576 research outputs found

    Study of Jet Quenching in Relativistic Heavy-Ion Collisions

    Get PDF
    In this work, we investigate possible impacts that the behavior of the Quark-Gluon Plasma might have on Jet Observables. We choose JEWEL (Jet Evolution With Energy Loss) for this study. We have coupled JEWEL with TRENTo and also with MC-KLN+vUSPhydro for sim- ulations. The simulations were performed for PbPb collisions at sN N = 2.76 TeV in the 0 10% centrality class. We have found that jet shape observables are mainly unchanged by the inclusion of realistic hydrodynamics and initial conditions in these settings. We also made calculations for the jet v2. In this case, we have found that initial conditions do not affect this observable. In the case of realistic hydrodynamics, there is an improvement in the description of data.Neste trabalho nos investigamos possveis impactos que o plasma de Quarks e Gluons pode ter nos observaveis de Jatos. Nos escolhemos o JEWEL (Jet Evolution With Energy Loss) para este estudo. Nos acoplamos o JEWEL com o modelo TRENTo e tambem com o MC- KLN+vUSPhydro para as simulacoes. As simulaoes foram realizadas para colisoes chumbo- chumbo a energia sN N = 2.76 TeV para centralidade 010%. Nessas condicoes, observaveis de forma e geometria dos jatos nao sao modificados pela implementacao de uma hidrodinamica e condicoes iniciais realistas. Tambem calculamos o v2 dos jatos. Neste caso nos conclumos que as condicoes iniciais tambem nao afetam esse observavel. No caso da hidrodinamica realista, houve uma melhoria na descricao desse observavel

    Two-particle transverse momentum correlations in pp and p–Pb collisions at energies available at the CERN Large Hadron Collider

    No full text
    Two-particle transverse momentum differential correlators, recently measured in Pb--Pb collisions at energies available at the CERN Large Hadron Collider (LHC), provide an additional tool to gain insights into particle production mechanisms and infer transport properties, such as the ratio of shear viscosity to entropy density, of the medium created in Pb-Pb collisions. The longitudinal long-range correlations and the large azimuthal anisotropy measured at low transverse momenta in small collision systems, namely pp and p-Pb, at LHC energies resemble manifestations of collective behaviour. This suggests that locally equilibrated matter may be produced in these small collision systems, similar to what is observed in Pb-Pb collisions. In this work, the same two-particle transverse momentum differential correlators are exploited in pp and p-Pb collisions at s√=7 TeV and sNN−−−√=5.02 TeV, respectively, to seek evidence for viscous effects. Specifically, the strength and shape of the correlators are studied as a function of the produced particle multiplicity to identify evidence for longitudinal broadening that might reveal the presence of viscous effects in these smaller systems. The measured correlators and their evolution from pp and p--Pb to Pb--Pb collisions are additionally compared to predictions from Monte Carlo event generators, and the potential presence of viscous effects is discussed

    Soft-dielectron excess in proton–proton collisions at √s = 13 TeV

    No full text
    A measurement of dielectron production in proton-proton (pp) collisions at s√=13 TeV, recorded with the ALICE detector at the CERN LHC, is presented in this Letter. The data set was recorded with a reduced magnetic solenoid field. This enables the investigation of a kinematic domain at low dielectron invariant mass mee and pair transverse momentum pT,ee that was previously inaccessible at the LHC. The cross section for dielectron production is studied as a function of mee, pT,ee, and event multiplicity dNch/dη. The expected dielectron rate from hadron decays, called hadronic cocktail, utilizes a parametrization of the measured η/π0 ratio in pp and proton-nucleus (p-A) collisions, assuming that this ratio shows no strong dependence on collision energy at low transverse momentum. Comparison of the measured dielectron yield to the hadronic cocktail at 0.15<mee<0.6 GeV/c2 and for pT,ee<0.4 GeV/c indicates an enhancement of soft dielectrons, reminiscent of the 'anomalous' soft-photon and -dilepton excess in hadron-hadron collisions reported by several experiments under different experimental conditions. The enhancement factor over the hadronic cocktail amounts to 1.61±0.13(stat.)±0.17(syst.,data)±0.34(syst.,cocktail) in the ALICE acceptance. Acceptance-corrected excess spectra in mee and pT,ee are extracted and compared with calculations of dielectron production from hadronic bremsstrahlung and thermal radiation within a hadronic many-body approach

