25 research outputs found
Robust numerical schemes for Eulerian spray DNS and LES in two-phase turbulent flows
International audienceLarge Eddy Simulation (LES) and Direct numerical Simulation (DNS) of polydisperse evaporating sprays with Eulerian models are very promising tools for high performance computing of combustion applications. They are able to describe the turbulent dispersion and evaporation and properly predict the combustion regimes. However, the spray system of conservation equations has a convective part which is either similar to gas dynamics Euler equations with a real gas type state law or to the pressureless gas dynamics (PGD), depending on the local ïŹow regime and droplet Stokes number; so, they usually involve singularities due to model closure assumptions and require dedicated numerical schemes. Besides, it is desirable to cope with exactly zero droplet density in some zones of the ïŹow, especially near the injection zone, where droplets are injected in only some spatial locations. Even if the issue has been successfully tackled in de Chaisemartin (2009); FrĂ©ret et al. (2010) in the framework of PGD with the use of accurate kinetic schemes, it cannot be directly extended to general gas dynamics. The purpose of the present contribution is to introduce a new generation of numerical methods based on relaxation schemes which are able to treat both PGD and general gas dynamics, as well as to cope in a robust manner with vacuum zones and natural singularities of the resulting system of conservation equations. The proposed hybrid relaxation scheme and algorithms are validated through comparisons with analytical solutions and other numerical strategies on 1D and 2D conïŹgurations. They exhibit a very robust behavior and are a very promising candidate for more complex applications since they provide solutions to key numerical issues of the actual Eulerian spray DNS and LES models
Eulerian modeling and evaporating spray turbulent dispersion simulation
Le modĂšle multi-fluide permet de dĂ©crire par une approche EulĂ©rienne les sprays polydispersĂ©s et apparaĂźt donc comme une mĂ©thode indiquĂ©e pour les applications de combustion diphasique. Sa pertinence pour la simulation Ă lâĂ©chelle dâapplications industrielles est Ă©valuĂ©e dans ce travail, par sa mise en oeuvre dans des configurations bi-dimensionnelle et tri-dimensionnelle plus reprĂ©sentatives de ce type de simulations. Cette Ă©valuation couple une Ă©tude de faisabilitĂ© en terme de coĂ»t de calcul avec une analyse de la prĂ©cision obtenue, par des comparaisons avec les rĂ©sultats de mĂ©thodes de rĂ©fĂ©rences pour la description des sprays. Afin de dĂ©finir une telle rĂ©fĂ©rence, une hiĂ©rarchisation des modĂšles de spray est proposĂ©e dans ce travail, soulignant les niveaux de modĂ©lisation associĂ©e aux diverses mĂ©thodes. Une premiĂšre configuration dâĂ©coulements tourbillonnaires est utilisĂ©e pour caractĂ©riser la mĂ©thode multi-fluide. LâĂ©tude de la structure mathĂ©matique du systĂšme de lois de conservation permet dâanalyser la formation de singularitĂ©s et de fournir les outils permettant dâĂ©valuer leur impact sur la modĂ©lisation. Cette Ă©tude permet Ă©galement de dĂ©river un schĂ©ma numĂ©rique robuste et efficace pour des configurations bi- et tri-dimensionnelle. La description des dynamiques de gouttes conditionnĂ©es par la taille est Ă©valuĂ©e dans ces configurations tourbillonnaires au moyen de comparaisons quantitatives, sur des champs instantanĂ©s, oĂč le multi-fluide est confrontĂ© Ă une mĂ©thode Lagrangienne, ainsi quâĂ des rĂ©sultats expĂ©rimentaux. Afin dâĂ©valuer le comportement de la mĂ©thode multi-fluide dans des configurations plus reprĂ©sentatives des problĂ©matiques industrielles, le solveur MUSES3D est dĂ©veloppĂ©, permettant, entre autres, une Ă©valuation fine des mĂ©thodes de rĂ©solution des sprays. Une implĂ©mentation originale de la mĂ©thode multi-fluide, conciliant gĂ©nĂ©ricitĂ© et efficacitĂ© pour le calcul parallĂšle, est rĂ©alisĂ©e. Le couplage de ce solveur avec le code ASPHODELE, dĂ©veloppĂ© au CORIA, permet dâeffectuer une Ă©valuation opĂ©rationnelle des approches Euler/Lagrange et Euler/Euler pour la description des Ă©coulements diphasiques Ă inclusions dispersĂ©es. Finalement, le comportement de la mĂ©thode multi-fluide dans des jets bi-dimensionnels et dans une turbulence homogĂšne isotrope tri-dimensionnelle permet de montrer sa prĂ©cision pour la description de la dynamique de sprays Ă©vaporant dans des configurations plus complexes. La rĂ©solution de la polydispersion du spray permet de dĂ©crire prĂ©cisĂ©ment la fraction massique de combustible en phase vapeur, un Ă©lĂ©ment clĂ© pour les applications de combustion. De plus, lâefficacitĂ© du calcul parallĂšle par dĂ©composition de domaine avec la mĂ©thode multi-fluide permet dâenvisager son