a regional productivity decrease, except on day 24. A main reason 

for this is that the negative effect of dispersal in the unstressed community (essentially, the 

withdrawal of biomass) was compensated by a positive effect of dispersal in the stressed 

community. Moreover, negative dispersal effects on the productivity of the unstressed 

community were often low. Indeed, dispersal-induced productivity decreases are generally 

found at dispersal rates that are high compared to the reproduction rate (40%-100%) (Leibold 

et al. 2017). In the present study, the highest dispersal rate was approximately only 5% of the 

exponential growth rate of Asterionellopsis sp. without the stressor.  

Only on day 24, we found a positive relationship between beta-diversity and regional 

productivity (Fig. 4.3). On day 24, dispersal reduced regional productivity by reducing the 

productivity of the unstressed community (Fig. 4.4). It is not clear why dispersal reduced the 

productivity in the unstressed community only on day 24 and not on earlier days. Moreover, 

the negative effect of dispersal on productivity in the unstressed community was unexpectedly 

high (80%), given that the highest dispersal rate was only 20%. A part of the negative effect 

of dispersal on productivity was probably due the dispersal-induced removal of organisms of 

Navicula sp. from the unstressed community on day 20, limiting biovolume production 

between day 20 and 24. However, the reduction in productivity was also the result of cell lysis 

in the communities at a high dispersal rate. Cell lysis may occur when nutrients are limited, or 

waste products are accumulating (Brussaard et al. 1997, Brussaard and Riegman 1998, 

Andersen and Kawachi 2005). However, it is not clear why cell lysis occurred first in the 
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highest dispersal treatments. A possible explanation is that dispersal altered interactions 

between algae strains or interactions between algae and other organisms such as bacteria, 

which are shown to influence algae growth through facilitation or competition (Cole 1982, 

Grossart 1999). Our results thus indicate that an increasing homogenization through dispersal 

can reduce regional productivity in the absence of a stressor flux, as was found before in other 

marine micro-algae communities (Eggers et al. 2012, de Boer et al. 2014). However, this 

reduction may be caused by more complex interactions than predicted by theory in Mouquet 

and Loreau (2003). 

In absence of the stressor flux, dispersal increased the productivity of the stressed community, 

but this effect was initially too weak to increase regional productivity because the high stressor 

concentration disabled the growth of the introduced organisms (Fig. 4.6).  

4.4.2 The relationship between beta-diversity and regional productivity in the presence 

of the stressor flux. 

In the presence of the stressor flux, we predicted a negative relationship between beta-

diversity and regional productivity because dispersal would decrease beta-diversity but 

increase regional productivity. Theory predicts that under changing environmental conditions 

dispersal can increase productivity by introducing strains that are better adapted (Loreau et 

al. 2003a). As predicted, we found negative relationships between beta-diversity and regional 

productivity in the presence of the stressor flux from day 12 (Fig. 4.3). Dispersal increased 

regional productivity by increasing the productivity of the stressed community, while not 

affecting the productivity of the unstressed community (Fig. 4.5).  

The stressor flux reduced the stressor concentration in the stressed community, generating 

recovery by increasing the growth rate of the stress-tolerant strains (Fig. 4.6). Instead of 

introducing new strains to the stressed community, dispersal introduced the strains that were 

also most abundant in the stressed community without dispersal because the most stress-

tolerant strains, Asterionellopsis sp. and Navicula sp. dominated the unstressed as well as 

stressed community. By introducing organisms of Asterionellopsis sp. and Navicula sp., 

dispersal increased recovery in the presence of the stressor flux (Fig. 4.5). The positive effect 

of dispersal on the productivity of the stressed community was stronger in the presence than 

in the absence of the stressor flux, because the dispersed organisms could grow in the 

presence of the stressor flux while their growth was suppressed in the absence of the stressor 

flux because of the high stressor concentration (Fig. 4.6).  

The fact that dispersal can reinforce recovery by subsidizing population growth was also 

demonstrated in communities that were exposed to heat stress by de Boer et al. (2014). 

However, in de Boer et al. (2014), the stressor was applied synchronically across all 
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communities, while the environmental conditions in our study were spatiotemporally varied. 

There are some studies that applied temporal fluctuations (Steiner et al. 2011, Guelzow et al. 

2014), but they only alternated the environment between two conditions. Such rapid 

transitions select for the strains that persist in the extreme conditions. Instead, in the present 

study, the stressor flux gradually changed the stressor concentration, allowing the community 

composition to track this change. As such, negative relationships between beta-diversity and 

regional productivity initially appeared at the highest stressor flux level and only later at the 

low- and medium stressor flux level. 

In the unstressed community, the stressor flux increased the concentration of the chemical 

stressor. However, dispersal did not affect productivity in the unstressed community by 

introducing stress-tolerant strains, because the strain which was most stress-tolerant, 

Asterionellopsis sp., dominated the unstressed community early in the experiment (Fig. 4.4). 

Because the stressor effect on the carrying capacity of Asterionellopsis sp. was nonlinear (Fig. 

5d), the effect of the increasing stressor concentration on productivity was small in the 

unstressed community. When the concentration proceeded from the initial to the final 

concentration in the unstressed community (86 µ𝑔 𝑙−1 for the highest stressor flux), the 

decrease of the carrying capacity of Asterionellopsis sp. in the unstressed community was 

therefore almost negligible. 

The stressor flux generated a negative spatial covariance of the stressor concentration 

between the unstressed and stressed community, homogenizing the environmental conditions 

and decreasing the difference in productivity between the unstressed and stressed 

community. Hence, the effect of dispersal on beta-diversity and regional productivity 

decreased at the end of the experiment, which resulted in the absence of a significant 

relationship between beta-diversity and regional productivity on day 24 at the highest stressor 

flux level. Stressor fluxes may thus reduce dispersal effects on diversity and productivity in 

the long term. 

4.4.3 Concluding remarks 

Our study system and design are characterized by five aspects that should be borne in mind 

when extrapolating to other systems or scenarios. First, competitive interactions were strong, 

which induced the dominance of two algae strains. Planktonic microalgae systems are often 

subject to strong interspecific competition because of the limited spatial heterogeneity (Giller 

et al. 2004), and are hence in laboratory conditions generally dominated by only a few species 

(Mensens et al. 2015, Baert et al. 2016a, 2017). Second, in the present study, the unstressed 

and stressed community were dominated by the same algae strains. However, how 
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community compositions change highly depends on the correlation between competitive 

abilities and the sensitivity to the stressor (De Laender et al. 2016, Baert et al. 2017, Spaak 

et al. 2017). Third, all species from the regional species pool were initially present in each 

community, and we did not perform dispersal of species that were not initially present in the 

local communities (Lessard et al. 2012). Dispersal of new species could have introduced more 

stress-tolerant or more competitively dominant species, leading to a stronger positive effect 

of dispersal on productivity. Fourth, in this study, the stressor flux was manipulated by 

pipetting, while stressor fluxes are often caused by agents such as water currents and 

diffusion. The way the stressor flux was manipulated, is comparable to a homogenization of 

the chemical stressor, in which the concentration gradient and thus the rate of homogenization 

decreases over time. This is a simplification of natural systems, where the concentration of 

chemical stressors also decreases over time through other mechanisms such as the 

degradation of chemical stressors or the accumulation of chemical stressors in the sediment. 

Last, dispersal were enforced by moving organisms between the patches. When organisms 

move passively, stressor fluxes and dispersal are often linked. Our results indicate that in such 

cases, regional productivity can be positively affected by dispersal. When organisms move 

actively, avoidance of less appropriate patches can occur, e.g. because of the presence of a 

chemical stressor (Araújo et al. 2016), or because of a lower nutrient availability (Byers 2000, 

Kennedy and Ward 2003). Such avoidance behavior precludes positive dispersal effects 

under stressor fluxes. In the present study, we also applied symmetric dispersal (dispersal 

probability in both directions is equal) and equal per capita dispersal rates, which have been 

shown to favor competitive dominant species (Salomon et al. 2010). Many habitats are 

characterized by asymmetric dispersal, e.g. planktonic organisms follow the water current, 

and plant seeds disperse according to the wind direction. Moreover, organisms show different 

per capita dispersal rates (Edelaar and Bolnick 2012, Bonte and Dahirel 2017). Therefore, our 

study is only a first step to understand beta-diversity – productivity relationships and studies 

that use other dispersal mechanisms and properties are required. 

Previous studies have shown that the relationship between beta-diversity and productivity is 

often positive (Chase and Leibold 2002, Chalcraft et al. 2004, Chase and Ryberg 2004, 

Harrison et al. 2006). While this study found a positive relationship in the absence of the 

stressor flux, this relationship shifted to negative in the presence of the stressor flux. Dispersal 

and a stressor flux may thus interact in regulating the relationship between beta-diversity and 

productivity. This interaction can have consequences when managing ecosystem functioning 

of landscapes in which some local communities are exposed to growth-affecting agents, such 

as the chemical stressors that were used in this study. The concentration at which we applied 

atrazine can usually only be found in agricultural areas after application (Graymore et al. 
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2001). Although background concentrations are generally much lower (Nödler et al. 2013), 

chemical stressors are abundant in many marine waters (Halpern et al. 2008, Abessa et al. 

2018) and the present experiment helps to gain mechanistic insight how the flux of chemical 

stressors may affect the relationship between diversity and productivity. Based on our study, 

we recommend further investigating how these fluxes affect communities and interact with the 

dispersal of organisms.
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Abstract 

Landscapes are composed of communities that are connected through dispersal, i.e. the 

movement of organisms. We investigated how a chemical stressor and connectivity change 

the productivity and diversity in landscapes using a microcosm experiment. Landscapes 

contained eight patches of marine micro-algae communities. In the control landscapes, all 

communities were unexposed, while in the landscapes with chemical application, half of the 

communities were exposed to the herbicide atrazine (100 𝜇𝑔/𝑙). Within each treatment, we 

created a connectivity gradient by varying the number of connections among communities. 

Connectivity did not affect the productivity or diversity of the communities in the control 

landscapes. In the landscapes with chemical application, connectivity did not affect regional 

productivity as connectivity increased the productivity of the exposed patches, but at the same 

time decreased the productivity of the unexposed patches to a similar extent. Within the 

landscapes with chemical application, connectivity increased regional diversity because 

connectivity increased the relative density of the stress-tolerant species on a landscape scale. 

Moreover, connectivity increased the diversity of the unexposed patches because the stress-

tolerant species was moved from the exposed patches, where it could persist, to the 

unexposed patches, where it was almost outcompeted. In contrast, connectivity decreased 

the diversity of the exposed patches because the relative density of the stress-sensitive 

species, which was dispersed from the unexposed to the exposed patches, exceeded the 

relative density of the stress-tolerant species. This study shows that connectivity has strong 

effects on how environmental stressors like chemicals have an impact on biodiversity and 

ecosystem functions.  
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5.1 Introduction 

Studies have shown that chemical stressors, such as metals and pesticides, can alter the 

productivity and diversity of communities (Mcmahon et al. 2012, Halstead et al. 2014, Viaene 

et al. 2015, Baert et al. 2016a, De Laender et al. 2016). Although these studies were 

commonly performed in isolated communities, landscapes are in reality composed of multiple 

local communities that are interconnected through dispersal, i.e. the movement of organisms 

(Leibold et al. 2004, Bonte and Dahirel 2017). Such landscapes often contain both exposed 

and unexposed patches because chemical emission and fate can create spatially 

heterogeneous distribution patterns of chemicals (Weigel et al. 2002, Waeles et al. 2009, 

Deschutter et al. 2017). 

The effect of connectivity in landscapes where chemicals are heterogeneously distributed has 

mainly been studied at the population-level (Spromberg et al. 1998, Van den Brink et al. 2007, 

Brock et al. 2010). For instance, the Mastep model (Metapopulation model 

for Assessing Spatial and Temporal Effects of Pesticides) is a well-known tool to investigate 

how chemical exposure affects interconnected populations (Galic et al. 2012a, Focks et al. 

2014). When chemical exposure decreases the productivity of the exposed patches, dispersal 

from unexposed patches may compensate for this productivity loss (Spromberg et al. 1998, 

Schriever et al. 2007, Brock et al. 2010). This positive effect of dispersal on the productivity of 

the populations in the exposed patches can create a negative effect on productivity in the 

unexposed patches (Spromberg et al. 1998, Van den Brink et al. 2007, Brock et al. 2010). 

When communities instead of populations are connected in a heterogeneous environment, 

patches may not only differ in productivity but also in composition. Such differences in 

composition are the result of trade-offs in competitive strength and stress tolerance which 

induces the replacement of stress-sensitive by stress-tolerant species (Mcmahon et al. 2012, 

Baert et al. 2016a, De Laender et al. 2016, Spaak et al. 2017). Dispersal can affect these 

compositional shifts. Dispersal can introduce species that have a higher performance than the 

resident species, increasing regional productivity (Loreau et al. 2003a, Symons and Arnott 

2013, de Boer et al. 2014, De Raedt et al. 2016). Such effect is also referred to as the spatial 

insurance effect (Loreau et al. 2003a). However, when dispersal disrupts local dynamics, it 

may likewise reduce regional productivity (Mouquet and Loreau 2003, de Boer et al. 2014, 

Leibold et al. 2017). Dispersal disrupts local dynamics when it removes resident organisms 

that perform well under the local environmental conditions and replaces them by organisms 

that perform less well under the local environmental conditions (Mouquet and Loreau 2003). 

However, experimental evidence for a negative dispersal effect on regional productivity is 
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scarce (Leibold et al. 2017) because negative dispersal effects often only occur at a very high 

dispersal rate (Howeth and Leibold 2010a, Lindström and Östman 2011). 

Regional diversity is often higher in heterogeneous than in homogeneous landscapes 

because more species can find an appropriate patch where they perform well (Tilman 1994, 

Amarasekare 2003). Dispersal is demonstrated to decrease regional diversity in such 

landscapes by creating regional dominants that exclude other species, as such homogenizing 

community composition across the landscape (Mouquet and Loreau 2003, Matthiessen et al. 

2010a). Dispersal-local diversity relationships are predicted to have a unimodal shape 

(Mouquet and Loreau 2003). At low dispersal rates, dispersal increases local diversity by 

moving species from patches where they are abundant to patches where they are less 

abundant or even absent. At high dispersal rates, dispersal reduces local diversity as 

competitive subdominant species are regionally excluded (Mouquet and Loreau 2003, 

Matthiessen et al. 2010a, Eggers et al. 2012). 

Most studies that investigate the effect of dispersal in heterogeneous landscapes only contain 

two or three patches (e.g. Matthiessen et al. 2010a, Pedruski and Arnott 2011, Eggers et al. 

2012, Limberger et al. 2014, Souffreau et al. 2014). However, real landscapes are spatially 

extended and contain multiple patches (Davies et al. 2009, Carrara et al. 2012, 2014, Seymour 

and Altermatt 2014). Within spatially-extended landscapes, community composition depends 

on the position of the patch in the network, which is not the case for simple two-patch 

communities (Carrara et al. 2012, Seymour and Altermatt 2014).  

Until now, the few studies that investigated spatially extended landscapes only used a few 

connectivity levels (Davies et al. 2009, Carrara et al. 2012, 2014). Moreover, they created a 

heterogeneous environment by spatially varying resources (Davies et al. 2009) or by applying 

random disturbances in some patches of the landscape (Altermatt et al. 2011b, Carrara et al. 

2012). Varying resources often generates opposite effects on species, increasing the growth 

of some species, while decreasing the growth of others. However, such variations do not 

necessarily change productivity. In contrast, the application of an environmental stressor 

affects the per-capita growth rate of all species negatively, decreasing the productivity of the 

exposed patches (but see Spaak et al. 2017) and therefore regional productivity. Also random 

disturbances decrease the productivity of the affected patches (Matthiessen et al. 2010b, 

Altermatt et al. 2011b). However, those random disturbances affect all species equally by 

removing a fixed proportion of each species. In contrast, environmental stressors such as 

chemicals have species-specific effects, affecting some species more than others (De 

Laender et al. 2016, Baert et al. 2017). Therefore, there is a need for studies that address 
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how connectivity affects the diversity and productivity in spatially extended landscapes 

exposed to environmental stressors. 

To investigate the combined effect of environmental stress and connectivity, we conducted a 

microcosm experiment with communities of marine micro-algae. We constructed landscapes 

of 8 interconnected communities (patches) and manipulated the application of a chemical and 

connectivity using a crossed design (Fig. 5.1). The chemical application treatment contained 

two levels; in the landscapes with atrazine application, half of the patches was exposed to the 

herbicide atrazine; in the control landscapes none of the patches was exposed. We defined 

connectivity as the number of connections between the patches of a landscape and 

manipulated connectivity by creating landscapes with a different number of connections. We 

selected two algae strains that exhibited a trade-off between competitive ability and toxicant 

sensitivity. Odontella sp. (OD) was the strongest competitor, while Dactyliosolen. sp. (DACT) 

was most tolerant to atrazine.  

Positive effects of dispersal on regional productivity are only expected to occur when new 

species are introduced to patches (Loreau et al. 2003a). Moreover, there are hardly any 

experiments that find a negative effect of dispersal on regional productivity (Leibold et al. 

2017). In our system, all species were initially present in all patches. Therefore, we 

hypothesized that connectivity would not affect regional productivity in the control landscapes 

or the landscapes with chemical application (H1). At a local scale, we expected that 

connectivity would increase the redistribution of organisms in the landscapes with chemical 

application (e.g. Spromberg et al. 1998). Therefore, we hypothesized that connectivity would 

increase the productivity of the exposed patches, while decreasing the productivity of the 

unexposed patches (H2). 

In the patches that were exposed to atrazine, we expected that the tolerant species DACT 

would replace the toxicant-sensitive, but regionally dominant, species (OD). We therefore 

hypothesized that chemical application would increase regional diversity but that connectivity 

would decrease regional diversity in the landscapes with chemical application by increasing 

the regional density of the regional dominant species OD (H3). At a local scale we expected 

to find a hump-shaped relationship between connectivity and diversity in the landscapes with 

chemical application (Mouquet and Loreau 2003) (H4). At low connectivity, connectivity would 

increase the relative density of DACT in the unexposed patches and increase the relative 

density of OD in the exposed communities, acting to increase local diversity. At high 

connectivity, connectivity would increase the relative density of the regional dominant species, 

acting to decrease local diversity. 
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Fig. 5.1: We used a crossed design of chemical application and connectivity. The chemical 

application treatment contained 2 levels: control landscapes (none of the patches was exposed), 

and the landscapes with chemical application (4 of the 8 patches were exposed). The connectivity 

treatment contained 6 levels. All treatments were replicated three times. 

To test these hypotheses, we determined the effect of chemical application and connectivity 

on regional and local productivity and diversity after 12 and 30 days. To explain how atrazine 

application and connectivity affected diversity, we also investigated the effect of both factors 

on the relative density of the chemical-tolerant species. Last, we examined if connectivity 

changed the chemical concentration in the communities and if a change of the chemical 

concentration affected productivity. To this end, we measured the effect of atrazine on the 

biovolume of the algae in competition under isolated conditions. 