    Soft-dielectron excess in proton–proton collisions at √s = 13 TeV

    No full text
    A measurement of dielectron production in proton-proton (pp) collisions at s√=13 TeV, recorded with the ALICE detector at the CERN LHC, is presented in this Letter. The data set was recorded with a reduced magnetic solenoid field. This enables the investigation of a kinematic domain at low dielectron invariant mass mee and pair transverse momentum pT,ee that was previously inaccessible at the LHC. The cross section for dielectron production is studied as a function of mee, pT,ee, and event multiplicity dNch/dη. The expected dielectron rate from hadron decays, called hadronic cocktail, utilizes a parametrization of the measured η/π0 ratio in pp and proton-nucleus (p-A) collisions, assuming that this ratio shows no strong dependence on collision energy at low transverse momentum. Comparison of the measured dielectron yield to the hadronic cocktail at 0.15<mee<0.6 GeV/c2 and for pT,ee<0.4 GeV/c indicates an enhancement of soft dielectrons, reminiscent of the 'anomalous' soft-photon and -dilepton excess in hadron-hadron collisions reported by several experiments under different experimental conditions. The enhancement factor over the hadronic cocktail amounts to 1.69±0.14(stat.)±0.18(syst.,data)±0.36(syst.,cocktail) in the ALICE acceptance. Acceptance-corrected excess spectra in mee and pT,ee are extracted and compared with calculations of dielectron production from hadronic bremsstrahlung and thermal radiation within a hadronic many-body approach

    Charm production and fragmentation fractions at midrapidity in pp collisions at √s = 13 TeV

    No full text
    Measurements of the production cross sections of prompt D0, D+, D∗+, D+s, Λ+c, and Ξ+c charm hadrons at midrapidity in proton−proton collisions at s√=13 TeV with the ALICE detector are presented. The D-meson cross sections as a function of transverse momentum (pT) are provided with improved precision and granularity. The ratios of pT-differential meson production cross sections based on this publication and on measurements at different rapidity and collision energy provide a constraint on gluon parton distribution functions at low values of Bjorken-x (10−5−10−4). The measurements of Λ+c (Ξ+c) baryon production extend the measured pT intervals down to pT=0(3)~GeV/c. These measurements are used to determine the charm-quark fragmentation fractions and the cc¯¯ production cross section at midrapidity (|y|<0.5) based on the sum of the cross sections of the weakly-decaying ground-state charm hadrons D0, D+, D+s, Λ+c, Ξ0c and, for the first time, Ξ+c, and of the strongly-decaying J/psi mesons. The first measurements of Ξ+c and Σ0,++c fragmentation fractions at midrapidity are also reported. A significantly larger fraction of charm quarks hadronising to baryons is found compared to e+e− and ep collisions. The cc¯¯ production cross section at midrapidity is found to be at the upper bound of state-of-the-art perturbative QCD calculations

    Investigating the nature of the K∗0(700) state with π±K0S correlations at the LHC

    No full text
    The first measurements of femtoscopic correlations with the particle pair combinations π±K0S in pp collisions at s√=13 TeV at the Large Hadron Collider (LHC) are reported by the ALICE experiment. Using the femtoscopic approach, it is shown that it is possible to study the elusive K∗0(700) particle that has been considered a tetraquark candidate for over forty years. Boson source parameters and final-state interaction parameters are extracted by fitting a model assuming a Gaussian source to the experimentally measured two-particle correlation functions. The final-state interaction is modeled through a resonant scattering amplitude, defined in terms of a mass and a coupling parameter, decaying into a π±K0S pair. The extracted mass and Breit-Wigner width, derived from the coupling parameter, of the final-state interaction are found to be consistent with previous measurements of the K∗0(700). The small value and increasing behavior of the correlation strength with increasing source size support the hypothesis that the K∗0(700) is a four-quark state, i.e. a tetraquark state. This latter trend is also confirmed via a simple geometric model that assumes a tetraquark structure of the K∗0(700) resonance