utilisation Ă lâĂ©chelle dâapplications industrielles.The multi-fluid model, providing a Eulerian description of polydisperse sprays, appears as an interesting method for two-phase combustion applications. Its relevance as a numerical tool for industrial device simulations is evaluated in this work. This evaluation assesses the feasibility of multi-fluid simulations in terms of computational cost and analyzes their precision through comparisons with reference methods for spray resolution. In order to define such a reference, the link between the available methods for spray resolution is provided, highlighting their corresponding level of modeling. A first framework of 2-D vortical flows is used to assess the mathematical structure of the multi-fluid model governing system of equations. The link between the mathematical peculiarities and the physical modeling is provided, and a robust numerical scheme efficient for 2-D/3-D configurations is designed. This framework is also used to evaluate the multi-fluid description of evaporating spray sizeconditioned dynamics through quantitative, time-resolved, comparisons with a Lagrangian reference and with experimental data. In order to assess the multi-fluid efficiency in configurations more representative of industrial devices, a numerical solver is designed, providing a framework devoted to spray method evaluation. An original implementation of the multifluid method, combining genericity and efficiency in a parallel framework, is achieved. The coupling with a Eulerian/Lagrangian solver for dispersed two-phase flows, developed at CORIA, is conducted. It allows a precise evaluation of Euler/Lagrange versus Euler/Euler approaches, in terms of precision and computational cost. Finally, the behavior of the multi-fluid model is assessed in 2D-jets and 3-D Homogeneous Isotropic Turbulence. It illustrates the ability of the method to capture evaporating spray dynamics in more complex configurations. The method is shown to describe accurately the fuel vapor mass fraction, a key issue for combustion applications. Furthermore, the method is shown to be efficient in domain decomposition parallel computing framework, a key issue for simulations at the scale of industrial devices
ModÚles eulériens et simulation numérique de la dispersion turbulente de brouillards qui s'évaporent
The multi-fluid model, providing a Eulerian description of polydisperse sprays, appears as an interesting method for two-phase combustion applications. Its relevance as a numerical tool for industrial device simulations is evaluated in this work. This evaluation assesses the feasibility of multi-fluid simulations in terms of computational cost and analyzes their precision through comparisons with reference methods for spray resolution. In order to define such a reference, the link between the available methods for spray resolution is provided, highlighting their corresponding level of modeling. A first framework of 2-D vortical flows is used to assess the mathematical structure of the multi-fluid model governing system of equations. The link between the mathematical peculiarities and the physical modeling is provided, and a robust numerical scheme efficient for 2-D/3-D configurations is designed. This framework is also used to evaluate the multi-fluid description of evaporating spray sizeconditioned dynamics through quantitative, time-resolved, comparisons with a Lagrangian reference and with experimental data. In order to assess the multi-fluid efficiency in configurations more representative of industrial devices, a numerical solver is designed, providing a framework devoted to spray method evaluation. An original implementation of the multifluid method, combining genericity and efficiency in a parallel framework, is achieved. The coupling with a Eulerian/Lagrangian solver for dispersed two-phase flows, developed at CORIA, is conducted. It allows a precise evaluation of Euler/Lagrange versus Euler/Euler approaches, in terms of precision and computational cost. Finally, the behavior of the multi-fluid model is assessed in 2D-jets and 3-D Homogeneous Isotropic Turbulence. It illustrates the ability of the method to capture evaporating spray dynamics in more complex configurations. The method is shown to describe accurately the fuel vapor mass fraction, a key issue for combustion applications. Furthermore, the method is shown to be efficient in domain decomposition parallel computing framework, a key issue for simulations at the scale of industrial devices.Le modĂšle multi-fluide permet de dĂ©crire par une approche EulĂ©rienne les sprays polydispersĂ©s et apparaĂźt donc comme une mĂ©thode indiquĂ©e pour les applications de combustion diphasique. Sa pertinence pour la simulation Ă lâĂ©chelle dâapplications industrielles est Ă©valuĂ©e dans ce travail, par sa