5.2 Materials and methods 

5.2.1 Study system and overall design 

We used two strains of marine micro-algae of the class Bacillariophyceae (diatoms), which 

were collected in the Belgian part of the North sea during spring 2017. The algae were isolated 

using the protocol of Andersen (2005) and grown in f/2 medium based on instant ocean 

artificial seawater. All cells of a strain thus originated from the same initial algae cell. The 

strains were selected based on preliminary experiments, where we found a trade-off between 

competitive ability and toxicant sensitivity. Odontella sp. (OD) was the strongest competitor, 

while Dactyliosolen. sp. (DACT) was most tolerant to atrazine (Appendix D Table D1, Fig. D1, 
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D2). Algae were grown in Erlenmeyer flasks in a climate room at 20 ± 1℃ with 35 𝜇𝑚𝑜𝑙 𝑚−2 

light intensity. We used a full factorial design containing two atrazine application treatments 

(1 without and 1 with atrazine application) and 6 connectivity levels. Each treatment was 

replicated three times. In total, our experiment thus contained 36 landscapes: two chemical 

application treatments, six connectivity levels and three replicates. At the start of the 

experiment, algae were added to each community at a total initial density of 0.225 𝑚𝑚3 𝑙−1 

per strain. The experiment was started during two consecutive days. Three connectivity levels 

per exposure treatment and replicate were established on day 1, while the other three were 

established on day 2. We established the experiment on two consecutive days because the 

experimental set-up was too large to manipulate dispersal in all landscapes on the same day. 

5.2.2 Experimental treatments 

The atrazine application treatment contained two levels: in the control landscapes, none of 

the patches were exposed to atrazine; in the landscapes with atrazine application, four of eight 

communities were exposed to the photo-inhibiting chemical atrazine at a concentration of 100 

𝜇𝑔 𝑙−1. Per landscape, we distinguished two types of patches: unexposed and exposed 

patches. The unexposed patches were unexposed in both the control landscapes and the 

landscapes with atrazine application. The exposed patches were unexposed in the control 

landscapes but exposed in the landscapes with atrazine application. Among the replicates of 

the exposed treatment, we varied the location of the exposed patches in the landscape. 

Atrazine was added in the most-connected patches in the first replicate, in the least-connected 

patches for the second replicate and in the averagely-connected patches for the third 

replicate. In replicate 1 for instance, patches 1, 2, 6 and 7 were the most-connected patches 

and were therefore exposed to atrazine. In contrast, patches 3, 4, 5 and 8 were the least-

connected patches and were therefore not exposed to atrazine. (Appendix D Table D2). 

We applied six connectivity levels. Each connectivity level had four connections less than the 

previous connectivity level. The highest connectivity corresponded to 24 connections, while 

the lowest connectivity only had 4 connections (Fig. 5.1). At the five highest connectivity levels, 

all communities were still connected. At the lowest connectivity level, 3 out of 8 communities 

were isolated (Fig 5.1).  

Dispersal between communities was performed by exchanging 1 ml (3.33%) of medium per 

connection in each direction. Therefore, organisms in a more-connected patch had a higher 

dispersal probability than in a less-connected patch. Moreover, dispersal was symmetrical as 

the proportion of organisms that was exchanged in each direction was equal. To minimize the 

transfer of medium among communities, algae cells and medium were separated using 

centrifugation. To do so, 10 mL was removed from the culture and placed in a glass centrifuge 
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tube. Next, this tube was centrifuged at 800 rpm (acceleration 5 m/s2, deceleration 3 m/s2) 

during 20 minutes. 8 ml of supernatant was removed and stored for toxicant and nutrient 

analysis. Next, 200 µl of the precipitate was added to each culture that was connected to the 

source culture. The remaining precipitate was added to the source culture together with 9 ml 

of clean medium. By using this method, the amount of culture that was centrifuged was equal 

among all communities and treatments. Moreover, new medium was added to keep the 

toxicant concentration stable (atrazine is degraded by light) and to delay nutrient depletion. 

Next to the connectivity experiment, we also grew the algae in an isolated competition 

experiment (no connections). We applied five atrazine concentrations (0, 25, 50, 100 and 200 

𝜇𝑔 𝑙−1). We added the algae to f/2 medium at a total initial density of 0.225 𝑚𝑚3 𝑙−1 per strain. 

Algae were placed together with the flasks of the connectivity experiment to have identical 

growth conditions. As in the landscape experiment, 30% of the medium was renewed every 3 

days. To do so, 10 mL was removed from the culture and placed in a glass centrifuge tube. 

This tube was centrifuged at 800 rpm (acceleration 5 𝑚𝑠−2, deceleration 3 𝑚𝑠−2) during 20 

minutes. 8 ml of supernatant was removed and stored for toxicant and nutrient analysis. Last, 

the precipitate was moved back into the culture together with 9 ml of new medium.  

5.2.3 Measurements and analyses 

1 ml samples were taken for cell counting before connectivity was manipulated. Samples were 

inoculated with 200 µl lugol and stored at 4℃. Cell counting was performed by using an 

inverted microscope with a whipple grid in the ocular. During the manipulation of connectivity, 

we also collected samples for atrazine analysis. Atrazine samples were stored at -20°C in 

glass tubes and analyzed using mass chromatography, coupled with a mass spectrometer 

(Appendix D Table D3). 

Local productivity was obtained by transforming the cell counts to biovolumes based on the 

cell-specific biovolume (Hillebrand et al. 1999). Regional productivity was obtained by 

calculating the sum of the biovolume of all patches within a landscape. Because of the 

variability in cell sizes among strains, diversity was determined according to individual strains’ 

biomass calculated as biovolume (Hillebrand et al. 1999). Biodiversity was measured using 

the Shannon diversity index 𝐻𝑗 in patch 𝑗 (Eq. 5.1), using the vegan package (Oksanen et al. 

2014) in R and was calculated as: 

 
𝐻𝑗 =  ∑ 𝑝𝑖,𝑗 ln 𝑝𝑖,𝑗

𝑛

𝑖=1

 (Eq. 5.1) 
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where 𝑝𝑖,𝑗 =  𝑚𝑖,𝑗 ∑ 𝑚𝑖,𝑗
𝑛
𝑖=1⁄  with 𝑚𝑖,𝑗 the biovolume of species 𝑖 in patch 𝑗 and 𝑛 the number 

of species (2). To measure local diversity, the Shannon index was calculated per patch. To 

measure regional diversity, the Shannon index was calculated across the entire landscape. 

5.2.4 Statistical analyses 

The statistical analyses for productivity, diversity and the transformed relative density of the 

stress-tolerant species were performed for days 12 and 30 separately using mixed linear effect 

models. For the first analysis, the log transformed regional productivity was the response 

variable and atrazine application, connectivity, their interaction, and start day were the 

predictor variables (Eq. 5.2). 

𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗

= 𝛼 + 𝛽1 ∗ 𝑎𝑡𝑟𝑎𝑧𝑖𝑛𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑗 + 𝛽2 ∗ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗 + 𝛽3

∗ 𝑠𝑡𝑎𝑟𝑡 𝑑𝑎𝑦𝑖𝑗 + 𝛽4 ∗ 𝑎𝑡𝑟𝑎𝑧𝑖𝑛𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑗 ∗ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗

+ 𝜀𝑖𝑗 

(Eq. 5.2) 

With 𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗 regional productivity for the 𝑖the observation within the atrazine 

application treatment 𝑗. 𝛼 is the estimated intercept and 𝛽1, … , 𝛽4 are the estimated slopes of 

the linear model. 𝜀𝑖𝑗 are the residuals, with 𝜀𝑖𝑗~𝑁(0, 𝜎𝑗
2). 𝜎𝑗

2 is the estimated variance per 

atrazine application treatment. We did not add a variance structure for connectivity as this did 

not increase model performance (based on ANOVA for nested models). A similar analysis 

was performed for regional diversity and the regional log transformed relative abundance of 

(DACT+1) 

Next, we analyzed the effect of atrazine application, exposure and connectivity on the local 

productivity on days 12 and 30 separately. We used the log transformed local productivity as 

response variable and used atrazine application, exposure (unexposed versus exposed 

patch), connectivity, their interactions and start day as predictor variables using Eq. 5.3.  

𝑙𝑜𝑐𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗𝑘

= 𝛼 + 𝛽1 ∗ 𝑎𝑡𝑟𝑎𝑧𝑖𝑛𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑗 + 𝛽2 ∗ 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑘 + 𝛽3

∗ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗𝑘 + 𝛽4 ∗ 𝑠𝑡𝑎𝑟𝑡 𝑑𝑎𝑦𝑖𝑗𝑘 + 𝛽5

∗ 𝑎𝑡𝑟𝑎𝑧𝑖𝑛𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑗 ∗ 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑘 + 𝛽6

∗ 𝑎𝑡𝑟𝑎𝑧𝑖𝑛𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑗 ∗ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗𝑘 + 𝛽7 ∗ 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑘

∗ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗𝑘 + 𝛽8 ∗ 𝑎𝑡𝑟𝑎𝑧𝑖𝑛𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑗 ∗ 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑘

∗ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗𝑘 + 𝜀𝑖𝑗𝑘 

(Eq. 5.3) 
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𝑙𝑜𝑐𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗𝑘 is the local productivity of the the 𝑖th observation with atrazine 

application 𝑗 and exposure 𝑘. 𝛼 is the estimated intercept and 𝛽1, … , 𝛽8 are the estimated 

slopes of the linear regression. The residuals 𝜀𝑖𝑗𝑘 are given by 

𝑣𝑎𝑟(𝜀𝑖𝑗𝑘) = 𝜎𝑗
2 𝑥 𝜎𝑘

2 𝑥 (𝛿1𝑗𝑘 + |𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗𝑘|
𝛿2𝑗𝑘

)2 (Eq. 5.4) 

to correct for heteroscedasticity. With 𝜎𝑗
2 and  𝜎𝑘

2 the variance per atrazine application 

treatment and exposure level respectively. 𝛿1𝑗𝑘  and 𝛿2𝑗𝑘 the estimated parameters of the 

power variance structure. Note that those parameters depend on the atrazine application 

treatment and exposure level. Furthermore, we corrected for spatial correlation. As such: 

𝑐𝑜𝑟(𝜀𝑖𝑗𝑘 , 𝜀𝑙𝑗𝑘) = {
1      

ℎ(𝜀𝑖𝑗𝑘 , 𝜀𝑙𝑗𝑘 , 𝜌) 
𝑖𝑓 𝑖 = 𝑙

𝑒𝑙𝑠𝑒
 (Eq. 5.5) 

We tested if the addition of the different terms of the variance structure (i.e. 𝜎𝑘
2,  𝜎𝑙

2 and 

(𝛿1𝑘𝑙 + |𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗𝑘|
𝛿2𝑘𝑙

)2) significantly increased model performance using the ANOVA 

test for nested models in R (R. Core Team 2016) and by plotting the model residuals as a 

function of the predictor variables and the predicted values as suggested by Zuur et al. (2009). 

A term that did not increase model performance was not included in the analysis. 

We repeated the same analyses for diversity and the local log transformed relative density of 

DACT+1 (to avoid any infinite values when taking a logarithm). When analyzing local diversity, 

we initially included connectivity as a first- and second order predictor to test possible hump-

shaped effects. If the addition of the second-order term did not give a better model 

performance according to the ANOVA test, we removed connectivity as a second-order 

predictor. 

Although the algae and medium were separated using centrifugation, this separation was not 

perfect and we hence expected to find a small but potentially important effect of connectivity 

on the atrazine concentration. Therefore, we performed a separate analysis to investigate if 

the effect of connectivity on local biovolume was caused by a change of the atrazine 

concentration rather than by the dispersal of the algae. Therefore, we investigated which 

factors significantly affected the measured productivity 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖 by using a 

generalized non-linear model (Eq. 5.5).  
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(𝑙𝑜𝑔10(𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖))

= (𝑙𝑜𝑔10(𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑,𝑖))

+ treatment𝑖(unexposed = true) ∗ 𝛼 ∗ local con𝑖

+ treatment𝑖(exposed = true) ∗
𝛽 ∗ local con𝑖

local con𝑖 +  𝛾
+  𝜀𝑖 

(Eq. 5.6) 

With 𝛼, 𝛽, 𝛾 the values of the regression coefficients and 𝜀𝑖 the normally distributed residuals. 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑,𝑖 is the biovolume of each patch 𝑖 within a landscape that was calculated 

by using the measured concentration of atrazine 𝑐𝑜𝑛𝑐 within each patch. This calculation thus 

returns the expected biovolume should dynamics only be influenced by the (unintended) 

movement of atrazine, ignoring the effect of algae dispersal on productivity. 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑,𝑖(𝑐𝑜𝑛𝑐) is calculated as follows: 

 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑,𝑖(𝑐𝑜𝑛𝑐)

= 𝑐 +
𝑑 − 𝑐

1 + exp (𝑏 ∗ (log(𝑐𝑜𝑛𝑐) − log(𝐸𝐶50)))
 

(Eq. 5.7) 

𝑏, 𝑐, 𝑑 and 𝐸𝐶50 are the estimated parameters of the four-parametric log-logistic function. 𝐸𝐶50 

represents the inflection point, i.e. the concentration at which the productivity is reduced by 

50%. The parameters were determined using the data from the isolated competition 

experiment. Parameters were derived by fitting the four-parametric log-logistic function to total 

productivity on day 30 day by using the drc function in R. 

In Eq. 5.6, local con𝑖 is the local connectivity (the number of the incident connections) of a 

patch 𝑖. Local connectivity instead of regional-scale connectivity was used as a predictor 

variable because it is a patch-dependent attribute, while regional connectivity is a landscape-

dependent attribute. Moreover, when local con = 0 ⇒ 𝑙𝑜𝑔10(𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖) =

𝑙𝑜𝑔10(𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑,𝑖) + 𝜀𝑖 

If 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖 was affected by the dispersal of algae, local connectivity would be a 

significant predictor of 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖. Atrazine was only measured for samples of 

replicate 1. We hence only performed statistical analyses using the local productivity of 

patches 1, 2, 6 and 7 of replicate 1. These analyses were performed for each patch separately 

to avoid spatial correlation. The p-values were corrected using the Bonferroni post hoc test. 

We used a non-linear (saturating) model as this resulted in a better model fit than when using 

a linear model (based on residual plot and local connectivity – local productivity plots 

(Appendix D Fig. D5, D6, D8, D9)). To fit this non-linear model, we used the nls function in R 

(R. Core Team 2016). 
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5.3 Results 

Atrazine application in the landscape changed productivity and diversity at the regional and 

local scale. Moreover, while connectivity did not affect the control landscapes, it did change 

the productivity and diversity of the landscapes where atrazine was applied.  

5.3.1 Productivity 

Atrazine application on a landscape level reduced regional productivity during the entire 

experiment (Table 5.1, Fig. 5.2 a, d). On day 12, atrazine application also changed the effect 

of connectivity on regional productivity. Connectivity did not affect the regional productivity of 

the control landscapes, while it increased the regional productivity in the landscapes with 

atrazine application (Table 5.1, Fig. 5.2 d). On day 30, atrazine did not change the effect of 

connectivity on regional productivity as connectivity did not affect regional productivity in the 

control landscapes or in the landscapes with atrazine application (Table 5.1, Fig. 5.2 d). 

On day 12, atrazine application on a landscape level did not affect the productivity in the 

unexposed patches but decreased the productivity in the exposed patches (Table 5.2, Fig. 5.2 

b, c). We found a significant interaction effect between atrazine application, connectivity and 

patch exposure. Therefore, connectivity increased the productivity in the exposed patches in 

the landscapes with atrazine application, as was also seen at a regional scale (Fig. 5.2 a, c).  

On day 30, atrazine application did not affect the productivity in the unexposed patches but 

decreased the productivity in the exposed patches (Table 5.2, Fig. 5.2 e, f). We found a 

significant interaction effects between atrazine application and connectivity, showing that 

connectivity decreased the productivity of the unexposed patches within the landscapes with 

atrazine application. Moreover, a significant interaction effect between atrazine application, 

connectivity and patch exposure demonstrates that connectivity increased the productivity of 

the exposed patches (Fig. 5.2 e, f). 

Measuring the chemical concentration showed that connectivity slightly reduced the chemical 

concentration in the exposed patches (Appendix D Table D7, Fig. D3). Therefore, we 

predicted the total productivity at the measured concentrations by using the dose-response 

relationship of the competition experiment (Appendix D Fig. D4). For the exposed 

communities, the predicted productivity were consistently lower than those measured in the 

experiment (Fig. 5.3, triangles). 
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Table 5.1. Results of the linear model with atrazine application, connectivity, their interaction and 

start day as predictor variables and the log transformed regional productivity as response variable. 

Significance levels: * p<0.05, ** p<0.01, *** p<0.001. 

 

Fig. 5.2. The log transformed productivity in function of connectivity on days 12 and 30. Panels a 

and d represent the effect of connectivity on regional productivity (3 replicates) in the control 

landscapes (blue) and the landscapes with atrazine application (red). Panels b and e represent the 

effect of connectivity on the local productivity of the unexposed patches in the control landscape 

(blue) and the landscapes with atrazine application (red) (mean±SD). Panels c and f represent the 

effect of connectivity on local productivity of the exposed patches in the control landscape (blue) 

and the landscapes with atrazine application (red) (mean±SD). The regression lines are only shown 

in case of a significant effect when using a mixed linear effect model (Table 5.1, Table 5.2). 

  

 Day 12 Day 30 
 Value SD t-value Value SD t-value 

Intercept 10.252 0.019 544.88*** 10.600 0.012 865.07*** 
Start day 0.105 0.014 7.54*** -0.005 0.011 -0.43 
Atrazine app -0.302 0.032 -9.39*** -0.317 0.040 -7.94*** 
Connectivity 0.000 0.001 0.27 -0.005 0.001 -0.59 
Atrazine app x Connectivity 0.006 0.002 3.04** 0.001 0.003 0.21 
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Table 5.2. Results of the generalized linear model with connectivity, atrazine application (on a 

landscape level), patch exposure, their interactions and start day as predictor variables and the log 

transformed mean local productivity on days 12 and 30 as response variable. Significance levels:  

* p<0.05, ** p<0.01, *** p<0.001. 

 Day 12   Day 30   
 Value SD t-value Value SD t-value 

Intercept 9.299 0.018 510.89*** 9.690 0.021 466.37*** 
Start day 0.095 0.012 7.65*** -0.007 0.013 -0.58 
Atrazine app. -0.021 0.029 -0.71 -0.011 0.036 -0.31 
Patch exposure 0.016 0.022 0.743 0.012 0.021 0.58 
Connectivity 0.001 0.001 0.66 0.000 0.001 0.04 
Atrazine app x patch exposure -1.036 0.135 -7.65*** -1.420 0.136 -10.45*** 
Atrazine app x connectivity 0.000 0.002 0.08 -0.006 0.002 -2.69** 
Patch exposure x connectivity -0.001 0.001 -0.71 -0.001 0.001 -0.84 
Atrazine app x patch exposure  
x connectivity 

0.028 0.007 4.41*** 0.044 0.007 5.99*** 

 

Fig. 5.3. Predicted vs. measured productivity for the exposed patches 1, 2, 6 and 7 of replicate 1 in 

the landscape with atrazine application. The size of the symbols represents the local connectivity 

of the patch. The black line represents the values where the predictions equal the observations. 

The productivity was predicted using the measured toxicant concentration in the exposed patches 

by using Eq. 5.7 (triangles). By using a nonlinear squared model (Eq. 5.6), local connectivity was 

added as a predictor variable (circles), which generated a statistically significant better model fit. 

