419 research outputs found

    Experimental setup for light-to-heat NIR conversion measurements of gold nano-particles\u2019 solutions

    Get PDF
    In recent years, there is a constantly increasing interest in the application of nanoparticles for cancer diagnosis and cancer therapy. In this respect, the most promising nano-objects at present are the gold nanoparticles. A very convenient and powerful property of these objects is their ability to increase their temperature under electro-magnetic irradiation with certain wavelength. In our research we have directed our efforts toward particular nano-objects specifically sensitive to electromagnetic radiation in the near-infrared region (NIR). In order to study the photothermic properties of the solutions of gold nanoparticles in the NIR we constructed a specific electronic setup consisting of a laser system with interchangeable laser diodes with different wavelength NIR light, a thermally-insulated cuvette-holder compartment with temperature measuring probes and a NIR spectrometer to control the stimulated fluorescence emission of the nanoparticles\u2019 solutions. The temperature measurement compartment with the thermal-insulated cuvette holder was designed to maintain the solutions\u2019 temperature at a fixed value right before the moment of laser irradiation. To maintain the measurement setup at a fixed temperature before the irradiation we used a thermal stabilized system based on two Peltier cells with electronic temperature control. The temperatures of the ambient air and the temperature of the cuvette walls were continuously measured in order to make corrections about the temperature dissipation during the irradiation

    Electronic setup for fluorescence emission measurements and long-time constant-temperature maintenance of Single-Walled Carbon Nano-Tubes in water solutions

    Get PDF
    In our previous research we have observed that the fluorescence emission from water solutions of Single-Walled Carbon Nano-Tubes (SWCNT), excited by a laser with a wavelength of 830nm, diminishes with the time. We have already proved that such a fading is a function of the storage time and the storage temperature. In order to study the emission of the SWCNT as a function of these two parameters we have designed and realized a special measurement compartment with a cuvette holder where the SWCNT solutions can be measured and stored at a fixed constant temperature for periods of time as long as several weeks. To maintain the measurement setup under a constant temperature we have designed special experimental setup based on two Peltier cells with electronic temperature control

    Internal radiation dose assessment of radiopharmaceuticals prepared with cyclotron-produced 99m Tc

    Get PDF
    Technetium-99m (99m Tc) is the radioisotope most widely used in diagnostic nuclear medicine. It is readily available from 99 Mo/99m Tc generators as the \u3b2- decay product of the 99 Mo (T\ubd =66 h) parent nuclide. This latter is obtained as a fission product in nuclear reactors by neutron-induced reactions on highly enriched uranium. Alternative production routes, such as direct reactions using proton beams on specific target materials [100 Mo(p,2n)99m Tc], have the potential to be both reliable and relatively cost-effective. However, results showed that the 99m Tc extracted from proton-bombarded 100 Mo-enriched targets contains small quantities of several Tc radioisotopes (93m Tc, 93 Tc, 94 Tc, 94m Tc, 95 Tc, 95m Tc 96 Tc and 97m Tc). The aim of this work was to estimate the dose increase (DI) due to the contribution of Tc radioisotopes generated as impurities, after the intravenous injection of four radiopharmaceuticals prepared with cyclotron-produced 99m Tc (CP-99m Tc) using 99.05% 100 Mo-enriched metallic targets

    Development of 177Lu-scFvD2B as a Potential Immunotheranostic Agent for Tumors Overexpressing the Prostate Specific Membrane Antigen

    Get PDF
    The clinical translation of theranostic 177Lu-radiopharmaceuticals based on inhibitors of the prostate-specific membrane antigen (PSMA) has demonstrated positive clinical responses in patients with advanced prostate cancer (PCa). However, challenges still remain, particularly regarding their pharmacokinetic and dosimetric properties. We developed a potential PSMA-immunotheranostic agent by conjugation of a single-chain variable fragment of the IgGD2B antibody (scFvD2B) to DOTA, to obtain a 177Lu-labelled agent with a better pharmacokinetic profile than those previously reported. The labelled conjugated 177Lu-scFvD2B was obtained in high yield and stability. In vitro, 177Lu-scFvD2B disclosed a higher binding and internalization in LNCaP (PSMA-positive) compared to PC3 (negative control) human PCa cells. In vivo studies in healthy nude mice revealed that 177Lu-scFvD2B present a favorable biokinetic profile, characterized by a rapid clearance from non-target tissues and minimal liver accumulation, but a slow wash-out from kidney. Micro-SPECT/CT imaging of mice bearing pulmonary microtumors evidenced a slow uptake by LNCaP tumors, which steadily rose up to a maximum value of 3.6 SUV at 192 h. This high and prolonged tumor uptake suggests that 177Lu-scFvD2B has great potential in delivering ablative radiation doses to PSMA-expressing tumors, and warrants further studies to evaluate its preclinical therapeutic efficacy

    Integration of Biomechanical and Biological Characterization in the Development of Porous Poly(Caprolactone)-Based Membranes for Abdominal Wall Hernia Treatment.