    Publisher Correction: Unveiling the strong interaction among hadrons at the LHC

    No full text
    Correction to: Nature https://doi.org/10.1038/s41586-020-3001-6Published online 09 December 2020 In Fig. 1c of this Article, owing to an error during the production process, the equation incorrectly began ‘C(k*, r*) = 
’ instead of ‘C(k*) = 
’. In addition, in affiliation 71 ‘Dipartimento di Fisica dell’Università degli studi di Bari Aldo Moro’ has been corrected to read ‘Dipartimento di Fisica dell’Università degli studi di Cagliari’. The original Article has been corrected online

    Measurement of isolated photon–hadron correlations in √sNN = 5.02 TeV pp and p–Pb collisions

    No full text
    This paper presents isolated photon-hadron correlations using pp and p-Pb data collected by the ALICE detector at the LHC. For photons with |η| < 0.67 and 12 < pT < 40 GeV/c, the associated yield of charged particles in the range |η| < 0.80 and 0.5 < pT < 10 GeV/c is presented. These momenta are much lower than previous measurements at the LHC. No significant difference between pp and p-Pb is observed, with PYTHIA 8.2 describing both data sets within uncertainties. This measurement constrains nuclear effects on the parton fragmentation in p-Pb collisions, and provides a benchmark for future studies of Pb-Pb collisions

    Common femtoscopic hadron-emission source in pp collisions at the LHC

    No full text
    The femtoscopic study of pairs of identical pions is particularly suited to investigate the effective source function of particle emission, due to the resulting Bose-Einstein correlation signal. In small collision systems at the LHC, pp in particular, the majority of the pions are produced in resonance decays, which significantly affect the profile and size of the source. In this work, we explicitly model this effect in order to extract the primordial source in pp collisions at s√=13 TeV from charged π-π correlations measured by ALICE. We demonstrate that the assumption of a Gaussian primordial source is compatible with the data and that the effective source, resulting from modifications due to resonances, is approximately exponential, as found in previous measurements at the LHC. The universality of hadron emission in pp collisions is further investigated by applying the same methodology to characterize the primordial source of K-p pairs. The size of the primordial source is evaluated as a function of the transverse mass (mT) of the pairs, leading to the observation of a common scaling for both π-π and K-p, suggesting a collective effect. Further, the present results are compatible with the mT scaling of the p-p and p−Λ primordial source measured by ALICE in high multiplicity pp collisions, providing compelling evidence for the presence of a common emission source for all hadrons in small collision systems at the LHC. This will allow the determination of the source function for any hadron--hadron pairs with high precision, granting access to the properties of the possible final-state interaction among pairs of less abundantly produced hadrons, such as strange or charmed particles

    Light (anti)nuclei production in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The measurement of the production of deuterons, tritons and 3He and their antiparticles in Pb-Pb collisions at sNN−−−√=5.02 TeV is presented in this article. The measurements are carried out at midrapidity (|y|< 0.5) as a function of collision centrality using the ALICE detector. The pT-integrated yields, the coalescence parameters and the ratios to protons and antiprotons are reported and compared with nucleosynthesis models. The comparison of these results in different collision systems at different centre-of-mass collision energies reveals a suppression of nucleus production in small systems. In the Statistical Hadronisation Model framework, this can be explained by a small correlation volume where the baryon number is conserved, as already shown in previous fluctuation analyses. However, a different size of the correlation volume is required to describe the proton yields in the same data sets. The coalescence model can describe this suppression by the fact that the wave functions of the nuclei are large and the fireball size starts to become comparable and even much smaller than the actual nucleus at low multiplicities
    • 

    corecore