Table 5.3. Result of the nonlinear squared model with the measured productivity of community 1, 

2, 6, and 7 as response variables, and atrazine application and local connectivity as predictor 

variables. α, β and 𝛾 are the predicted values of the statistical analysis as represented in Eq. 5.6. 

p-values were corrected using the Bonferroni post-hoc test. * p<0.0125, ** p<0.0025, *** p<0.00025. 

 patch 1 patch 2 patch 6 patch 7 
 Est t-value Est t-value Est t-value Est t-value 

α 0.009 0.82 0.009 1.04 0.012 1.11 0.007 0.47 
β 2.522 14.19*** 2.458 18.33*** 2.784 11.16*** 2.634 10.72*** 
γ 0.476 0.82 0.429 1.86 1.973 3.74* 1.426 2.93 
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The addition of local connectivity (as a measure of the number of connections per patch) as 

a predictor variable resulted in better model predictions of productivity (Fig. 5.3, circles) and 

the coefficient of local connectivity, β was always a significant predictor of productivity (Table 

5.3). The analysis therefore shows that connectivity increased productivity through dispersal 

of algae rather than through a reduction of the atrazine concentration. 

5.3.2 Diversity 

On day 12, atrazine and connectivity did not affect regional diversity (Table 5.4, Fig. 5.4a). On 

day 30, atrazine marginally increased regional diversity and this positive effect increased 

when connectivity increased (Table 5.1, Fig. 5.4d). 

The model predictions with connectivity as a first-order predictor did not significantly differ 

from the model predictions with connectivity as a second-order predictor (Appendix D Table 

D4). Therefore, only the results for the model predictions with connectivity as a first-order 

predictor are shown. On day 12, atrazine application did not affect diversity in the unexposed 

patches but increased diversity in the exposed patches (Table 5.4, Fig. 5.4b, c). Connectivity 

did not significantly affect diversity in the unexposed or exposed patches.  

On day 30, atrazine application did not affect diversity in the unexposed patches but increased 

diversity in the exposed patches (Table 5.4, Figure 5.4 e, f). There were significant interaction 

effects between atrazine application and connectivity, indicating a positive effect of 

connectivity on the diversity of the unexposed patches in the landscapes with atrazine 

application. Moreover, a negative significant effect between atrazine application, connectivity 

and exposure indicates that connectivity decreased diversity in the exposed patches in the 

landscapes with atrazine application (Fig. 5.4 d, f). 

5.3.3 Relative density 

On day 12, atrazine and connectivity did not affect the relative density of DACT at a regional 

scale (Appendix D Table D6, Fig. D7). On day 30, atrazine application increased the relative 

density of DACT at a regional scale (Appendix D Table D6, Fig. D7). At a local scale, atrazine 

application and connectivity affected the relative density of DACT in a similar way as they 

affected diversity (Appendix D Table D6, Fig D7).  
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Table 5.4. Results of the generalized linear model with atrazine application, connectivity, their 

interaction and start day as predictor variables and the Shannon diversity as response variable. 

Significance levels: * p<0.05, ** p<0.01, *** p<0.001. 

 

Figure 5.4. Shannon diversity vs. connectivity on days 12 and 30. Panels a and d represent the 

effect of connectivity on regional diversity in the control landscapes (blue) and the exposed 

landscapes (red) (3 replicates). Panels b and e represent the effect of connectivity on the local 

diversity of the unexposed patches in the control landscape (blue) and the landscapes with atrazine 

application (red) (mean±SD). Panels c and f represent the effect of connectivity on local diversity of 

the exposed patches in the control landscape (blue) and the landscapes with atrazine application 

(red) (mean±SD). The regression lines are only shown in case of a significant effect when using a 

mixed linear effect model (Table 5.4, Table 5.5). 

  

 Day 12 Day 30 
 Value SD t-value Value SD t-value 

Intercept 0.0932 0.0113 8.27*** 0.0037 0.0007 5.19*** 
Start day -0.0341 0.0045 -7.64*** -0.0025 0.0006 -4.44*** 
Atrazine app 0.0110 0.0129 0.85 0.0078 0.0036 2.20* 
Connectivity -0.0002 0.0007 -0.28 0.0001 0.0000 1.13 
Atrazine app x Connectivity -0.0008 0.0008 -0.94 0.0005 0.0002 2.67* 
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Table 5.5. Results of the generalized linear model with connectivity, atrazine application (on a 

landscape level), patch exposure, their interactions and start day as predictor variables and local 

diversity on days 12 and 30 as response variable. Significance levels: * p<0.05, ** p<0.01, *** 

p<0.001. 

 Day 12   Day 30   
 Value SD t-value Value SD t-value 

Intercept 0.089 0.008 10.56*** 0.004 0.001 5.15*** 
Start day -0.038 0.006 -6.44*** -0.003 0.000 -5.46*** 
Atrazine app. 0.015 0.014 1.03 -0.002 0.002 -0.686 
Patch exposure 0.019 0.010 1.87 -0.001 0.001 -0.841 
Connectivity 0.000 0.001 0.101 0.000 0.000 1.556 
Atrazine app x patch exposure 0.069 0.030 2.341* 0.131 0.023 5.60*** 
Atrazine app x connectivity -0.001 0.001 -1.49 0.001 0.000 3.40*** 
Patch exposure x connectivity -0.001 0.001 -1.48 0.000 0.000 1.04 
Atrazine app x patch exposure 
x connectivity 

-0.002 0.001 -1.44 -0.004 0.001 -3.73*** 

5.4 Discussion 

5.4.1 Productivity 

In contrast to what we expected (H1), connectivity increased regional productivity on day 12 

in the landscapes with the chemical application. A positive effect of dispersal on productivity 

is usually found because of a spatial insurance effect when dispersal introduces stress-

tolerant species that compensate for the productivity loss of stress-sensitive species 

(Thompson and Shurin 2012, Eggers et al. 2012, Symons and Arnott 2014, de Boer et al. 

2014, De Raedt et al. 2016). In thus study, connectivity did not introduce new species as local 

richness remained constant during the experiment. Instead, connectivity facilitated the 

redistribution of organisms from the unexposed to the exposed patches, compensating the 

negative effect of the chemical on local productivity in the exposed patches. However, in 

contrast to what we hypothesized, this redistribution did not generate a productivity loss in the 

unexposed patches on day 12 (H2). Probably, the dispersal-induced productivity loss was 

quickly compensated by the growth of the remaining algae during the three days between the 

manipulation of connectivity and sampling because the growth rate of the algae was near the 

exponential growth phase. 

As hypothesized (H1), connectivity did not affect regional productivity on day 30 as the 

negative effect of connectivity in the unexposed patches was offset by the positive effect of 

connectivity in the exposed patches. We argue that the dispersal-induced loss of productivity 

could no longer be compensated by growth in the unexposed patches because algae were no 

longer in their exponential growth phase. Our results are in line with studies reporting no effect 

of dispersal on regional productivity in heterogeneous landscapes, while affecting the 

productivity of local patches (Lindström and Östman 2011, Smeti et al. 2016). Heterogeneity 
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in these other studies was caused by resources or natural variation and not by environmental 

stressors as we have done in the present study. Indeed, existing studies with environmental 

stressors have mostly focused on the population-level processes (Spromberg et al. 1998, Van 

den Brink et al. 2007, Brock 2013). 

Some patches of the landscape remained more connected than others, which resulted in a 

strong variability of local productivity, especially at low connectivity (Fig. 5.2). Moreover, we 

found evidence that local connectivity showed a non-linear, saturating relationship with local 

productivity. Indeed, we found that the non-linear model, which predicted the effect of local 

connectivity on local productivity, showed better model residuals than the linear model (Eq. 

5.6, Appendix D, Fig. D5). Moreover, the relationship between local connectivity and local 

productivity showed an overall saturating trend (Appendix D, Fig. D6, D8, D9). In other words, 

the removal of connections from a weakly connected patch decreased productivity more than 

the removal of connections from a highly connected patch. First, a higher number of 

connections decreased the difference in productivity between unexposed and exposed 

patches, reducing the contribution per connection to productivity. Second, when connectivity 

was low, not all exposed patches were connected to an unexposed patch. This shows that not 

only the number of connections, but also the landscape configuration (which patches remain 

connected) is important to predict local production. The importance of landscape configuration 

has been demonstrated before in landscapes where resources and patch sizes were 

manipulated (Carrara et al. 2012, 2014). 

5.4.2 Diversity 

The experimental results did not support hypotheses 3 and 4 (H3 and 4). Instead of decreasing 

regional diversity in landscapes where the chemical was applied, connectivity did not affect 

regional diversity on day 12 and increased regional diversity on day 30 (H3). Chemical 

application increased regional diversity by suppressing the competitive dominant species OD, 

allowing the subdominant but most stress-tolerant species DACT to persist in the exposed 

patches. As a result, OD dominated the unexposed patches and DACT dominated the 

exposed patches, fostering regional diversity and reflecting the trade-off between competitive 

strength and chemical tolerance. Because of this trade-off, DACT was almost entirely 

excluded in the unexposed patches, while OD could only persist in the exposed patches that 

were connected to unexposed patches. 

We expected that connectivity would reduce regional diversity of the landscapes where the 

chemical was applied by benefitting the distribution of the regionally strongest competitor 

(Forbes and Chase 2002, Mouquet and Loreau 2003, Howeth and Leibold 2010b, Matthiessen 

et al. 2010a). However, we found that connectivity increased regional diversity on day 30. 
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Connectivity can increase regional diversity by increasing the relative density of a regionally 

subdominant species (Gilbert et al. 1998, Howeth and Leibold 2010a, Kneitel and Miller 2011, 

Seymour and Altermatt 2014). Our data showed that connectivity slightly benefitted the 

relative density of the regional subdominant species DACT (Appendix D Fig. D7). Probably, 

connectivity benefitted DACT as the dispersed organisms of DACT could persist longer in the 

unexposed patches than the dispersed organisms of OD could persist in the exposed patches. 

We found evidence for this in the isolated competition experiment where DACT lasted in the 

unexposed patches during the entire experiment, while OD was excluded after a few weeks 

in the exposed patches. 

We found no evidence for hypothesis 4 that the relationship between connectivity and local 

diversity would be unimodal. Instead, we found that connectivity had a positive effect on the 

diversity of the unexposed patches, and a negative effect on the diversity of the exposed 

patches. This opposite effect was generated by a difference in productivity between the 

unexposed and exposed patches. Because of this difference in density, DACT was dispersed 

to the unexposed patch where the density of OD was high. In such conditions, the density of 

DACT was lower than the density of OD across all connectivity levels and connectivity thus 

increased local diversity in the unexposed patches. In contrast, OD was dispersed to the 

exposed patch where the density of DACT was low because of the high concentration of the 

chemical. A low connectivity enabled OD to persist in the exposed patches, generating a high 

local diversity. However, when connectivity increased, the relative density of OD progressively 

exceeded the relative density of DACT, which generated a strong dominance of OD and a 

reduction of local diversity. Because most studies manipulate heterogeneity by temperature, 

light or resources, which create gradients in productivity that are less strong than those 

created with a chemical stressor, such opposite effects of connectivity on local diversity within 

the same landscape are rarely reported (Davies et al. 2009, Matthiessen et al. 2010a, Carrara 

et al. 2014). This highlights the fact that the processes driving local and regional diversity in 

environmentally heterogeneous landscapes depend on which factor creates heterogeneity. 

5.4.3 Limitations and conclusion 

While the present study only contained two species that had a trade-off in competitive ability 

and stress sensitivity, most communities are defined by a higher species richness. Moreover, 

in this study, communities had an identical initial composition. However, in reality, stressors 

often occur in landscapes that have heterogeneous compositions because, among others 

environmental heterogeneity. Some patches might then contain more stress tolerant species 

than others and hence have a higher ability to limit stressor effects on productivity through 

shifts in composition. In such landscapes, dispersal might distribute stress-tolerant species 

among the landscape, limiting the effect of the stressor on regional productivity. For instance, 
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de Boer et al. (2014) created a light gradient among communities, and found that dispersal 

reduced the effect of heat stress on regional productivity by distributing a heat-tolerant 

species.  

In this chapter, the positive effect of dispersal on the productivity of the exposed patches was 

not due to the increase of the density of the stress-tolerant species. Instead, dispersal 

increased the density of the stress sensitive-species. This mechanism also regulated how 

dispersal influenced the composition of exposed communities in several previous studies. For 

instance, Schriever et al. (2007) showed that the abundance of stress-sensitive species in 

exposed reaches remained high when connected to unexposed upstream reaches. Brock et 

al. (2010) and Schäfer et al. (2017) used an empirical and metapopulation model, respectively, 

to show that exposed insect populations recover more rapidly when organisms of stress-

sensitive species can disperse from unexposed areas. These examples, together with others 

(Orlinskiy et al. 2015, Knillmann et al. 2018), show that the dispersal of stress-sensitive 

species to exposed patches is a common mechanism. As the proposed mechanisms in the 

present study show that connectivity strongly interferes with local effects of exposure events 

on community and ecosystem variables, we argue that ecosystem management and 

biodiversity conservation should adopt a landscape context.



 

 
 

6 

Conclusion and perspectives
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Environmental change drivers, such as global warming and chemical pollution increasingly 

challenge the earth’s ecosystems. Today, the way these environmental changes affect the 

diversity and productivity of communities is an important subject of investigation (Mcmahon et 

al. 2012, Halstead et al. 2014, Mensens et al. 2015, De Laender et al. 2016, Spaak et al. 

2017, Baert et al. 2018). This thesis contributed to this research by investigating the combined 

effect of stress and dispersal on the composition, diversity and productivity of communities 

(Fig. 6.1). 

6.1 The combined effect of environmental stress and dispersal on 

composition, diversity and productivity 

6.1.1 The combined effect of environmental stress and dispersal on composition and 

diversity 

In this thesis, I studied the combined effect of environmental stress and dispersal in 

experimental communities of micro-algae. I found that the effect of dispersal on composition 

and diversity depended on the stress intensity. 

In chapter 2, I showed that stress changed the effect of dispersal on composition by altering 

the composition and population density of the community to which the organisms immigrate. 

When those communities were unstressed, priority effects were strong and this resulted in a 

small dispersal effect on composition. When those communities were stressed, priority effects 

were low, and dispersal generated a strong shift in composition by introducing stress-tolerant 

species. Chemical environmental stress decreased priority effects because of two reasons. 

First, stress decreased growth rates, generating a higher resource availability for later-arriving 

species. Similar effects have been found in communities that were affected by disturbances 

through biomass removal (Gross et al. 2005, Symons and Arnott 2014). Second, stressors 

decreased priority effects through selection for a few tolerant species, which resulted in fewer 

possible community compositions. Similar effects have been found in communities that were 

repeatedly affected by drought, which selected for drought-resistant species (Chase 2007). 

Disturbance and drought are discrete events and the colonization success depends on the 

time between disturbance (or drought) and dispersal (Symons and Arnott 2014). In contrast, 

the concentration of a chemical stressor in my study remained relatively constant and the 

colonization success depended on the time between successive dispersal events as a longer 

time between dispersal events increased the time for early-arriving species to monopolize 

resources. 
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In chapter 3, I showed that the effect of dispersal on composition depended on differences 

between the stress intensity of the community to which organisms immigrate and on the stress 

intensity of the community from which the organisms emigrate. I defined this difference as 

stress heterogeneity. Stronger stress heterogeneity led to larger differences in composition 

and population density. As long as differences in population density were small, compositional 

differences increased the proportion of hump-shaped relationships between dispersal and 

diversity. However, when differences in composition and population density were large, no 

hump-shaped relationships appeared in the communities with a low stress-intensity because 

mass effects from the high-stressed community were too weak.  

Hump-shaped relationships between dispersal and diversity have been predicted by several 

theoretical studies (Mouquet and Loreau 2003, Mouquet et al. 2006, Gilbert 2012) and the 

prevalence of such relationships is highest when heterogeneity is intermediate (Mouquet et 

al. 2006). Nevertheless, empirical studies that investigate how environmental heterogeneity 

affects diversity are rare. Most studies that investigate the effect of dispersal on diversity do 

so by using natural communities where heterogeneity is the consequence of natural variations 

and which have heterogeneous initial compositions (e.g. Gilbert et al. 1998, Collinge 2000, 

Severin et al. 2013, Berga et al. 2015). Although those experiments often find significant 

effects of dispersal on diversity (increase, decrease and hump-shapes), these set-ups do not 

allow to distinguish the effect of environmental heterogeneity from the effect of heterogeneous 

initial composition. A few studies have empirically studied the effect of environmental 

heterogeneity on diversity, often by manipulating heterogeneity by using only two levels 

(homogeneous vs heterogeneous environment) (for an overview of these studies, see 

Grainger and Gilbert 2016).  

Mouquet et al. (2006) applied environmental heterogeneity by manipulating the spatial 

distribution of resources. Importantly, in their design, environmental heterogeneity increased 

differences in composition, but not in population density. Chapter 3 therefore represents an 

extension of the research by Mouquet et al. (2006) with spatial differences in both composition 

and population density. Moreover, I tested additional factor combinations i.e. interspecific 

variation in species response and initial compositions, which both increased the proportion of 

hump-shaped relationships. 

The validity of trends predicted by the model must be tested with empirical studies. 

Unfortunately, such studies are lacking. Most studies that manipulated environmental 

heterogeneity did so by applying random disturbances (Matthiessen et al. 2010b, Altermatt et 

al. 2011a, 2011b). These removals reduce the average growth rate of the organisms, 

independent of species identity. This scenario is similar to one of the simulated scenarios from 
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chapter 3, namely the one where stress heterogeneity was high but the variation in niche 

mean and niche width was small. Therefore, disturbances create strong population density 

differences but only weak compositional differences. Consistent with the theoretical study in 

chapter 3, most of the empirical studies only report weak or no effects of dispersal on diversity 

(Altermatt et al. 2011a, 2011b), except when initial composition is heterogeneous 

(Matthiessen et al. 2010b). Other studies applied resource heterogeneity, which can generate 

differences in composition, but likely generates differences in population density that are 

smaller than those generated by stressors. Davies et al. (2009) created resource 

heterogeneity by adding different resources to patches, finding positive effects of dispersal on 

diversity in homogeneous and heterogeneous conditions. This result is in contrast with the 

present results as I predicted no significant relationships between dispersal and diversity in 

homogeneous environments when initial compositions are homogeneous. Other studies 

applied light gradients, which create different compositions, but often only low differences in 

population density (Matthiessen et al. 2010b, Eggers et al. 2012). These studies did not find 

effects of dispersal on diversity in homogeneous or heterogeneous environments.  

To fully validate the simulation results, more studies are needed that investigate 

environmental heterogeneity by creating compositional and population density differences. 

Such information is crucial as many factors of environmental change, such as temperature 

and chemical stressors create substantial differences in population density and composition 

(Mensens et al. 2015, Spaak et al. 2017). As far as I know, only one study has manipulated 

temperature heterogeneity, showing the average growth rate to decrease with 35% and using 

species that showed different responses to a change in temperature (Limberger et al. 2014). 

However, this study did not find any dispersal effects on diversity, most likely because it only 

applied two dispersal levels.  

In this thesis, I did not try to validate the theoretical results of chapter 3. However, I can test if 

the empirical results of chapter 5 are consistent with the theoretical results of chapter 3. In 

chapter 5, I exposed communities to different levels of chemical stress and manipulated 

dispersal by changing connectivity. The applied stressor concentration reduced the average 

growth rate of the species by approximately 60%. Moreover, species showed a different 

sensitivity towards the stressor as one species dominated the unexposed communities, while 

the other species dominated the exposed communities (Appendix D, Fig. D1.1). These 

conditions correspond to a large variation of the niche width and a small difference in niche 

mean. According to the theoretical model of chapter 3, these conditions would be likely to 

generate a hump-shaped relationship between dispersal and diversity in the exposed 

communities, but not in the unexposed communities. When I assume that the degree, which 

measures the number of connections arriving in/leaving a community, is a proxy for dispersal, 
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I can test how dispersal and local diversity relate in unexposed and exposed communities. 