    Get PDF
    AIMS: Synthetic meshes are the long-standing choice for the clinical treatment of abdominal wall hernias: the associated long-term complications have stimulated the development of a new-generation of bio-resorbable prostheses. In this work, polycaprolactone (PCL) porous membranes prepared by solvent casting/porogen leaching of PCL/poly(ethylene glycol) (PEG) blends with different compositions (different PCL/PEG weight ratio and PEG molecular weight) were investigated to be applied in the field. An optimal porous membrane structure was selected based on the evaluation of physicochemical, biomechanical and in-vitro biological properties, compared to a reference commercially available hernia mesh (CMC). FINDINGS: Selected PCL7-2i membranes (derived from PCL/PEG 70/30, PCL: Mw 70,000-90,000 Da; PEG: 35,000 Da) showed suitable pore size for the application, intermediate surface hydrophilicity and biomimetic mechanical properties. In-vitro cell tests performed on PCL7-2i membranes showed their cytocompatibility, high cell growth during 21 days, a reduced production of pro-inflammatory IL-6 respect to CMC and a significant secretion of Collagen Type I. CONCLUSIONS: PCL7-2i membranes showed biomimetic biomechanical properties and in-vitro biological properties similar to or even better than - in the case of anti-inflammatory behavior and collagen production - CMC, a commercially available product, suggesting potentially improved integration in the host tissue

    Development and In-House Validation of an Enzyme-Linked Immunosorbent Assay and a Lateral Flow Immunoassay for the Dosage of Tenofovir in Human Saliva

    Get PDF
    Highly active antiretroviral therapy (HAART) includes very potent drugs that are often characterized by high toxicity. Tenofovir (TFV) is a widely used drug prescribed mainly for pre-exposure prophylaxis (PreP) and the treatment of human immunodeficiency virus (HIV). The therapeutic range of TFV is narrow, and adverse effects occur with both underdose and overdose. The main factor contributing to therapeutic failure is the improper management of TFV, which may be caused by low compliance or patient variability. An important tool to prevent inappropriate administration is therapeutic drug monitoring (TDM) of compliance-relevant concentrations (ARCs) of TFV. TDM is performed routinely using time-consuming and expensive chromatographic methods coupled with mass spectrometry. Immunoassays, such as enzyme-linked immunosorbent assays (ELISAs) and lateral flow immunoassays (LFIAs), are based on antibody–antigen specific recognition and represent key tools for real-time quantitative and qualitative screening for point-of-care testing (POCT). Since saliva is a non-invasive and non-infectious biological sample, it is well-suited for TDM. However, saliva is expected to have a very low ARC for TFV, so tests with high sensitivity are required. Here, we have developed and validated a highly sensitive ELISA (IC50 1.2 ng/mL, dynamic range 0.4–10 ng/mL) that allows the quantification of TFV in saliva at ARCs and an extremely sensitive LFIA (visual LOD 0.5 ng/mL) that is able to distinguish between optimal and suboptimal ARCs of TFV in untreated saliva

    Rivaroxaban for the treatment of noncirrhotic splanchnic vein thrombosis: an interventional prospective cohort study.

    Get PDF
    Heparins and vitamin K antagonists are the mainstay of treatment of splanchnic vein thrombosis (SVT). Rivaroxaban is a potential alternative, but data to support its use are limited. We aimed to evaluate the safety and efficacy of rivaroxaban for the treatment of acute SVT. In an international, single-arm clinical trial, adult patients with a first episode of noncirrhotic, symptomatic, objectively diagnosed SVT received rivaroxaban 15 mg twice daily for 3 weeks, followed by 20 mg daily for an intended duration of 3 months. Patients with Budd-Chiari syndrome and those receiving full-dose anticoagulation for >7 days prior to enrollment were excluded. Primary outcome was major bleeding; secondary outcomes included death, recurrent SVT, and complete vein recanalization within 3 months. Patients were followed for a total of 6 months. A total of 103 patients were enrolled; 100 were eligible for the analysis. Mean age was 54.4 years; 64% were men. SVT risk factors included abdominal inflammation/infection (28%), solid cancer (9%), myeloproliferative neoplasms (9%), and hormonal therapy (9%); 43% of cases were unprovoked. JAK2 V617F mutation was detected in 26% of 50 tested patients. At 3 months, 2 patients (2.1%; 95% confidence interval, 0.6-7.2) had major bleeding events (both gastrointestinal). One (1.0%) patient died due to a non-SVT-related cause, 2 had recurrent SVT (2.1%). Complete recanalization was documented in 47.3% of patients. One additional major bleeding event and 1 recurrent SVT occurred at 6 months. Rivaroxaban appears as a potential alternative to standard anticoagulation for the treatment of SVT in non-cirrhotic patients. This trial was registered at www.clinicaltrials.gov as #NCT02627053 and at eudract.ema.europa.eu as #2014-005162-29-36
    • …
    corecore