The effect of degree on local diversity was tested by a linear and quadratic regression. For 

the exposed communities, the quadratic regression gave the best model fit (based on log 

likelihood), with significant coefficients for the first (p = 0.045) and second order (p=0.024) 

term, indicating a hump-shaped relationship between dispersal and diversity (Fig. 6.2a). In the 

unexposed communities, a linear regression gave the best model fit, showing dispersal to 

significantly increase diversity (p < 0.001) (Fig. 6.2b). This effect was very small because of 

the low density of the dispersed organisms. Thus, consistent to the simulations in chapter 3, 

the results from chapter 5 found a hump-shaped relationship between dispersal and diversity. 

However, the data from chapter 5 suggest a (albeit small) positive relationship between 

dispersal and diversity for the unstressed communities, while the theory from chapter 3 

suggests that the probability for such a positive relationship is small. 

These comparisons are the only way I could confront my theoretical results with empirical data 

but this comparison should be treated with caution. While the model assumed that dynamics 

were close to an equilibrium, the experimental communities were probably not. Indeed, the 

exclusion of subdominant species often takes long, which would have resulted in small 

stressor-induced changes in richness in the experiments. Hence, I used Shannon diversity as 

a measure for diversity in the empirical study. In contrast, the theoretical model used richness 

as a measure for diversity. Several empirical studies did not find strong effects of 

environmental heterogeneity on richness, while finding changes in evenness (Matthiessen et 

al. 2010a, Eggers et al. 2012, Mensens et al. 2015).  

6.1.2 The combined effect of environmental stress and dispersal on productivity 

Dispersal increased local productivity in two ways. First, in chapter 2, I demonstrated the 

potential for dispersal to increase productivity in the stressed communities when dispersal 

introduces stress tolerant species. These stress tolerant species increased productivity by 

compensating the stress-induced productivity loss, as predicted by the Spatial Insurance 

Hypothesis (Loreau et al. 2003a). Dispersal-induced changes in composition depend, among 

others, on which stressor is applied and the identity of the species in the regional species 

pool. I also found that the introduction of new species did not increase, but decreased 

productivity in the unexposed communities. The exact mechanism for this is unsure. Some 

new species that were introduced might have been poor competitors, decreasing the 

efficiency in which resources were consumed (Mouquet and Loreau 2003, Gilbert 2012).  
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Fig. 6.2. Local Shannon diversity in function of the log transformed degree in the (a) unexposed 

and (b) exposed communities. Data were taken from chapter 5 from the landscapes with chemical 

application. Symbols represent the data. In (b) the symbol at (0,0) represents 3 overlapping data 

points. The line represents the (a) linear and (b) quadratic regression. 

Second, when stress heterogeneity created differences in productivity, dispersal redistributed 

organisms from the unstressed communities, which had a high productivity, to the stressed 

communities, which had a low productivity. In chapter 5, the species that were introduced in 

the stressed communities could not persist without dispersal because most of the introduced 

species were very stress-sensitive. In chapter 4, the introduced species could persist in the 

stressed communities because the species that were introduced from the unstressed 

community were also most stress-tolerant. Nevertheless, under both conditions a high 

stressor concentration inhibited the growth of the introduced species. A redistribution had 

several effects on regional productivity. Dispersal had no effect on regional productivity when 

an increase in productivity of the stressed community resulted in a similar decrease of the 

productivity in the stressed community (day 30 in chapter 5). However, dispersal increased 

productivity when the removal of organisms from the unstressed community was rapidly 

compensated by local growth (e.g. day 12 in chapter 5). This mainly occurred when species 

were in the exponential growth phase. Last, dispersal decreased regional productivity when it 

moved the best adapted species from the unstressed community to the stressed community, 

as occurred in chapter 4 (day 24). Such negative effects on regional productivity have mainly 

been found from model simulations assuming that dispersal introduces poor competitors or 

when dispersal removes the best-adapted species (Mouquet and Loreau 2003, Gilbert 2012). 

Empirically, negative effects are mainly demonstrated at high dispersal rates (Howeth and 

Leibold 2010a, Lindström and Östman 2011). 
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6.1.3 Material fluxes 

In chapters 2, 3 and 5, stressor concentrations remained relatively stable during the 

experiment. However, in reality, stressor concentrations can change because of stressor 

fluxes. In chapter 4, I showed that a stressor flux increases the positive effect of dispersal on 

regional productivity because of increased compensatory dynamics. Material fluxes have 

been shown before to change the productivity of communities (Gounand et al. 2017, Harvey 

et al. 2017, Limberger et al. 2017). Fluxes can redistribute resources between communities, 

supplying nutrients for autotroph organisms, while supplying organic material for heterotrophic 

organisms (Gounand et al. 2017). Moreover, the combination of dispersal and material fluxes 

are shown to affect ecosystem functions differently than when material fluxes occur alone 

(Limberger et al. 2017). However, the combination of material fluxes and dispersal was hardly 

studied before by manipulating both fluxes independently. So far, only one study has done so, 

showing that a strong material flux can suppress the dispersal of organisms by disrupting local 

dynamics in the source community (Harvey et al. 2016). However, this study did not look at 

interaction effects between dispersal and the stressor flux on productivity. The study in chapter 

4 was therefore the first that showed that the effect of dispersal on productivity can change 

when manipulating a material flux. 

6.1.4 Network structure 

In chapter 2 until 4, I investigated the combined effect of environmental stress and dispersal 

on diversity and productivity in two-patch metacommunities. However, real landscapes are 

spatially extended, containing multiple patches (Davies et al. 2009, Carrara et al. 2012, 2014). 

Many of those landscapes are subject to decreasing connectivity through habitat destruction 

and increasing fragmentation (Pimm and Raven 2000) and it is unsure how results obtained 

in simple two-patch metacommunities would apply to this more complex reality. In chapter 5, 

I investigated the effect of connectivity on diversity and productivity in landscapes that were 

exposed to a chemical stressor by manipulating the number of connections among patches. 

Manipulating connectivity generates effects on diversity and productivity that do not appear 

when manipulating dispersal rates in two-patch metacommunities. First, at a low connectivity, 

I found a strong difference in productivity and diversity among patches within the same 

landscape, even when those patches had equal stressor concentrations. This confirms the 

results of earlier studies that showed that not only the environmental conditions, but also the 

position of a patch within a landscape affects its diversity and productivity (Carrara et al. 2012, 

2014). Second, the saturating relationship between local connectivity and productivity in 

chapter 5 demonstrated that the removal of connections from highly-connected patches 

induced smaller effects on productivity than the removal of connections from weakly-

connected patches. The study chapter 5 thus showed that not only the number of connections 
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but also the identity of the removed connections matters for the subsequent effects on the 

diversity and productivity of patches. Transferring the results to communities in real aquatic 

landscapes is difficult, because of the simple model system that I used. Nevertheless, the 

present study suggests that even a low degree of connection between exposed streams in 

agricultural areas and more pristine streams might already considerably increase the 

abundance of stress-sensitive species compared to isolated conditions. 

6.2 Limitations and perspectives 

6.2.1 Species interactions 

In this dissertation, I only used species that belong to the taxon of the marine diatoms 

(Bacillariophyceae). Because those species have a high resource use overlap, competition in 

diatom communities is generally high, leading to the exclusion of most species (Bruno et al. 

2003, Giller et al. 2004, Baert et al. 2016a). For instance, in chapter 4, only 3 out of 6 species 

remained present during the entire experiment. Because of, among others, niche partitioning 

and facilitative interactions, most real communities contain a much higher number of species 

than the experimental communities in this thesis. In such more diverse communities, the 

number of potentially dispersing species is greater. 

I only incorporated one trophic level in the study systems. Nevertheless, the presence of an 

additional trophic level can change the effect of dispersal on other trophic levels. For example, 

predation is shown to reduce the effect of prey dispersal on prey diversity (Chase et al. 2010, 

Howeth and Leibold 2010a, Kneitel and Miller 2011). However, these results are not 

consistent as predation did not change the effect of dispersal on diversity or productivity in 

several other empirical studies (Cadotte et al. 2006a, Berga et al. 2015). Moreover, dispersal-

diversity and dispersal-productivity relationships potentially differ among trophic levels 

(Howeth and Leibold 2010a, Anstrom and Part 2013). For instance, dispersal is empirically 

demonstrated to increase the abundance of predators by increasing predator richness, while 

decreasing the abundance of prey (Chase et al. 2010). The variation in empirical results 

indicates that the mechanisms linking food-web dynamics with spatial dynamics needs further 

attention, especially in heterogeneous environments (Massol et al. 2017). Chemical stressors 

can be a useful group of stressors to apply in such studies. Many chemical stressors only 

target one trophic level. For instance, photosystem-inhibiting herbicides target algae and 

plants (Halstead et al. 2014, De Laender et al. 2016). Consequent changes in composition on 

the lowest trophic level might generate indirect negative effects on higher trophic levels 

because of a lower food availability (Brock et al. 2000, Fleeger et al. 2003). In this thesis, I 

showed that dispersal might mitigate the negative effects of chemical stress on one trophic 

level. A subject of investigation should then be if dispersal is also able to mitigate the indirect 
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effects of chemical stressors on higher trophic levels. Moreover, it would be interesting to 

examine if different dispersal rates among trophic levels would influence the results. 

6.2.2 Dispersal method 

In all chapters of this dissertation, dispersal was performed using bulk dispersal. This implies 

that the number of individuals that dispersed among communities depended on the species 

abundances, i.e. is positive density dependent (except in chapter 2 where all species had an 

equal dispersal probability). Such an approach is the most-used experimental design to test 

dispersal-diversity relationships as it facilitates tractability (for a review, see Grainger and 

Gilbert 2016). Bulk dispersal generates species sorting and mass effects which have been 

shown to be the main drivers of community assembly processes in landscapes where 

dispersers move passively (Cottenie 2005, Soininen 2014). However, a different dispersal 

ability among species can generate coexistence mechanisms that do not occur with bulk 

dispersal (Melián et al. 2015). First, an interspecific variation in dispersal ability can generate 

competition-colonization trade-offs (Yu and Wilson 2001, Cadotte et al. 2006b). For instance, 

Matthiessen and Hillebrand (2006) allowed micro-algae species to disperse among 

communities and found that diversity was highest at an intermediate dispersal rate when both 

efficient colonizers and good competitors were present. Stressors can disrupt colonization-

competition trade-offs. For instance, chemical stressors can decrease the competitive ability 

of the best competitor, benefitting the best colonizer. In contrast, chemical stressors can also 

hinder the movement of the best colonizer, as has been shown with daphnids and arthropods 

(Dodson and Hanazato 1995, Desneux et al. 2007). A reduced movement can benefit the best 

competitor, decreasing regional coexistence. 

Several studies have shown that dispersal varies with environmental contexts such as 

resource availability (e.g. Kennedy and Ward 2003, Pennekamp et al. 2014, Fronhofer et al. 

2015b, 2018), intraspecific densities (e.g. Baines et al. 2014, Pennekamp et al. 2014, 

Fronhofer et al. 2015a), and interspecific interactions (e.g. Bestion et al. 2014, Fronhofer et 

al. 2015b, Tanaka et al. 2016). Also chemical stressors are demonstrated to affect the 

movement of organisms. Many organisms, such as fish, amphibians, molluscs and 

cladocerans show an avoidance behavior when exposed the chemical stressors, even at sub-

lethal levels (Araújo et al. 2016). In chapter 5, I showed that dispersal might decrease the 

negative effect of chemical stress on species abundances by moving organisms from the 

unexposed to the exposed communities. However, such movement is expected to be limited 

when organisms move actively away from exposed communities. As such, positive effects of 

dispersal on composition and productivity might be lower than expected from the experiments. 

Moreover, dispersal might increase the effect of a chemical stressor on composition and 

productivity when organisms emigrate from the exposed communities. Further research 
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should investigate how chemicals affect the behavior of organisms and how this might cause 

changes in the way dispersal affects diversity and productivity. 

6.2.3 Stressors 

While I applied only one chemical stressor in this thesis, real communities are often exposed 

to multiple chemical stressors simultaneously (De Laender 2018). For instance, Deschutter et 

al. (2017) measured several PAH’s and PCB’s in water samples in the North Sea. Although 

only low concentrations were recorded, mixtures of these chemicals might have strong 

species and community-level effects (Deschutter et al. 2017, Nys et al. 2018). Applying 

mixtures of chemicals, preferably at environmental concentrations, should therefore be a next 

step in assessing how dispersal and chemical stress interact in communities. 

Next to chemical stressors, communities are also exposed to several other types of stressors 

such as salt stress, temperature change or drought. The occurrence of multiple stressors can 

decrease the capacity of species from the local or reginal species pool to compensate for 

stressor-induced losses in productivity because not enough taxa might be able to withstand 

multiple stressors (Thompson and Shurin 2012). Under such conditions, positive effects of 

dispersal on productivity through species sorting might be low and mass effects from 

unexposed to exposed communities might be more important than when only one stressor 

would be present.  

The stress gradient hypothesis predicts that increasing stress levels increase the number of 

facilitative interactions. So far, there is no evidence that herbicides might increase facilitative 

interactions in marine micro-algae communities (Baert et al. 2016a). However, other stressors 

such as drought are demonstrated to increase facilitative interactions (Grime 1973, Maestre 

et al. 2009). When competitive interactions shift to facilitative interactions, local richness might 

increase (Yang et al. 2015), while also productivity might increase through higher 

complementarity effects (Baert et al. 2018). Hence, the contribution of dispersal for 

maintaining diversity and increasing productivity might be less than when no shift from 

competition to facilitation occurs. In the future, it might hence be worth to test the effect of 

dispersal in communities that are exposed to different types of stressors. 

6.2.4 Material fluxes 

I showed that a combined stressor flux and dispersal generated compensatory dynamics. 

Future studies could investigate if dispersal generates compensatory dynamics with other 

types of fluxes, such as fluxes of resources. Stressors and resources differ as stressor levels 

are mostly not affected by organisms, while resource levels are. Therefore, resources can 

move among patches through a resource flux and through the dispersal of organisms 

(Haegeman and Loreau 2014, Massol et al. 2017). 
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In chapter 4, I investigated how dispersal affected beta-diversity along a stressor flux gradient. 

However, I did not investigate how dispersal and a stressor flux combine in affecting local or 

regional diversity. It has been theoretically demonstrated that resource fluxes can increase 

the homogenizing effect of dispersal on community composition, decreasing local and regional 

diversity (Haegeman and Loreau 2014) but experimental validation for this is still lacking. 

6.2.5 Spatial extension of the landscape 

Until now, most experiments investigated the effect of dispersal in simple two- or three-patch 

metacommunity systems by manipulating the dispersal rate between patches (Grainger and 

Gilbert 2016). I used a similar approach in chapters 2, 3 and 4. In chapter 5, I applied a 

different method by manipulating the number of connections among communities. In this 

chapter I did not distinguish structural from functional connectivity. Indeed, the movement of 

organisms does not only depend on the physical presence of connections, but also on the 

needs, perception, and the response norms of the organisms (Nathan et al. 2008). For 

instance, an increasing number of connections might not improve dispersal when the 

organism avoids habitat edges. More studies are needed to assess how connectivity affects 

dispersal in real landscapes. 

In chapter 5, I defined connectivity as the number of connections in a landscape. However, 

there are multiple ways to define connectivity. For instance, the maximum distance between 

patches is another possible measure of connectivity (Kindlmann and Burel 2008). Future 

studies could also investigate several other extensions. First, such studies could test how the 

spatial distribution and spatial average of stressor levels affect diversity and productivity. In 

chapter 5, I only used two different levels of the chemical, which was randomly distributed 

over the landscape. Second, future studies could ask how the appearance of new connections 

combines with the loss of other connections. Third, environmental change might remove 

patches instead of connections and so future studies could focus on this alternative form of 

fragmentation. Importantly, the order in which patches are removed will be an important factor 

in such studies (Thompson et al. 2016). 
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6.3 Consequences for the ecological risk assessment of chemicals 

6.3.1 Effect of dispersal in exposed communities 

In this dissertation, I exposed marine micro-algae of the class Bacillariophyceae (diatoms) to 

the photosynthesis inhibiting herbicide atrazine. 𝐸𝐶50 values of the species varied between 53 

𝜇𝑔 𝑙−1 and 480 𝜇𝑔 𝑙−1. A similar variation in sensitivity towards atrazine is found in other micro-

algae studies (Debelius et al. 2008, Sjollema et al. 2014, Wood et al. 2014). Such variation in 

sensitivity towards atrazine can create shifts in composition when stress-sensitive species are 

replaced by more stress-tolerant species (e.g. in micro-algae community experiments: Seguin 

et al. 2001, Herman et al. 2011). Such compositional changes were also observed in chapter 

2 of this dissertation. Moreover, I showed that sensitive species may not only be replaced by 

less-sensitive local species, but also by less-sensitive species from the regional species pool. 

The introduction of species from the region generated strong compositional turnovers that 

often exceeded the compositional changes under isolated conditions (Appendix A Fig. A1.2). 

Therefore, a compositional turnover in communities that are exposed to chemical stressors 

might be stronger in open communities than expected from (isolated) community experiments. 

In chapter 4 and 5, I showed that dispersal might reduce the effect of a chemical stressor in 

exposed communities by moving stress-sensitive species from the unexposed communities 

(chapter 4, chapter 5). Positive effects of dispersal on populations that are exposed to 

chemicals have been found in several metapopulation models (e.g. Spromberg et al. 1998, 

Galic et al. 2012a, Willson and Hopkins 2013, Focks et al. 2014, Schäfer et al. 2017), field 

studies (Schriever et al. 2007, Orlinskiy et al. 2015, Knillmann et al. 2018) and a mesocosm 

experiment (Brock et al. 2010). The dispersal of sensitive species from unexposed to exposed 

communities can have important implications for risk assessment in exposed communities. 

First, species sensitivities may overestimate chemical effects in landscapes because they do 

not consider rescue from unexposed areas of the landscape. Second, bio-indicators such as 

SPEAR 𝑝𝑒𝑠𝑡𝑖𝑐𝑖𝑑𝑒𝑠 might underestimate the impact of pesticide contamination as abundances of 

dispersed organisms are higher than where no dispersal would be present (Knillmann et al. 

2018). Furthermore, the dispersal of sensitive species from unexposed to exposed 

communities can also have important implications in the unexposed communities. Indeed, in 

chapters 4 and 5 the density of the locally most competitive species often decreased in the 

unexposed communities. Such negative effects have been predicted before in several 

metapopulation models (e.g. Spromberg et al. 1998, Schäfer et al. 2017) and in a mesocosm 

experiment (Brock et al. 2010). Ecosystems that are hence protected because of their high 

value (e.g. in terms of the services they provide) may still be affected indirectly by chemicals 

that are present in nearby patches. The extent to which dispersal affects the density of 



Chapter 6. Conclusion and perspectives 

116 

 

organisms in the unexposed or exposed patches depends on, among others, the duration or 

frequency of chemical exposure. For instance, Schäfer et al. (2017) found stronger effects of 

dispersal on population abundances in unexposed and exposed patches under repeated 

exposure pulses than after a single exposure pulse. In this dissertation, the concentration of 

the chemical stressor remained constant during the entire experiment (except in the presence 

of a stressor flux in chapter 4) which probably resulted in stronger and more long-term effects 

than would have occurred under a pulse exposure. 

In contrast to most studies that investigated the effect of dispersal in communities exposed to 

chemicals, I also evaluated the effect of dispersal and chemical stress on diversity and 

productivity. While chemicals often decrease local diversity by excluded stress-sensitive 

species (Relyea 2005, Mcmahon et al. 2012, Muturi et al. 2017), I have shown that chemicals 

potentially increase diversity at a regional scale (chapter 5). Although maintaining diversity is 

a major objective within conservation biology, the increase of the abundance of stress-tolerant 

species may have detrimental effects on ecosystem functions (Spaak et al. 2017). For 

instance, algae groups may respond differently to herbicide exposure (Lockert et al. 2006) 

and harmless algae such as diatoms and green algae may be replaced by toxic algae such 

as cyanobacteria (Ma 2005).  

Effects of chemical stressors on productivity often appear at a lower concentration than on 

diversity (Mensens et al. 2015, Spaak et al. 2017). I found that dispersal might reduce the 

negative effect of stress by introducing stress-tolerant species that compensate the stressor-

induced productivity loss, or by introducing stress-sensitive species from unexposed areas. 

However, both mechanisms have drawbacks: when stress-tolerant species disperse from the 

region to an exposed community, dispersal might be detrimental for composition by generating 

strong changes in composition. Moreover, when dispersal introduces stress-sensitive species 

that are locally inhibited by the stressor, dispersal might generate an indirect effect on the 

composition and productivity of the unexposed communities. This generates strong 

implications for the protection goals that should be pursued (i.e. protection of composition or 

productivity), as well as which communities should be protected. 

6.3.2 Effect of dispersal with chemical dilution 

Exposure to chemicals often occurs in short pulses because degradation or dilution reduces 

the concentration of the chemical after application. In chapter 4, the stressor flux between the 

unexposed and exposed community diluted the chemical. This dilution decreased the 

concentration of the chemical in the exposed community and generated a partial recovery in 

that community. Here, I define recovery relative to the species densities and community 

productivity in unexposed and isolated conditions. Numerous studies have shown that 
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populations and communities can recover after the exposure to a chemical stressor (e.g. Van 

Den Brink et al. 1996, Laviale et al. 2011, Proia et al. 2011). The probability and time needed 

for recovery depend on many factors, such as the time of exposure (Gustavson et al. 2003), 

species life cycles (Van Den Brink et al. 1996, Gustavson et al. 2003) and initial diversity 

(Baert et al. 2016b). Some studies found no recovery at all (Lawrence et al. 2015), which 

might occur when chemical stress drives species to exclusion (Mcmahon et al. 2012). An 

important mechanism that can increase recovery is the supply of organisms from the region 

(Caquet et al. 2007, Trekels et al. 2011, Galic et al. 2012a, Focks et al. 2014). In chapter 4, I 

showed that dispersal increased the rate of recovery in the exposed community in the 

presence of a stressor flux. A stress-tolerant species was introduced from the unexposed 

community and facilitated recovery when the chemical was redistributed over the meta-

ecosystem. However, it should be noted that full recovery was never achieved in the exposed 

communities because species composition in the exposed communities remained different 

from species composition in the isolated unexposed communities. Moreover, because of the 

stressor flux, the concentration of the chemical stressor increased in the unexposed 

community, affecting the composition and productivity in that community. The extent to which 

a stressor flux changes productivity and composition in the initially unexposed and exposed 

communities depends on the dose response curves of the species. In chapter 4 for instance, 

species’ carrying capacities increased more when the stressor concentration in the initially 

exposed community decreased than the species’ carrying capacities decreased when the 

stressor concentration in the initially unexposed community increased. 

The community conditioning hypothesis states that communities retain information about 

events in their history e.g. regarding chemical exposure. This hypothesis is derived from the 

demonstration that communities are not at equilibrium, but rather are in the process of 

responding to their own unique history of interactions (Matthews et al. 1996). After a toxicant 

pulse in one community, differences in community composition and productivity may therefore 

persist when the chemical stressor is completely homogenized among initially unexposed and 

exposed communities. In chapter 4, the chemical stressor was close to complete 

homogenization at the end of the experiment. Differences in composition and productivity 

between the initially unexposed and exposed community were still visible, as changes in 

productivity and composition under a stressor flux occurred slowly. However, dispersal 

reduced differences in composition and productivity between initially unexposed and exposed 

communities. Indeed, dispersal generates interactions between organisms that originate from 

different communities and might hence decrease community conditioning. Long-term 

experiments are needed to demonstrate how long the community conditioning contributes in 

affecting composition and productivity after chemical exposure.
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Appendix A1. Tables and Figures 

Table A1.1. Species strains and biovolume 

Number Species Volume 
(𝜇𝑚3) 

Number Species Volume 
(𝜇𝑚3) 

1 Thalassiosira sp. 56886 7 Bacillaria sp. 7880 
2 Ditylum brightwelli 24757 8 Guinardia sp. 14002 
3 Thalassiosira sp. 2800 9 Thalassiosira sp. 12557 
4 Asterionella sp. 1346 10 Thalassiosira sp. 25727 
5 Odontella sp. 7520767 11 Thalassiosira sp. 102909 
6 Pseudo-nitzschia sp. 3940 12 Coscinodiscus sp. 367008 

Table A1.2. Initial species 

 Day 0 

A 11 1 9 4 
B 12 7 4 6 
C 1 6 10 9 
D 5 11 7 3 
E 8 2 9 5 

Table A1.3. Dispersal sequence for low dispersal 

 Day 7 Day 14 Day 21 

A 2 1 5 7 6 4 10 8 3 12 9 8 

B 10 4 12 9 5 2 3 8 12 10 8 11 

C 12 9 3 7 4 10 11 6 4 2 8 5 

D 5 11 4 8 12 5 9 4 2 6 8 5 

E 4 9 11 12 11 9 6 5 9 7 1 6 

Table A1.4. Dispersal sequence for high dispersal 

 Day 3 Day 7 Day 10 Day 14 Day 17 Day 21 Day 24 

A 5 6 1 5 6 1 5 6 1 5 6 1 10 6 9 12 12 5 7 11 2 4 3 8 2 5 6 4 

B 9 8 10 9 8 10 9 8 10 9 8 10 3 11 5 12 11 1 9 7 9 12 11 5 11 8 6 10 

C 10 4 12 10 4 12 10 4 12 10 4 12 8 6 3 5 7 1 12 9 1 11 8 7 4 8 9 3 

D 4 7 1 4 7 1 4 7 1 4 7 1 6 5 10 12 10 4 11 9 2 1 9 8 11 10 9 4 

E 8 10 1 8 10 1 8 10 1 8 10 1 10 8 1 3 12 8 1 6 10 7 11 2 3 9 12 8 
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Table A1.5. Nutrient concentrations. NA not measured. 

Day Composition Dispersal Stress (ppb) 𝑃𝑂4
3− (𝑚𝑔 𝑙−1) 𝑁𝑂3

− (𝑚𝑔 𝑙−1) (𝑆𝑖 𝜇𝑔 𝑙−1) 

7 1 no 0 1.2424 35.51 3.86 

7 2 no 0 1.8806 41.98 0.89 

7 3 no 0 1.2316 34.86 3.01 

7 4 no 0 1.6796 41.42 4.15 

7 5 no 0 1.432 43.77 1.081 

7 1 low 0 0.7812 33.93 0.22 

7 2 low 0 1.8346 37.73 1.24 

7 3 low 0 1.1434 29.23 1.34 

7 4 low 0 1.8358 42.79 2.61 

7 5 low 0 1.885 49.68 1.227 

7 1 high 0 0.6086 32.23 0.12 

7 2 high 0 1.5744 37.89 0.96 

7 3 high 0 1.3784 36.07 5.71 

7 4 high 0 1.9971 38.87 2.09 

7 5 high 0 1.89 49.43 1.221 

14 1 no 0 0.2766 22.71 0 

14 2 no 0 NA NA NA 

14 3 no 0 0.5342 29.07 1.39 

14 4 no 0 NA NA NA 

14 5 no 0 0.1714 0.348 0.49 

14 1 low 0 0.366 23.08 0 

14 2 low 0 NA NA NA 

14 3 low 0 <0.2 27.09 1.91 

14 4 low 0 NA NA NA 

14 5 low 0 <0.2 17.57 1.15 

14 1 high 0 <0.2 22.31 0 

14 2 high 0 NA NA NA 

14 3 high 0 <0.2 13.44 0.05 

14 4 high 0 NA NA NA 

14 5 high 0 <0.2 14.86 1.23 

21 1 no 0 <0.2 29.27 0.54 

21 2 no 0 1.4307 39.19 1.08 

21 3 no 0 0.6804 24.78 0 

21 4 no 0 0.2759 25.47 0.6 

21 5 no 0 <0.2 4.53 0.48 

21 1 low 0 <0.2 11.74 0.25 

21 2 low 0 1.4393 38.54 1.13 

21 3 low 0 0.8146 30.32 0.69 

21 4 low 0 0.1896 25.83 0.48 

21 5 low 0 <0.2 12.35 0.24 

21 1 high 0 <0.2 8.06 0.5 

21 2 high 0 1.0987 33.97 1.17 

21 3 high 0 1.1069 30.12 0.06 

21 4 high 0 <0.2 16.03 0.84 

21 5 high 0 <0.2 2.79 0.11 

28 1 no 0 <0.2 24.41 0.1 

28 2 no 0 0.5714 41.54 0.01 
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28 3 no 0 0.3622 22.43 0.15 

28 4 no 0 0.23 24.7 0.45 

28 5 no 0 0.252 1.21 0.3 

28 1 low 0 <0.2 12.83 0.1 

28 2 low 0 0.3733 36.32 0.29 

28 3 low 0 0.9356 NA NA 

28 4 low 0 0.7755 33 0.28 

28 5 low 0 0.138 3.98 0.3 

28 1 high 0 0.9116 23.16 0.06 

28 2 high 0 0.6275 30.73 0.03 

28 3 high 0 1.085 36.84 0.11 

28 4 high 0 NA NA NA 

28 5 high 0 0.063 8.91 0.11 

28 1 no 25 <0.2 13.16 0.28 

28 2 no 25 0.6432 33.36 0.49 

28 3 no 25 0.2967 22.67 0.34 

28 4 no 25 <0.2 21.62 0.43 

28 5 no 25 0.2224 4.94 0.14 

28 1 low 25 0.5059 19.07 0.19 

28 2 low 25 1.1359 37.53 0.21 

28 3 low 25 1.3104 33.08 0.16 

28 4 low 25 0.2722 13.97 0.21 

28 5 low 25 0.1147 10.69 0.03 

28 1 high 25 1.0502 24.53 0.09 

28 2 high 25 NA NA NA 

28 3 high 25 1.2014 35.99 0.06 

28 4 high 25 0.2476 21.21 0.29 

28 5 high 25 0.0762F 6.32 0 

28 1 no 250 2.4652 46.28 9.07 

28 2 no 250 1.3224 42.55 0.61 

28 3 no 250 1.5763 41.7 1.33 

28 4 no 250 1.9795 51.58 0.08 

28 5 no 250 2.692 45.18 13.08 

28 1 low 250 2.4652 41.66 3.78 

28 2 low 250 1.3224 34.86 0.44 

28 3 low 250 1.5763 31.7 0.27 

28 4 low 250 1.9795 40.89 0.44 

28 5 low 250 1.9801 45.34 3.51 

28 1 high 250 0.9998 31.01 0.26 

28 2 high 250 0.7195 30.4 0.14 

28 3 high 250 0.7065 26.32 NA 

28 4 high 250 1.1057 31.21 0.39 

28 5 high 250 1.1535 32.27 0 

 

  



Appendix A 

143 
 

Table A1.6. Results of the generalized linear model of the relative abundances at no dispersal 

using stress as predictor variable. 

 Intercept Low stress High stress 
 mean±sd p mean±sd p mean±sd p 

1 -2.80 ± 0.37 <0.001 0.34 ± 0.024 0.495 -1.07 ± 0.71 0.154 
2 -3.39 ± 0.48 <0.001 0.26 ± 0.64 0.704 -6.81 ± 17.06 0.706 
3 -0.45 ± 0.62 0.493 -0.63 ± 0.93 0.524 -0.00 ± 0.87 0.998 
4 -1.12 ± 0.40 0.011 -0.30 ± 0.60 0.608 -13.62 ± 264.30 0.960 
5 -0.55 ± 0.69 0.444 0.99 ± 0.58 0.114 -7.20 ± 9.64 0.468 
6 -0.91 ± 1.76 0.611 0.29 ± 0.29 0.333 1.32 ± 0.32 <0.001 
7 -2.93 ± 0.63 <0.001 0.44 ± 0.81 0.599 3.39 ± 0.69 <0.001 
8 -7.86 ± 2.80 0.038 -8.45 ± 185.6 0.965 11.57 ± 2.80 0.010 
9 -1.97 ± 0.75 0.015 -0.93 ± 0.50 0.080 -1.75 ± 0.71 0.023 
10 -2.03 ± 0.29 0.915 -0.63 ± 0.48 0.242 -1.64 ± 0.67 0.051 
11 -0.12 ± 1.09 0.123 -0.313 ± 0.66 0.640 -0.078 ± 0.65 0.907 
12 2.67 ± 0.37 <0.001 0.19 ± 0.55 0.737 -3.77 ± 0.43 <0.001 

 

Table A1.7. Results of the generalized linear model of the absolute abundances at no dispersal 

using stress as predictor variable. 

 Intercept Low stress High stress 
 mean±sd p mean±sd p mean±sd p 

1 4.28 ± 4.28 <0.001 0.05 ± 0.63 0.936 -3.32 ± 0.627 <0.001 
2 4.40 ± 0.35 <0.001 0.31 ± 0.26 0.290 -5.01 ± 0.291 <0.001 
3 5.10 ± 0.31 <0.001 0.04 ± 0.24 0.877 0.00 ± 0.242 0.986 
4 2.60 ± 1.56 0.117 0.12 ± 0.93 0.895 - 4.47 ± 0.929 <0.001 
5 4.72 ± 0.89 <0.001 0.42 ± 0.91 0.655 -3.74 ± 0.960 <0.001 
6 4.81 ± 0.46 <0.001 -0.03 ± 0.87 0.333 -0.26 ± 0.160 0.127 
7 3.68 ± 0.67 <0.001 0.32 ± 0.28 0.274 1.53 ± 0.284 <0.001 
8 0.39 ± 1.51 0.805 -1.25 ± 1.12 0.315 3.44 ± 1.25 0.0401 
9 3.97 ± 0.85 <0.001 -0.59 ± 0.96 0.543 -1.86 ± 0.987 0.074 
10 4.55 ± 0.41 <0.001 -0.40 ± 0.32 0.250 1.44 ± 0.317 0.004 
11 5.20 ± 0.77 <0.001 0.01 ± 0.70 0.988 -2.20 ± 0.700 0.007 
12 5.44 ± 0.08 <0.001 0.15 ± 0.062 0.052 -0.74 ± 0.0624 <0.001 
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Table A1.8. Results of the linear regression 

model using a logit function for stress, 

dispersal, the square root of day of 

introduction (DoI) and their interactions on the 

relative abundance of seven species. 
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a) b) 

 

Fig. A1.1. Log final biovolume (a) and evenness (b), separated according composition, in function 

of stress level. O composition A, ∆ composition B, + composition C, x composition D, ▽ composition 

E. Green: no dispersal, black: low dispersal, red: high dispersal. 
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Fig. A1.2. Relative abundance of all species categorized according to initial composition for the 

three stress and dispersal levels.  
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Appendix A2. Model validation of statistical results 

Contribution of initial species to final biovolume 

We used a binomial function to assess the effects of stress and high dispersal (Eq. A2.1). 

 𝐸[𝐴𝑏𝑘] = 𝛽 + ∑ 𝛽𝑠,𝑖  𝑠𝑡𝑟𝑒𝑠𝑠𝑖∈{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ} + ∑ 𝛽𝑑,𝑗  𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙𝑗=ℎ𝑖𝑔ℎ +

∑ ∑ 𝛽𝑠,𝑖,𝑑,𝑗 𝑠𝑡𝑟𝑒𝑠𝑠 ×  𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙 +  𝑏𝑘𝑗=ℎ𝑖𝑔ℎ𝑖∈{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ}   

(Eq. A2.1) 

With 𝐴𝑏𝑘 the abundance of the initial species at the end of the experiment for composition k. 

𝛽, 𝛽𝑠,𝑖, 𝛽𝑑,𝑗 and 𝛽𝑠,𝑖,𝑑,𝑗 are the fixed intercept, the estimated effects for stress level j, dispersal 

level i, and their interaction, respectively. 𝑏𝑘 is the random intercept for composition k. 
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Fig. A2.1 Model validation of contribution of initial species to final biovolume.  
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Biovolume 

 

𝐸[𝐵𝑖𝑜𝑣] = 𝛽 + 𝛽𝑡 𝑡𝑖𝑚𝑒 + 𝛽𝑡2 𝑡𝑖𝑚𝑒2 + ∑ 𝛽𝑠,𝑖  𝑠𝑡𝑟𝑒𝑠𝑠𝑖∈{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ} +

∑ 𝛽𝑑,𝑗 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙𝑗∈{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ} + ∑ 𝛽𝑡,𝑠,𝑖𝑡𝑖𝑚𝑒 ×  𝑠𝑡𝑟𝑒𝑠𝑠𝑖∈{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ} +

+ ∑ 𝛽𝑡2,𝑠,𝑖𝑡𝑖𝑚𝑒2  ×  𝑠𝑡𝑟𝑒𝑠𝑠𝑖∈{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ} + ∑ 𝛽𝑡,𝑑,𝑗𝑡𝑖𝑚𝑒 ×𝑗∈{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ}

 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙 + ∑ ∑ 𝛽𝑠,𝑖,𝑑,𝑗 𝑠𝑡𝑟𝑒𝑠𝑠 ×𝑗∈{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ}𝑖∈{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ}

 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙 + ∑ ∑ 𝛽𝑡,𝑠,𝑖,𝑑,𝑗 𝑡𝑖𝑚𝑒 × 𝑠𝑡𝑟𝑒𝑠𝑠 ×  𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙𝑗∈{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ}𝑖∈{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ}   

(Eq. A2.2) 

𝐸[𝐵𝑖𝑜𝑣] is the predicted log biovolume. 𝛽, 𝛽𝑡, 𝛽𝑡2, 𝛽𝑠,𝑖, 𝛽𝑑,𝑗, 𝛽𝑡,𝑠,𝑖, 𝛽𝑡2,𝑠,𝑖, 𝛽𝑡,𝑑,𝑗, 𝛽𝑠,𝑖,𝑑,𝑗, 𝛽𝑡,𝑠,𝑖,𝑑,𝑗 are the 

estimated fixed intercept and the estimated effects for time, time square, stress level i, dispersal 

level j, and their interaction respectively. 
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Fig. A2.2. Model validation of biovolume. 
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Evenness 

𝐸[𝐸𝑣𝑘] = 𝛽 + 𝛽𝑡  𝑡𝑖𝑚𝑒 + ∑ 𝛽𝑠,𝑖  𝑠𝑡𝑟𝑒𝑠𝑠

𝑖∈{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ}

+ ∑ 𝛽𝑑,𝑗  𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙

𝑗∈{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ}

+ ∑ ∑ 𝛽𝑠,𝑖,𝑑,𝑗  𝑠𝑡𝑟𝑒𝑠𝑠 ×  𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙

𝑗∈{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ}𝑖∈{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ}

 

(Eq. A2.3) 

 𝐸[𝐸𝑣] is the predicted evenness. 𝛽, 𝛽 s,i, 𝛽 d,i and 𝛽 s,i ,d,i are the estimated fixed intercept and 

the estimated effects for stress level i, dispersal level j, time and their interaction respectively.  
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Fig. A2.3. Model validation of evenness. 
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Relative abundances 

 𝐸[𝑟𝑒𝑙𝑘] = 𝛽 + ∑ 𝛽𝑠,𝑖  𝑠𝑡𝑟𝑒𝑠𝑠𝑖∈{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ} + ∑ 𝛽𝑑,𝑗  𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙 +𝑗=ℎ𝑖𝑔ℎ

𝛽𝐷𝑜𝐼  √𝐷𝑜𝐼 + + ∑ ∑ 𝛽𝑠,𝑖,𝑑,𝑗 𝑠𝑡𝑟𝑒𝑠𝑠 ×  𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙𝑗=ℎ𝑖𝑔ℎ𝑖∈{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ} +

∑ 𝛽𝑠,𝑖,𝐷𝑜𝐼  𝑠𝑡𝑟𝑒𝑠𝑠 × √𝐷𝑜𝐼𝑖∈{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ} + ∑ 𝛽𝐷𝑜𝐼,𝑗,𝑡  𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑙 × √𝐷𝑜𝐼𝑗=ℎ𝑖𝑔ℎ + 𝛽𝑘  

(Eq. A2.4) 

𝐸[𝑟𝑒𝑙𝑘] is the predicted relative abundance of a species in community k with 𝛽, 𝛽𝑠,𝑖 𝛽𝑠,𝑖 , 𝛽𝐷𝑜𝐼, 

βs,i ,d,i , 𝛽𝑠,𝑖,𝑑,𝑗  ,𝛽𝑠,𝑖,𝐷𝑜𝐼, 𝛽𝐷𝑜𝐼,𝑗,𝑡 the estimated intercept and the estimated effects for stress level 

i, dispersal level j, day of introduction and their interactions, respectively. DoI is day of 

introduction. 
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Fig. A2.4. Model validation of species 1. 
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Fig. A2.5. Model validation of Species 5. 
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Fig. A2.6. Model validation of species 6. 
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Fig. A2.7. Model validation of species 7. 
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Fig. A2.8. Model validation of species 10. 
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Fig. A2.9. Model validation of species 11. 
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Fig. A2.10. Model validation of species 12.
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Appendix B1. Model equations 

The master equation of the model is given by the following equation: 

𝜕𝑃(𝑁1,1, … , 𝑁𝑛,1, 𝑁1,2, … , 𝑁𝑛,2, 𝑡)

𝜕𝑡
= 

(Eq. B1.1) 

Increase 
local 

𝑇1,1
𝑙+𝑃(𝑁1,1 − 1, … , 𝑁𝑛,1, 𝑁1,2, … , 𝑁𝑛,2, 𝑡) + ⋯

+ 𝑇𝑛,1
𝑙+ 𝑃(𝑁1,1, … , 𝑁𝑛,1 − 1, 𝑁1,2, … , 𝑁𝑛,2, 𝑡) + 

𝑇1,2
𝑙+𝑃(𝑁1,1, … , 𝑁𝑛,1, 𝑁1,2 − 1, … , 𝑁𝑛,2, 𝑡) + ⋯

+ 𝑇𝑛,2
𝑙+ 𝑃(𝑁1,1, … , 𝑁𝑛,1, 𝑁1,2, … , 𝑁𝑛,2 − 1, 𝑡) + 

Decrease 
local 

𝑇1,1
𝑙−𝑃(𝑁1,1 + 1, … , 𝑁𝑛,1, 𝑁1,2, … , 𝑁𝑛,2, 𝑡) + ⋯

+ 𝑇𝑛,1
𝑙− 𝑃(𝑁1,1, … , 𝑁𝑛,1 + 1, 𝑁1,2, … , 𝑁𝑛,2, 𝑡) + 

𝑇1,2
𝑙−𝑃(𝑁1,1, … , 𝑁𝑛,1, 𝑁1,2 + 1, … , 𝑁𝑛,2, 𝑡) + ⋯ 

+ 𝑇𝑛,2
𝑙− 𝑃(𝑁1,1, … , 𝑁𝑛,1, 𝑁1,2, … , 𝑁𝑛,2 + 1, 𝑡) +  

Dispersal 

𝑇1,1
𝑟+𝑃(𝑁1,1 − 1, … , 𝑁𝑛,1, 𝑁1,2 + 1, … , 𝑁𝑛,2, 𝑡) + ⋯ 

+ 𝑇𝑛,1
𝑟+𝑃(𝑁1,1, … , 𝑁𝑛,1 − 1, 𝑁1,2, … , 𝑁𝑛,2, 𝑡) +  

𝑇2,1
𝑟+𝑃(𝑁1,1 + 1, … , 𝑁𝑛,1, 𝑁1,2 − 1, … , 𝑁𝑛,2, 𝑡) + ⋯

+ 𝑇𝑛,2
𝑟+𝑃(𝑁1,1 + 1, … , 𝑁𝑛,1, 𝑁1,2, … , 𝑁𝑛,2 − 1, 𝑡) − 

 (𝑇1,1
𝑙+ + ⋯ +  𝑇𝑛,1

𝑙+ + 𝑇1,2
𝑙+ + ⋯ + 𝑇𝑛,2

𝑙+ + 𝑇1,1
𝑙− + ⋯ + 𝑇𝑛,1

𝑙− +  𝑇1,2
𝑙− + ⋯ +

𝑇𝑛,2
𝑙− + 𝑇1,1

𝑟+  + ⋯ + 𝑇𝑛,1
𝑟+ +  𝑇2,1

𝑟+ + ⋯ +

𝑇𝑁𝑛2

𝑟+ )𝑃(𝑁1,1, … , 𝑁𝑛,1, 𝑁1,2, … , 𝑁𝑛,2, 𝑡) 

where 𝑃(𝑁1,1, … , 𝑁𝑛,1, 𝑁1,2, … , 𝑁𝑛,2, 𝑡) is the probability that there are 𝑁𝑖,𝑗 individuals of species 

𝑖, with 𝑖 ∈ {1, … . , 𝑛} in community 𝑗, with 𝑗 ∈ {1,2} at time t, and T is the transition rate of the 

population from one state to its neighboring state. The subscript of T refers to the species 

whose density changes, and the superscript denotes whether its density increases by one or 

decreases by one and if this process is due to a local (𝑙) or regional (𝑟) process. The transition 

rates are given by Eq. 3.1-3.4.  

When 𝑑𝑖,𝑗 = 𝑑𝑖, 𝑎𝑖,𝑘,𝑗 = 𝑎𝑖,𝑘 and 𝑚𝑖,𝑗 = 𝑚, then the ordinary differential equation is given by: 

𝑑𝑁𝑖,1

𝑑𝑡
= 𝑁𝑖,1 (𝑏𝑖,1 − 𝑑𝑖 − ∑ 𝑎𝑖,𝑘

𝑛

𝑘=1

𝑁𝑘,1) + 𝑚𝑁𝑖,2 − 𝑚𝑁𝑖,1 

 

(Eq. B1.2) 

𝑑𝑁𝑖,2

𝑑𝑡
= 𝑁𝑖,2 (𝑏𝑖,2 − 𝑑𝑖 − ∑ 𝑎𝑖,𝑘

𝑛

𝑘=1

𝑁𝑘,2) + 𝑚𝑁𝑖,1 − 𝑚𝑁𝑖,2 (Eq. B1.3) 
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Appendix B2. Model validation 

Table B2.1. Parameter values used for Fig. B1.1. 

Parameter Name Community 1 Community 2 

m  Dispersal rate 0.5 0.5 
𝑁0 Initial abundance 10 10 
a Interaction coefficient 0.001 0.002 
b Birth rate 0.5 0.5 
d Death rate 0.1 0.1 

 

 
Fig. B2.1. Abundance of 1 species in 2 connected communities in function of time. Dots: 

stochastic model, lines: dynamic Lotka-Volterra model. Parameter values, see table B1.1. 

Table B2.2. Parameter values used for Fig. B1.2. 

Parameter Name Community 1 Community 2 

m  Dispersal rate 0.5 0.5 
𝑁0 Initial abundance 100 100 
a Interaction coefficient 0 0 
b Birth rate 0 0 
d Death rate 0 0 
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Fig. B2.2. Abundance of 1 species in 2 connected communities in function of time. Dots: 

stochastic model, lines: dynamic Lotka-Volterra model. Parameter values, see table B1.2. 

Table B2.3. Parameter values used for Fig. B1.3. 

Parameter Name Community 1 Community 2 

m  Dispersal rate 0 0 
𝑁0 Initial abundance 100 100 
a Interaction coefficient Table 3.1 Table 3.1 
b Birth rate Table 3.1 Table 3.1 
d Death rate Table 3.1 Table 3.1 

 

 
Fig. B2.3. Abundance of 2 species in 2 connected communities in function of time. Dots: 

stochastic model, lines: dynamic Lotka-Volterra model. Parameter values, see table B1.3. 
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Table B2.4. Parameter values used for Fig. B1.4. 

Parameter Name Community 1 Community 2 

m  Dispersal rate 0.2 0.2 
𝑁0 Initial abundance 100 100 
a Interaction coefficient 0 0 
b Birth rate 0 0 
d Death rate 0 0 

 

 
Fig. B2.4. Abundance of 2 species in 2 connected communities in function of time. Dots: 

stochastic model, lines: dynamic Lotka-Volterra model. Parameter values, see table B1.4. 
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Appendix B3. Figures 

 
Fig. B3.1. Proportion of hump-shaped relationships in function of the stress-intensity gradient when 

the threshold value between minimum and maximum diversity is 0.1. A reduction of the threshold 

value from 1 to 0.1 did not substantially change the results. Relationships without convergence are 

removed from the analysis. Abbreviations: homogen init/heterogen init: homogeneous or 

heterogeneous initial community composition; small SI/high SI: low-stressed and high-stressed 

community; var: variation. 
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Fig. B3.2. Proportion of positive relationships in function of the stress-intensity gradient when the 

threshold value between minimum and maximum diversity is 0.1. A reduction of the threshold value 

from 1 to 0.1 did not substantially change the results. Relationships without convergence are 

removed from the analysis. Abbreviations: homogen init/heterogen init: homogeneous or 

heterogeneous initial community composition; small SI/high SI: low-stressed and high-stressed 

community; var: variation. 
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Fig. B3.3. Proportion of negative relationships in function of the stress-intensity gradient. 

Relationships without convergence are removed from the analysis. Abbreviations: homogen 

init/heterogen init: homogeneous or heterogeneous initial community composition; small SI/high SI: 

low-stressed and high-stressed community; var: variation. 
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Fig. B3.4. a) The average Sørensen dissimilarity index between the low-stressed and high-stressed 

community at the lowest dispersal rate over all iterations. b) The replacement component of the 

Sørensen dissimilarity index. c) The nestedness component of the Sørensen dissimilarity index. d) 

the mean log abundance ratio between the high-stressed and low-stressed community over all 

iterations. Abbreviations: homogen init/heterogen init: homogeneous or heterogeneous initial 

community composition; var: variation. 

 
a) b) 

  
c) d) 
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Fig. B3.5. Average local richness over all iterations in function of stress heterogeneity at the lowest 

dispersal rate. Abbreviations: homogen init/heterogen init: homogeneous or heterogeneous initial 

community composition; small SI/high SI: low-stressed and high-stressed community; var: variation.



 

 
 

C 

Supporting information for chapter 4
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Table C1. Algae strains with their respective volume, mean growth rate 𝜇, mean carrying capacity 

𝐾, 𝐸𝐶50 𝑎𝑛𝑑 𝑠𝑙𝑜𝑝𝑒 (𝑠) for the growth rate and carrying capacity. Mean growth rate and mean 

carrying capacity were determined by using a logistic growth curve. 𝐸𝐶50 𝑎𝑛𝑑 𝑠 are the turning point 

and slope of the log-logistic dose-response relationship (eq. 4). 

Genus name Volume 
(𝜇𝑚3) 

Growth 
rate at 0 

𝜇𝑔 𝑙−1  
(𝑑−1) 

Carrying 
capacity at 0 

𝜇𝑔 𝑙−1  
(𝜇𝑚3) 

𝐸𝐶50,𝜇   

(𝜇𝑔 𝑙−1) 

𝑠𝜇 𝐸𝐶50,𝐾 

(𝜇𝑔 𝑙−1) 

𝑠𝐾 

Thalassiosira 27784 0.35 5.1 x 108 95 16.7 74 55.4 
Odontella 72804 0.70 3.2 x 109 480 13.8 88 16.6 

Melosira 24980 0.75 2.4 x 108 137 1.0 209 15.2 
Asterionella 1116 0.81 1.8 x 108 64 2.2 85 18.2 
Navicula 563 0.84 2.2 x 107 121 1.5 102 14.9 
Asterionellopsis 482 0.99 1.6 x 108 53 0.7 192 14.5 

Table C2a. The concentration (conc) of atrazine in the added medium, theoretical concentration of 

atrazine in the community after medium renewal and measured concentration of atrazine in the 

unstressed and stressed community at a low stressor flux.  

Date 
(day) 

Conc to add 
in unstressed 

(𝜇𝑔 𝑙−1)  

Conc to 
add in 

stressed 
(𝜇𝑔 𝑙−1) 

Conc 
unstressed 

(𝜇𝑔 𝑙−1)  

Conc 
stressed 

(𝜇𝑔 𝑙−1)  

Measured 
conc 

unstressed 
(𝜇𝑔 𝑙−1)  

Measured 
conc 

stressed 
(𝜇𝑔 𝑙−1)  

4 38 213 13 238   
8 46 204 24 226   
12 54 196 34 216   
16 61 189 43 207   
20 68 182 51 199 46 220 

 

Table C2b. The concentration (conc) of atrazine in the added medium, theoretical concentration 

of atrazine in the community after medium renewal and measured concentration of atrazine in the 

unstressed and stressed community at a medium stressor flux. 

Date 
(day) 

Conc to add in 
unstressed 

(𝜇𝑔 𝑙−1) 

Conc to 
add in 

stressed 
(𝜇𝑔 𝑙−1)  

Conc 
unstressed 

(𝜇𝑔 𝑙−1) 

Conc 
stressed 

(𝜇𝑔 𝑙−1)  

Measured 
conc 

unstressed 
(𝜇𝑔 𝑙−1) 

Measured 
conc 

stressed 
(𝜇𝑔 𝑙−1)  

4 75 175 25 225   
8 85 165 45 205   
12 93 157 61 189   
16 99 151 74 176   
20 105 145 84 166 71 174 
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Table C2c. The concentration (conc) of atrazine in the added medium, theoretical concentration 

of atrazine in the community after medium renewal and measured concentration of atrazine in the 

unstressed and stressed community at a high stressor flux. 

Time 
(day) 

Conc to add in 
unstressed 

(𝜇𝑔 𝑙−1) 

Conc to 
add in 

stressed 
(𝜇𝑔 𝑙−1)  

Conc 
unstressed 

(𝜇𝑔 𝑙−1) 

Conc 
stressed 

(𝜇𝑔 𝑙−1)  

Measured 
conc 

unstressed 
(𝜇𝑔 𝑙−1) 

Measured 
conc 

stressed 
(𝜇𝑔 𝑙−1)  

4 113 138 38 213   
8 116 134 64 186   
12 119 131 82 168   
16 121 129 95 155   
20 122 128 104 146 86 151 
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Table C3. Nutrient concentrations. rep: replicate, ns: unstressed, s: stressed, NA: not measured. 

time 
(d) 

Environ-
mental flux 

disper
sal 

commu
nity 

re
p 

Nitrate-N 

(𝑚𝑔 𝑙−1)  
Silicate-Si 

(𝑚𝑔 𝑙−1)  
Phosphate-P 

(𝑚𝑔 𝑙−1)  
8 0 0 ns 1 7.8958 1.0774 NA 
8 0 0.05 ns 1 7.229 1.5498 NA 
8 0 0.1 ns 1 6.9406 1.5069 NA 
8 0 0.15 ns 1 7.3994 0.8437 NA 
8 0 0.2 ns 1 6.9607 0.6401 NA 
8 0.05 0 ns 1 7.01 14.5686 NA 
8 0.05 0.05 ns 1 6.601 1.6588 NA 
8 0.05 0.1 ns 1 6.8595 0.939 NA 
8 0.05 0.15 ns 1 6.0714 1.5444 NA 
8 0.05 0.2 ns 1 7.2589 0.8918 NA 
8 0.1 0 ns 1 7.6041 1.0654 NA 
8 0.1 0.05 ns 1 7.3086 0.5366 NA 
8 0.1 0.1 ns 1 7.6359 1.1502 NA 
8 0.1 0.15 ns 1 7.3346 0.7612 NA 
8 0.1 0.2 ns 1 7.76 1.4583 NA 
8 0.15 0 ns 1 7.6298 0.2043 NA 
8 0.15 0.05 ns 1 7.1377 1.6047 NA 
8 0.15 0.1 ns 1 5.7851 0.0835 NA 
8 0.15 0.15 ns 1 8.9798 0.6369 NA 
8 0.15 0.2 ns 1 7.8581 0.5435 NA 
8 0 0 ns 2 NA NA 0.1814 
8 0 0.05 ns 2 NA NA 0.1718 
8 0 0.1 ns 2 NA NA 0.2112 
8 0 0.15 ns 2 NA NA 0.1864 
8 0 0.2 ns 2 NA NA 0.1763 
8 0.05 0 ns 2 NA NA 0.2249 
8 0.05 0.05 ns 2 NA NA 0.1455 
8 0.05 0.1 ns 2 NA NA 0.1708 
8 0.05 0.15 ns 2 NA NA 0.1329 
8 0.05 0.2 ns 2 NA NA 0.0905 
8 0.1 0 ns 2 NA NA 0.1966 
8 0.1 0.05 ns 2 NA NA 0.2345 
8 0.1 0.1 ns 2 NA NA 0.1742 
8 0.1 0.15 ns 2 NA NA 0.2062 
8 0.1 0.2 ns 2 NA NA 0.1556 
8 0.15 0 ns 2 NA NA 0.1339 
8 0.15 0.05 ns 2 NA NA 0.1733 
8 0.15 0.1 ns 2 NA NA 0.0582 
8 0.15 0.15 ns 2 NA NA 0.1779 
8 0.15 0.2 ns 2 NA NA 0.0189 

16 0 0 ns 2 3.2066 NA <0.05 
16 0 0.05 ns 2 4.1204 NA 0.0653 
16 0 0.1 ns 2 3.5374 NA 0.0658 
16 0 0.15 ns 2 NA NA NA 
16 0 0.2 ns 2 NA NA NA 
16 0.05 0 ns 2 2.26936 NA <0.05 
16 0.05 0.05 ns 2 2.5404 NA 0.0749 
16 0.05 0.1 ns 2 2.4126 NA <0.05 
16 0.05 0.15 ns 2 2.4003 NA <0.05 
16 0.05 0.2 ns 2 2.509 NA 0.1031 
16 0.1 0 ns 2 2.2605 NA <0.05 
16 0.1 0.05 ns 2 2.2014 NA <0.05 
16 0.1 0.1 ns 2 2.4415 NA <0.05 
16 0.1 0.15 ns 2 2.0004 NA <0.05 
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16 0.1 0.2 ns 2 1.9213 NA <0.05 
16 0.15 0 ns 2 2.2535 NA <0.05 
16 0.15 0.05 ns 2 2.7182 NA 0.0567 
16 0.15 0.1 ns 2 1.8491 NA <0.05 
16 0.15 0.15 ns 2 1.8509 NA 0.0577 
16 0.15 0.2 ns 2 2.0331 NA 0.0648 
16 0 0 ns 3 NA 0.302 NA 
16 0 0.05 ns 3 NA 0.2748 NA 
16 0 0.1 ns 3 NA 0.1917 NA 
16 0 0.15 ns 3 NA NA NA 
16 0 0.2 ns 3 NA NA NA 
16 0.05 0 ns 3 NA 0.1212 NA 
16 0.05 0.05 ns 3 NA 0.2617 NA 
16 0.05 0.1 ns 3 NA 0.3543 NA 
16 0.05 0.15 ns 3 NA 0.2712 NA 
16 0.05 0.2 ns 3 NA 0.0934 NA 
16 0.1 0 ns 3 NA 0.2916 NA 
16 0.1 0.05 ns 3 NA 0.7589 NA 
16 0.1 0.1 ns 3 NA 0.4447 NA 
16 0.1 0.15 ns 3 NA 0.3452 NA 
16 0.1 0.2 ns 3 NA 0.2048 NA 
16 0.15 0 ns 3 NA <0.1 NA 
16 0.15 0.05 ns 3 NA 0.118 NA 
16 0.15 0.1 ns 3 NA 0.1841 NA 
16 0.15 0.15 ns 3 NA NA NA 
16 0.15 0.2 ns 3 NA 0.1787 NA 
24 0 0 ns 1 0.9516 0.3479 NA 
24 0 0.05 ns 1 0.7842 0.2717 NA 
24 0 0.1 ns 1 0.9553 0.3048 NA 
24 0 0.15 ns 1 0.7196 0.1841 NA 
24 0 0.2 ns 1 1.1328 0.1028 NA 
24 0.05 0 ns 1 4.0076 0.1728 NA 
24 0.05 0.05 ns 1 3.7665 0.3712 NA 
24 0.05 0.1 ns 1 2.7859 0.1616 NA 
24 0.05 0.15 ns 1 1.8366 0.1512 NA 
24 0.05 0.2 ns 1 3.5738 0.3125 NA 
24 0.1 0 ns 1 4.2411 0.189 NA 
24 0.1 0.05 ns 1 4.971 0.531 NA 
24 0.1 0.1 ns 1 4.5919 0.1575 NA 
24 0.1 0.15 ns 1 5.1635 NA NA 
24 0.1 0.2 ns 1 5.2576 0.1589 NA 
24 0.15 0 ns 1 5.0149 0.1239 NA 
24 0.15 0.05 ns 1 2.1148 1.2591 NA 
24 0.15 0.1 ns 1 4.9669 <0.1 NA 
24 0.15 0.15 ns 1 <0.2 0.9505 NA 
24 0.15 0.2 ns 1 0.2354 0.3402 NA 
24 0 0 s 1 11.441 >5 NA 
24 0 0.05 s 1 11.246 >5 NA 
24 0 0.1 s 1 10.259 >5 NA 
24 0 0.15 s 1 10.405 >5 NA 
24 0 0.2 s 1 10.539 >5 NA 
24 0.05 0 s 1 11.206 >5 NA 
24 0.05 0.05 s 1 9.8305 >5 NA 
24 0.05 0.1 s 1 9.5413 >5 NA 
24 0.05 0.15 s 1 9.8979 >5 NA 
24 0.05 0.2 s 1 9.1202 >5 NA 
24 0.1 0 s 1 10.88 >5 NA 
24 0.1 0.05 s 1 9.6177 >5 NA 
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24 0.1 0.1 s 1 9.22 >5 NA 
24 0.1 0.15 s 1 9.495 >5 NA 
24 0.1 0.2 s 1 8.8331 >5 NA 
24 0.15 0 s 1 10.526 >5 NA 
24 0.15 0.05 s 1 9.8427 >5 NA 
24 0.15 0.1 s 1 8.5868 >5 NA 
24 0.15 0.15 s 1 9.3523 >5 NA 
24 0.15 0.2 s 1 9.295 >5 NA 
24 0 0 ns 2 NA NA <0.05 
24 0 0.05 ns 2 NA NA <0.05 
24 0 0.1 ns 2 NA NA <0.05 
24 0 0.15 ns 2 NA NA <0.05 
24 0 0.2 ns 2 NA NA <0.05 
24 0.05 0 ns 2 NA NA <0.05 
24 0.05 0.05 ns 2 NA NA <0.05 
24 0.05 0.1 ns 2 NA NA <0.05 
24 0.05 0.15 ns 2 NA NA <0.05 
24 0.05 0.2 ns 2 NA NA <0.05 
24 0.1 0 ns 2 NA NA <0.05 
24 0.1 0.05 ns 2 NA NA 0.0956 
24 0.1 0.1 ns 2 NA NA <0.05 
24 0.1 0.15 ns 2 NA NA 0.1381 
24 0.1 0.2 ns 2 NA NA <0.05 
24 0.15 0 ns 2 NA NA <0.05 
24 0.15 0.05 ns 2 NA NA <0.05 
24 0.15 0.1 ns 2 NA NA <0.05 
24 0.15 0.15 ns 2 NA NA <0.05 
24 0.15 0.2 ns 2 NA NA <0.05 
24 0 0 s 2 NA NA 0.7811 
24 0 0.05 s 2 NA NA 0.5788 
24 0 0.1 s 2 NA NA 0.2968 
24 0 0.15 s 2 NA NA <0.05 
24 0 0.2 s 2 NA NA 0.0718 
24 0.05 0 s 2 NA NA 0.9179 
24 0.05 0.05 s 2 NA NA 0.4851 
24 0.05 0.1 s 2 NA NA 0.4465 
24 0.05 0.15 s 2 NA NA <0.05 
24 0.05 0.2 s 2 NA NA <0.05 
24 0.1 0 s 2 NA NA 0.6844 
24 0.1 0.05 s 2 NA NA 0.4627 
24 0.1 0.1 s 2 NA NA 0.1885 
24 0.1 0.15 s 2 NA NA 0.0597 
24 0.1 0.2 s 2 NA NA <0.05 
24 0.15 0 s 2 NA NA <0.6135 
24 0.15 0.05 s 2 NA NA 0.4104 
24 0.15 0.1 s 2 NA NA <0.05 
24 0.15 0.15 s 2 NA NA 0.0557 
24 0.15 0.2 s 2 NA NA <0.05 
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Table C4. Result of the beta regression models with dispersal as the predictor variable and BC 

dissimilarity as the response variable. mean±sd. Significance levels after Bonferroni correction: * 

0.0025, ** 0.0005, *** 0.00005 

Day Factor No stressor flux Low stressor flux Medium stressor flux High stressor flux 

8 Intercept 1.453 ± 0.209*** 2.274 ± 0.276*** 2.155 ± 0.233*** 1.195 ± 0.324*** 
 BC diss 1.947 ± 0.235 -6.979 ± 1.977** -9.317 ± 1.674*** -5.115 ± 2.455 
12 Intercept 1.140 ± 0.289*** 0.942 ± 0.294*** 1.718 ± 0.190*** 1.199 ± 0.196*** 
 BC diss -9.086 ± 2.327** -7.001 ± 2.364 -15.140 ± 1.537*** 8.628 ± 1.510*** 
16 Intercept 1.338 ± 0.162*** 0.767 ± 0.278** 0.923 ± 0.121*** 1.044 ± 0.210*** 
 BC diss -9.059 ± 1.267*** -11.433 ± 2.445*** -13.251 ± 1.084*** -12.215 ± 1.746*** 
20 Intercept 1.832 ± 0.316*** 1.066 ± 0.272 *** 0.982 ± 0.244*** 1.206 ± 0.341*** 
 BC diss 8.178 ± 2.343** -5.739 ± 2.141** -8.224 ± 2.011*** -7.725 ± 2.611 
24 Intercept 2.536 ± 0.258*** 1.672 ± 0.169*** 0.758 ± 0.172*** 0.548 ± 0.312  
 BC diss -15.555 ± 1.850 *** -7.998 ± 1.263*** -7.743 ± 1.450*** -7.138 ± 2.683 

 

Table C5. Results of the linear mixed model of the log transformed local density of Navicula sp. in 

the unexposed (left) and exposed (right) communities as response variable and dispersal, 

stressor flux, dispersal, time, time² and their interactions as predictor variables. Model selection 

was based on the backward selection protocol of Zuur 2009 using an ANOVA test. NA: predictor 

was removed during backward selection. Significance levels: * p<0.05, **p<0.01, ***<0.001.  

 Unexposed community Exposed community 
 Estimate SD t-value Estimate SD t-value 

Intercept 8.046 0.072 111.82 6.418 0.213 30.14*** 
Dispersal 0.153 0.557 0.27 2.681 1.740 -1.54 
Stressor flux 0.740 0.793 0.93 -1.388 1.246 -1.11 
Time 0.212 0.014 14.76*** 0.138 0.026 5.21*** 
Time² -0.005 0.001 -6.45*** -0.003 0.001 -3.12** 
dispersal x stressor 
flux 

4.739 5.691 0.83 44.194 10.97 4.38*** 

Dispersal x time 0.163 0.098 1.67 -0.024 0.216 -0.111 
Dispersal x time² -0.020 0.006 -3.40*** 0.015 0..7 2.33* 
Stressor flux x time -0.556 0.126 -4.40*** 0.172 0.069 2.51* 
Stressor flux x 
time² 

0.018 0.008 2.37* NA NA NA 

Dispersal x 
stressor flux x time 

NA NA NA -2.299 0.560 -4.103*** 

Dispersal x 
stressor flux x 
time² 

0.085 0.029 2.99** NA NA NA 
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Table C6. Results of the linear mixed model of the log transformed local density of Navicula sp. in 

the unexposed (left) and exposed (right) communities as response variable and dispersal, 

stressor flux, dispersal, time, time² and their interactions as predictor variables. Model selection 

was based on the backward selection protocol of Zuur 2009 using an ANOVA test. NA: predictor 

was removed during backward selection. Significance levels: * p<0.05, **p<0.01, ***<0.001.  

 Unexposed community Exposed community 
 Estimate SD t-value Estimate SD t-value 

Intercept 8.595 0.231 37.24*** 8.401 0.084 99.90*** 
Dispersal 2.307 1.883 1.22 1.063 0.606 1.76 
Stressor flux 6.447 2.812 2.29* -0.482 0.873 -0.55 
Time 0.166 0.035 4.76*** 0.072 0.011 6.32*** 
Time^2 -0.007 0.001 -6.04*** -0.004 0.001 -5.82*** 
dispersal x 
stressor flux 

-49.559 22.815 -2.17* 10.039 6.234 1.61 

Dispersal x 
time 

-0.443 0.285 -1.55 0.446 0.082 5.44*** 

Dispersal x 
time^2 

0.015 0.010 1.57 -0.016 0.005 -3.06** 

Stressor flux x 
time 

-1.010 0.425 -2.58*    

Stressor flux x 
time^2 

0.049 0.014 3.36*** 0.022 0.004 6.19*** 

Dispersal x 
stressor flux x 
time 

7.031 3.461 2.03*    

Dispersal x 
stressor flux x 
time^2 

-0.231 0.118 -1.96 -0.087 0.026 -3.39*** 
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Fig. C1. Target concentration of atrazine in function of time for the unstressed and stressed 

community and for the different stressor flux levels. The symbols represent the concentration after 

the manipulation of the stressor flux on that day (see also Table C2a-C2c). 

  

Fig. C2. Left: observed versus predicted plots of the linear mixed effect model with regional 

productivity as response variable and beta-diversity, stressor flux, dispersal, time, time² and their 

interactions as predictor variables. Right: observed versus predicted plots of the linear mixed 

effect model with regional productivity as response variable and beta-diversity, stressor flux, 

dispersal, time and their interactions as predictor variables. 
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Fig. C3. Model validation of the linear mixed effect model with regional productivity as response 

variable and and beta-diversity, stressor flux, dispersal, time, time² and their interactions as 

predictor variables. 
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Fig. C4. Model validation of the linear mixed effect model with the local productivity in the 

unstressed community as the response variable and beta-diversity, stressor flux, dispersal, time, 

time² and their interactions as predictor variables. 
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Fig. C5. Model validation of the linear mixed effect model with the local productivity in the stressed 

community as the response variable and beta-diversity, stressor flux, dispersal, time, time² and their 

interactions as predictor variables. 
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Fig. C6. Model validation of the linear mixed effect model with density of Navicula sp. in the 

unexposed community as the response variable and beta-diversity, stressor flux, dispersal, time, 

time² and their interactions as predictor variables. 
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Fig. C7. The relative abundance of Asterionellopsis sp. and Navicula sp. in function of time in the 

no - dispersal treatments for the 4 stressor flux treatments. Symbols represent the data, the lines 

depict the best fit using a generalized linear model.
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Appendix D. Tables and Figures. 

Table D1. Species growth parameters in monoculture. Abbreviations: DACT: Dactyliosolen sp.; OD: 

Odontella sp.; 𝜇: growth rate at 0 𝜇𝑔 𝑙−1 of atrazine; K: carrying capacity at 0 𝜇𝑔 𝑙−1; 𝑠: slope of the 

dose-response curve; 𝐸𝐶50: effective concentration for 50% of the individuals. 𝑠 and 𝐸𝐶50 were 

determined using a three-parametric logistic function in the drc package. 

species 𝜇 (𝑑−1) K (𝜇𝑚3) 𝑠𝜇 𝐸𝐶𝜇  (𝜇𝑔 𝑙−1) 𝑠𝐾 𝐸𝐶50𝜇  (𝜇𝑔 𝑙−1) 

DACT 0.19 3.4 x 109 12 116 23 148 

OD 0.65 3.8 x 109 7 56 14 61 

Table D2. Exposed and unexposed communities per replicate. 

  

 Exposed communities Unexposed communities 

Replicate 1 1, 2, 6, 7 3, 4, 5, 8 
Replicate 2 3, 4, 5, 8 1, 2, 6, 7 
Replicate 3 1, 2, 4, 5 3, 6, 7, 8 
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Table D3. Connectivity matrices. The bold number represent the indices of the communities. “1” 

means that the according communities on the row and column are connected, “.” means 

unconnected. 

24 connections 20 connections 16 connections 

 1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8 

1 . . 1 1 1 1 1 1  . . 1 1 1 1 1 1  . . 1 1 1 1 1 1 

2 . . 1 1 1 1 1 1  . . 1 1 1 1 1 1  . . 1 1 1 1 1 1 

3 1 1 . 1 . 1 1 .  1 1 . 1 . 1 1 .  1 1 . . . 1 . . 

4 1 1 1 . 1 1 1 .  1 1 1 . . 1 . .  1 1 . . . 1 . . 

5 1 1 . 1 . 1 1 1  1 1 . . . 1 1 .  1 1 . . . . 1 . 

6 1 1 1 1 1 . 1 1  1 1 1 1 1 . 1 .  1 1 1 1 . . 1 . 

7 1 1 1 1 1 1 . 1  1 1 1 . 1 1 . 1  1 1 . . 1 1 . . 

8 1 1 . . 1 1 1 .  1 1 . . . . 1 .  1 1 . . . . . . 

12 connections 8 connections 4 connections 

 1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8 

1 . . 1 1 1 1 . 1  . . 1 . 1 1 . 1  . . . . 1 1 . . 

2 . . 1 1 . 1 1 1  . . 1 1 . 1 1 .  . . 1 . . 1 . . 

3 1 1 . . . . . .  1 1 . . . . . .  . 1 . . . . . . 

4 1 1 . . . . . .  . 1 . . . . . .  . . . . . . . . 

5 1 . . . . . 1 .  1 . . . . . . .  1 . . . . . . . 

6 1 1 . . . . 1 .  1 1 . . . . . .  1 1 . . . . . . 

7 . 1 . . 1 1 . .  . 1 . . . . . .  . . . . . . . . 

8 1 1 . . . . . .  1 . . . . . . .  . . . . . . . . 

                           

Table D4. Model comparison using Log likelihood (LogLik) and Anova between the model with 

connectivity as a first-order predictor variable and the model with connectivity as a second-order 

predictor variable. 

 Analysis using spatial correlation structure 
Day LogLik first-

order 
LogLik 
second-
order 

p-value 

12 567 570 0.15 
30 937 937 0.78 
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Table D5. Results of the generalized linear model with connectivity, treatment, their interaction and 

start day as predictor variables and the log transformed regional relative density of Dactyliosolen 

sp. as response variable. 

 

 

 

 

 

 

Table D6. Results of the generalized linear model with connectivity, treatment, their interaction and 

start day as predictor variables and the log transformed relative density of Dactyliosolen sp. in the 

unexposed and exposed communities as response variable. 

 Day 12  Day 30   
 Value SD t-value Value SD t-value 

Intercept 0.0077 0.0008 10.03*** 0.00021 0.00006 3.59*** 
Start day -0.0037 0.0005 -6.74*** -0.00012 0.00003 -4.69*** 
Atrazine app. 0.0011 0.0012 0.90 -0.00026 0.00000 -1.21 
Exposure 0.0017 0.0010 1.65 -0.00005 0.00008 -0.71 
Connectivity 0.0000 0.0000 0.12 0.00000 0.00000 .014 
Atrazine app x exposure 0.0068 0.0034 1.97* 0.01110 0.00298 3.73*** 
Atrazine app x connectivity -0.0001 0.0001 -1.28 0.00005 0.00001 3.43*** 
Exposure x connectivity -0.0001 0.00001 -1.17 0.00000 0.00000 0.957 
Atrazine app x exposure  
x connectivity 

-0.0002 0.0002 -1.26 -0.00035 0.00014 -2.56* 

  

 Day 12  Day 30  

 Value SD t-value Value SD t-value 

Intercept 0.008 0.001 7.15*** 0.0002 0.0000 4.67*** 

Start day -0.003 0.000 -7.58*** --0.0001 0.0000 -4.32*** 

atrazine app 0.001 0.001 0.88 0.0005 0.0002 2.47* 

Connectivity 0.000 0.000 -0.308 0.0000 0.0000 2.45* 

atrazine app x  

connectivity 

0.000 0.000 -1.01 0.0000 0.0000 2.75** 
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Table D7. Measured toxicant concentrations. Abbreviation: conc.: concentration 

Connec-
tivity 

pat
ch 

exposure 
measured 

conc. µ𝒈 𝒍−𝟏 
Conne-

tivity 
pat
ch 

exposure 
measured 

conc. 

µ𝒈 𝒍−𝟏 

1 1 exposed 104 4 1 exposed 105 

1 2 exposed 107 4 2 exposed 118 

1 3 unexposed 10 4 3 unexposed 5 

1 4 unexposed 11 4 4 unexposed 6 

1 5 unexposed 10 4 5 unexposed 5 

1 6 exposed 104 4 6 exposed 120 

1 7 exposed 98 4 7 exposed 110 

1 8 unexposed 13 4 8 unexposed 5 

2 3 exposed 9 5 1 exposed 107 

2 4 exposed 6 5 2 exposed 118 

2 5 unexposed 7 5 3 unexposed 4 

2 6 unexposed 115 5 4 unexposed 1 

2 7 unexposed 105 5 5 unexposed 2 

2 8 exposed 5 5 6 exposed 108 

2 1 exposed NA 5 7 exposed 131 

2 2 unexposed NA 5 8 unexposed 1 

3 1 exposed 114 6 1 exposed 115 

3 2 exposed 114 6 2 exposed 121 

3 3 unexposed 7 6 3 unexposed 4 

3 4 unexposed 7 6 4 unexposed 1 

3 5 unexposed 7 6 5 unexposed 3 

3 6 exposed 109 6 6 exposed 125 

3 7 exposed 122 6 7 exposed 128 

3 8 unexposed 4 6 8 unexposed 1 
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Fig. D1. Dose-response relationship on the growth rate of DACT (left) and OD (right). 

 

Fig. D2. Dose-response relationship on the carrying capacity of DACT (left) and OD (right).  
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Fig. D3. Atrazine concentration in replicate 1 in function of connectivity. Each symbol represents 

the concentration in 1 patch. Blue: unexposed patches; red: exposed patches. Lines are the model 

predictions using a linear model with concentration as response variable and connectivity as 

predictor variable (connectivity: estimate = 0.423 ± 0.143, p=0.005; connectivity x exposure: 

estimate = -1.221 ± 0216, p<0.001) 

 

Fig. D4. Dose-response relationship of the total biovolume on day 30 in the isolated competition e

xperiment. Parameters were determined using a four-parametric logistic function (Eq. 5.6). Param

eter values: b = 18; c = 5.8 x 106; d = 1.2 x 109; e = 51. 
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Fig. D5. Residuals in function of prediction for the non-linear models (left) and linear models (right) 

which predict the effect of treatment as a factor variable and local connectivity as continuous 

variable on the log transformed local productivity for patches 1, 2, 6 and 7 for replicate 1. The model 

on the left figure is given by Eq. 5.7. The left figure gives better model residuals for patch 7 by better 

predicting the productivity at the lowest local connectivity level. 
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Fig. D6. log transformed local productivity in function of local connectivity for the patches 1, 2, 6 

and 7 of replicate 1. Blue gives the exposed patches without atrazine application, red depicts the 

exposed patches with atrazine application. The black symbols represent the prediction of the data 

using Eq. 5.7. 
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Fig. D7. The log transformed mean relative density of Dactyliosolen sp. DACT in function of 

connectivity on days 12 and 30. Panels a and d represent the effect of connectivity on the relative 

abundance of DACT (mean±SD) in the control landscapes (blue) and the exposed landscapes 

(red). Panels b and e represent the effect of connectivity on the relative density of DACT (mean±SD) 

of the unexposed patches in the control landscape (blue) and the landscapes with atrazine 

application (red). Panels c and f represent the effect of connectivity on the relative density of DACT 

of the exposed patches in the control landscape (blue) and the landscapes with atrazine application 

(red) Symbols represent the data. The regression lines are determined using a generalized linear 

model and only shown when significant. 



Appendix D 

195 

 

 

Fig. D8. Effect of local connectivity on log local productivity on day 12 in the unexposed and 

exposed communities for the treatment without atrazine application treatment (blue) and with 

atrazine application treatment (red). 

 

Fig. D9. Effect of local connectivity on log local productivity on day 30 in the unexposed and 

exposed communities for the treatment without atrazine application treatment (blue) and with 

atrazine application treatment (red).
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Summary 

Environmental change drivers, such as global warming and chemical pollution increasingly 

challenge the earth’s ecosystems. Moreover, land use changes and habitat destruction 

fragment the landscape, which limits the movement of organisms between communities, 

named dispersal. How environmental changes and changes in dispersal rates combine in 

affecting biodiversity and productivity has only been addressed to a limited extent. In this 

dissertation, we therefore investigate the combined effect of environmental stress and 

dispersal on the diversity and productivity of micro-algae communities. To this end, we 

combine microcosm experiments (chapters 2, 4 and 5) and model simulations (chapter 3). 

In chapter 1, we summarize how stress and dispersal may influence biodiversity and 

productivity. First, we give a general overview of how stressors can affect local community 

dynamics, leading to compositional and productivity changes. We then discuss how 

metacommunities, which are networks of communities connected by dispersal, can be used 

to investigate how regional processes interact with local dynamics. Next, we discuss which 

factors can change the relationship between dispersal and diversity and the relationship 

between dispersal and productivity. Finally, we motivate why the combined effect of stress 

and dispersal should be examined and discuss the research objectives of this thesis. 

In chapter 2, we investigated how dispersal and the chemical stressor atrazine jointly affect 

the assembly, evenness and productivity of marine diatom communities. A priority effect 

regulated the assembly of the unstressed communities. However, in the high-stressed 

communities, the priority effect was small and community assembly was regulated by the 

selection of stress-tolerant species that replaced stress-sensitive species. Dispersal reduced 

evenness in the unstressed and stressed communities to a similar extent because the initial 

colonizers dominated the former, while the stress-tolerant species dominated the latter. 

Dispersal negatively affected biovolume in the unstressed communities because of high local 

competition. In contrast, dispersal increased productivity in the high-stressed communities by 

introducing stress-tolerant species, creating spatial insurance. 

In chapter 2, the identity of the introduced species did not emerge from community processes. 

However, in reality, species move among communities, and the identity and the number of 

organisms that immigrate to a community depends on the composition and population size of 

the community from which the organisms emigrate. Stress heterogeneity is one factor that 

can create differences in composition and population size among communities. However, the 

extent to which stress heterogeneity creates different compositions depends on the 

interspecific variation in stress response. A second factor that creates differences in 

composition among communities is a heterogeneous starting composition. In chapter 3, we 
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therefore expanded the work done in chapter 2 by investigating if the relationship between 

dispersal and local diversity depends on stress heterogeneity. We used a metacommunity 

model to simulate the relationship between dispersal and diversity for 200 different 

metacommunities. We showed that the effect of dispersal on diversity depended on the 

magnitude of stress heterogeneity. The higher the stress heterogeneity, the stronger the 

difference in composition and population size among communities. As long as differences in 

population size were limited, stronger differences in composition increased the proportion of 

hump-shaped relationships between dispersal and diversity. However, when differences in 

composition and population density were high at a high stress heterogeneity, hump-shaped 

relationships only appeared in the communities with the highest stress-intensity. Instead, no 

hump-shaped relationships appeared in the communities with the lowest stress-intensity 

because the number of organisms that dispersed from the high-stressed communities was too 

small. The effect of stress heterogeneity on the proportion of hump-shaped relationships 

increased when the interspecific variation of the stress response increased. Moreover, when 

the starting composition was heterogeneous, more hump-shaped relationships appeared at a 

low stress heterogeneity than when the starting composition was homogeneous. 

While only the dispersal of organisms was manipulated in chapters 2 and 3, also stressors 

can move among communities. The flux of a stressor might generate shifts in the 

environmental conditions, potentially changing how dispersal affects diversity and 

productivity, and as such the relationship between both. In chapter 4, we investigated how 

the flux of a chemical stressor influenced the relationship between among-community diversity 

and regional productivity. We addressed this question by manipulating dispersal and a 

stressor flux in two-patch metacommunity systems with micro-algae. We created stress 

heterogeneity by exposing one community to the chemical and manipulated among-

community diversity by applying a dispersal gradient. The stressor flux shifted the relationship 

between among-community diversity and regional productivity from positive to negative. In 

absence of the stressor flux, a positive relationship appeared at the end of the experiment 

because dispersal decreased among-community diversity and regional productivity. Dispersal 

reduced regional productivity by removing organisms from their optimal community, disrupting 

local dynamics. In presence of the stressor flux, the relationship between among-community 

diversity and regional productivity was often negative as dispersal decreased among-

community diversity but increased regional productivity. Dispersal increased productivity in 

the stressed community by increasing recovery when the concentration of the chemical 

decreased due to the stressor flux. 

In chapters 3 and 4, we investigated the effect of stress and dispersal on local and regional 

diversity and productivity in two-patch metacommunities, and dispersal was manipulated by 
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applying different dispersal rates among communities. However, communities are typically 

embedded in spatially-connected landscapes. In such landscapes, chemical stressors are 

heterogeneously distributed among communities, changing the effect of connectivity on 

diversity and productivity. In chapter 5, we therefore investigated how a chemical stressor 

and connectivity affect the productivity and diversity in spatially-extended landscapes. 

Independent of the presence of the chemical stressor, connectivity did not affect regional 

productivity. However, in the landscapes exposed to a chemical stressor, connectivity affected 

local productivity by increasing the productivity of the exposed communities, while reducing 

the productivity of the unexposed communities to a similar extent. Connectivity did not affect 

regional diversity in the landscapes where the chemical stressor was absent but increased 

regional diversity in the landscapes with a chemical stressor present. Connectivity increased 

regional diversity because connectivity increased the relative abundance of the stress-tolerant 

species in the unexposed communities. 

In chapter 6 we discuss how environmental stress generates changes in composition and 

population size, which affect the relationship between dispersal and diversity. Moreover, we 

discuss the different ways in which dispersal can increase productivity in stressed 

communities. We further explain that a productivity increase in the stressed communities can 

have no effect on regional productivity, but can also increase or decrease regional 

productivity. We also add that a stressor flux may strongly change the effect of dispersal on 

local and regional productivity. Moreover, we discuss how connectivity in spatially-extended 

landscapes may affect diversity and productivity differently than when dispersal is manipulated 

in simple two-patch metacommunities. In chapter 6, we also formulate some research 

perspectives by pointing out that active movement of organisms and the presence of multiple 

trophic levels can strongly change dispersal effects on diversity and productivity. Last, we 

inspect potential consequences of the obtained results for the ecological risk assessment of 

chemicals.
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Samenvatting 

Factoren die de omgeving beïnvloeden, zoals klimaatsverandering en chemische vervuiling, 

stellen de ecosystemen op aarde steeds meer onder druk. Ons landschap is bovendien 

steeds meer versnipperd door veranderingen in het landgebruik en habitatvernietiging. Deze 

versnippering beperkt de beweging van organismen, genaamd dispersie, tussen 

gemeenschappen. Hoe omgevingsveranderingen en veranderingen in dispersie de 

biodiversiteit en productiviteit van gemeenschappen samen beïnvloeden is slechts in beperkte 

mate gekend. In deze thesis onderzoeken we daarom het gecombineerde effect van 

omgevingsstress en dispersie op de diversiteit en productiviteit van micro-

algengemeenschappen. Daartoe combineren we experimenten (hoofdstukken 2, 4 en 5) en 

modelsimulaties (hoofdstuk 3). 

In hoofdstuk 1 vatten we samen hoe stress en dispersie de biodiversiteit en productiviteit van 

gemeenschappen kunnen beïnvloeden. Eerst geven we een algemeen overzicht van hoe 

stressoren de lokale gemeenschapsdynamiek kunnen beïnvloeden, wat leidt tot 

veranderingen in compositie en productiviteit. Vervolgens bespreken we hoe 

metagemeenschappen, netwerken van gemeenschappen die verbonden zijn door dispersie, 

kunnen worden gebruikt om te onderzoeken hoe regionale en lokale processen interageren. 

Vervolgens bespreken we welke factoren de relatie tussen dispersie en diversiteit en de relatie 

tussen dispersie en productiviteit kunnen veranderen. Ten slotte motiveren we waarom we 

het gecombineerde effect van stress en dispersie in deze thesis onderzochten en bespreken 

we de onderzoeksdoelstellingen van dit proefschrift. 

In hoofdstuk 2 onderzochten we hoe dispersie en de chemische stressor atrazine samen de 

samenstelling, gelijkmatigheid (evenness) en productiviteit van mariene 

diatomeeëngemeenschappen beïnvloeden. Een prioriteitseffect reguleerde de samenstelling 

van de niet-gestreste gemeenschappen. In de gestreste gemeenschappen was het 

prioriteitseffect klein en werd de gemeenschapssamenstelling gereguleerd door de selectie 

van stresstolerante soorten die de stressgevoelige soorten vervingen. Dispersie verminderde 

evenness in de niet-gestreste en gestreste gemeenschappen in een gelijke mate omdat de 

initiële soorten de niet-gestreste gemeenschappen domineerden, terwijl de stresstolerante 

soorten de gestreste gemeenschappen domineerden. Dispersie had een negatieve invloed 

op productiviteit in de niet-gestreste gemeenschappen vanwege de hoge lokale competitie. 

Daarentegen verhoogde dispersie de productiviteit door stresstolerante soorten te 

introduceren in de gestreste gemeenschappen, waardoor een “Spatial Insurance Effect” werd 

gecreëerd. 
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In hoofdstuk 2 werd de identiteit van de geïntroduceerde soorten niet beïnvloed door 

gemeenschapsprocessen. Echter, in werkelijkheid bewegen soorten zich tussen 

gemeenschappen, en de identiteit en het aantal organismen dat naar een gemeenschap 

migreert, hangt af van de samenstelling en productiviteit van de gemeenschap waaruit de 

organismen emigreren. Stress heterogeniteit creëert verschillen in samenstelling en 

populatiegroottes tussen gemeenschappen. De mate waarin stressheterogeniteit leidt tot 

verschillende samenstellingen, hangt echter af van de interspecifieke variatie in 

stressrespons. Een tweede factor die verschillen in samenstelling tussen gemeenschappen 

creëert, is een heterogene initiële soortensamenstelling. In hoofdstuk 3 onderzochten we 

daarom hoe de relatie tussen dispersie en diversiteit afhangt van stressheterogeniteit. We 

gebruikten een metagemeenschapsmodel om de relatie tussen dispersie en diversiteit te 

simuleren voor 200 verschillende metagemeenschappen, die elk uit twee gemeenschappen 

bestonden. De simulaties toonden aan dat het effect van dispersie op diversiteit afhangt van 

de omvang van stress heterogeniteit. Hoe sterker de stress heterogeniteit, hoe groter het 

verschil in samenstelling en populatiegroottes tussen de gemeenschappen. Zolang de 

verschillen in de populatiegrootte klein waren, leidden sterkere verschillen in samenstelling 

tot een hoger aandeel aan unimodale relaties tussen dispersie en diversiteit. Wanneer 

verschillen in samenstelling en populatiegrootte groot waren bij een hoge stressheterogeniteit, 

verschenen uniforme relaties enkel in de gemeenschappen met de hoogste stressintensiteit. 

Daarentegen verschenen geen uniforme relaties in de gemeenschappen met de laagste 

stressintensiteit omdat het aantal organismen dat uit de meest-gestreste gemeenschap 

dispergeerde te laag was. Het effect van stressheterogeniteit op het aandeel uniforme relaties 

nam toe wanneer de interspecifieke variatie van de stressrespons steeg. Bovendien 

verschenen meer uniforme relaties bij een lagere stressheterogeniteit wanneer de initiële 

gemeenschapssamenstelling heterogeen was dan wanneer deze homogeen was. 

In hoofdstukken 2 en 3 werd enkel de dispersie van organismen tussen gemeenschappen 

gemanipuleerd. In werkelijkheid kunnen ook stressoren zich verplaatsen tussen 

gemeenschappen. Een stressor flux kan veranderingen in de omgevingscondities 

veroorzaken, en op deze manier het effect van dispersie op diversiteit en productiviteit 

beïnvloeden, en als zodanig de relatie tussen beide. In hoofdstuk 4 onderzochten we daarom 

hoe een stressor flux de relatie tussen de diversiteit tussen gemeenschappen en regionale 

productiviteit beïnvloedde. Daarom manipuleerden we dispersie en een stressor flux tussen 

gemeenschappen van micro-algen. We creëerden stressheterogeniteit door een 

gemeenschap bloot te stellen aan een chemische stressor en manipuleerden de bèta-

diversiteit (diversiteit tussen gemeenschappen) door een dispersie gradiënt toe te passen. De 

stressor flux wijzigde de relatie tussen bèta-diversiteit en regionale productiviteit van positief 



Samenvatting 

203 

 

naar negatief. Zonder stressor flux was er aan het einde van het experiment een positieve 

relatie omdat dispersie bèta-diversiteit en regionale productiviteit verkleinde. Dispersie 

verkleinde de regionale productiviteit door organismen uit hun meest geschikte gemeenschap 

te verwijderen en op deze manier de lokale dynamiek te verstoren. In aanwezigheid van de 

stressflux was de relatie tussen bèta-diversiteit en regionale productiviteit vaak negatief, 

omdat dispersie de diversiteit verlaagde maar de regionale productiviteit verhoogde. Dispersie 

verhoogde de productiviteit in de gestreste gemeenschap wanneer de concentratie van de 

chemische stof afnam als gevolg van de stressorflux. 

In de hoofdstukken 3 en 4 onderzochten we het effect van stress en dispersie op de lokale en 

regionale diversiteit en productiviteit in metagemeenschappen die bestonden uit slechts 2 

gemeenschappen, waarbij dispersie werd gemanipuleerd door verschillende 

dispersiesnelheden tussen gemeenschappen toe te passen. Gemeenschappen zijn echter 

typisch ingebed in ruimtelijk uitgestrekte landschappen. In dergelijke landschappen zijn 

chemische stressoren heterogeen verdeeld over de gemeenschappen. Deze stressoren 

kunnen het effect van connectiviteit op diversiteit en productiviteit veranderen. In hoofdstuk 

5 onderzochten we daarom hoe een chemische stressor en connectiviteit de productiviteit en 

diversiteit in ruimtelijk uitgestrekte landschappen beïnvloeden. Onafhankelijk van de 

aanwezigheid van de chemische stressor had connectiviteit geen invloed op de regionale 

productiviteit. In de landschappen die werden blootgesteld aan de chemische stressor, 

beïnvloedde connectiviteit de lokale productiviteit door de productiviteit van de blootgestelde 

gemeenschappen te verhogen, terwijl ze de productiviteit van de niet-blootgestelde 

gemeenschappen in vergelijkbare mate verlaagde. Connectiviteit had geen invloed op 

regionale productiviteit in de landschappen waar de chemische stressor afwezig was, maar 

verhoogde regionale diversiteit in de landschappen waar de chemische stressor aanwezig 

was. Connectiviteit verhoogde de regionale diversiteit omdat connectiviteit de relatieve 

abundantie van de stress-tolerante soorten in de niet-blootgestelde gemeenschappen 

verhoogde. 

In hoofdstuk 6 bespreken we hoe omgevingsstress veranderingen in 

gemeenschapssamenstelling en populatiegroottes genereert, en op die manier de relatie 

tussen dispersie en diversiteit kan beïnvloeden. Bovendien bespreken we de verschillende 

manieren waarop dispersie de productiviteit van gestreste gemeenschappen kan verhogen. 

We leggen ook uit dat een productiviteitsverhoging in de gestreste gemeenschappen onder 

bepaalde omstandigheden geen effect heeft op de regionale productiviteit, maar de regionale 

productiviteit eveneens kan verhogen of verlagen. We voegen ook toe dat een stressflux het 

effect van verspreiding op lokale en regionale productiviteit sterk kan veranderen. Bovendien 

bespreken we hoe connectiviteit in ruimtelijk uitgestrekte landschappen diversiteit en 
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productiviteit anders kan beïnvloeden dan wanneer dispersie wordt gemanipuleerd in 

eenvoudige metagemeenschappen. In hoofdstuk 6 formuleren we ook enkele 

onderzoeksperspectieven door erop te wijzen dat de actieve verplaatsing van organismen en 

de aanwezigheid van meerdere trofische niveaus het effect van dispersie op diversiteit en 

productiviteit sterk kunnen beïnvloeden. Ten slotte bekijken we mogelijke consequenties van 

de verkregen resultaten voor de ecologische risicobeoordeling van chemicaliën.
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