mise en oeuvre dans des configurations bi-dimensionnelle et tri-dimensionnelle plus reprĂ©sentatives de ce type de simulations. Cette Ă©valuation couple une Ă©tude de faisabilitĂ© en terme de coĂ»t de calcul avec une analyse de la prĂ©cision obtenue, par des comparaisons avec les rĂ©sultats de mĂ©thodes de rĂ©fĂ©rences pour la description des sprays. Afin de dĂ©finir une telle rĂ©fĂ©rence, une hiĂ©rarchisation des modĂšles de spray est proposĂ©e dans ce travail, soulignant les niveaux de modĂ©lisation associĂ©e aux diverses mĂ©thodes. Une premiĂšre configuration dâĂ©coulements tourbillonnaires est utilisĂ©e pour caractĂ©riser la mĂ©thode multi-fluide. LâĂ©tude de la structure mathĂ©matique du systĂšme de lois de conservation permet dâanalyser la formation de singularitĂ©s et de fournir les outils permettant dâĂ©valuer leur impact sur la modĂ©lisation. Cette Ă©tude permet Ă©galement de dĂ©river un schĂ©ma numĂ©rique robuste et efficace pour des configurations bi- et tri-dimensionnelle. La description des dynamiques de gouttes conditionnĂ©es par la taille est Ă©valuĂ©e dans ces configurations tourbillonnaires au moyen de comparaisons quantitatives, sur des champs instantanĂ©s, oĂč le multi-fluide est confrontĂ© Ă une mĂ©thode Lagrangienne, ainsi quâĂ des rĂ©sultats expĂ©rimentaux. Afin dâĂ©valuer le comportement de la mĂ©thode multi-fluide dans des configurations plus reprĂ©sentatives des problĂ©matiques industrielles, le solveur MUSES3D est dĂ©veloppĂ©, permettant, entre autres, une Ă©valuation fine des mĂ©thodes de rĂ©solution des sprays. Une implĂ©mentation originale de la mĂ©thode multi-fluide, conciliant gĂ©nĂ©ricitĂ© et efficacitĂ© pour le calcul parallĂšle, est rĂ©alisĂ©e. Le couplage de ce solveur avec le code ASPHODELE, dĂ©veloppĂ© au CORIA, permet dâeffectuer une Ă©valuation opĂ©rationnelle des approches Euler/Lagrange et Euler/Euler pour la description des Ă©coulements diphasiques Ă inclusions dispersĂ©es. Finalement, le comportement de la mĂ©thode multi-fluide dans des jets bi-dimensionnels et dans une turbulence homogĂšne isotrope tri-dimensionnelle permet de montrer sa prĂ©cision pour la description de la dynamique de sprays Ă©vaporant dans des configurations plus complexes. La rĂ©solution de la polydispersion du spray permet de dĂ©crire prĂ©cisĂ©ment la fraction massique de combustible en phase vapeur, un Ă©lĂ©ment clĂ© pour les applications de combustion. De plus, lâefficacitĂ© du calcul parallĂšle par dĂ©composition de domaine avec la mĂ©thode multi-fluide permet dâenvisager son utilisation Ă lâĂ©chelle dâapplications industrielles
ModÚles eulériens et simulation numérique de la dispersion turbulente de brouillards qui s'évaporent
Le modĂšle multi-fluide permet de dĂ©crire par une approche EulĂ©rienne les sprays polydispersĂ©s et apparaĂźt donc comme une mĂ©thode indiquĂ©e pour les applications de combustion diphasique. Sa pertinence pour la simulation Ă l Ă©chelle d applications industrielles est Ă©valuĂ©e dans ce travail, par sa mise en oeuvre dans des configurations bi-dimensionnelle et tri-dimensionnelle plus reprĂ©sentatives de ce type de simulations. Cette Ă©valuation couple une Ă©tude de faisabilitĂ© en terme de coĂ»t de calcul avec une analyse de la prĂ©cision obtenue, par des comparaisons avec les rĂ©sultats de mĂ©thodes de rĂ©fĂ©rences pour la description des sprays. Afin de dĂ©finir une telle rĂ©fĂ©rence, une hiĂ©rarchisation des modĂšles de spray est proposĂ©e dans ce travail, soulignant les niveaux de modĂ©lisation associĂ©e aux diverses mĂ©thodes. Une premiĂšre configuration d Ă©coulements tourbillonnaires est utilisĂ©e pour caractĂ©riser la mĂ©thode multi-fluide. L Ă©tude de la structure mathĂ©matique du systĂšme de lois de conservation permet d analyser la formation de singularitĂ©s et de fournir les outils permettant d Ă©valuer leur impact sur la modĂ©lisation. Cette Ă©tude permet Ă©galement de dĂ©river un schĂ©ma numĂ©rique robuste et efficace pour des configurations bi- et tri-dimensionnelle. La description des dynamiques de gouttes conditionnĂ©es par la taille est Ă©valuĂ©e dans ces configurations tourbillonnaires au moyen de comparaisons quantitatives, sur des champs instantanĂ©s, oĂč le multi-fluide est confrontĂ© Ă une mĂ©thode Lagrangienne, ainsi qu Ă des rĂ©sultats expĂ©rimentaux. Afin d Ă©valuer le comportement de la mĂ©thode multi-fluide dans des configurations plus reprĂ©sentatives des problĂ©matiques industrielles, le solveur MUSES3D est dĂ©veloppĂ©, permettant, entre autres, une Ă©valuation fine des mĂ©thodes de rĂ©solution des sprays. Une implĂ©mentation originale de la mĂ©thode multi-fluide, conciliant gĂ©nĂ©ricitĂ© et efficacitĂ© pour le calcul parallĂšle, est rĂ©alisĂ©e. Le couplage de ce solveur avec le code ASPHODELE, dĂ©veloppĂ© au CORIA, permet d effectuer une Ă©valuation opĂ©rationnelle des approches Euler/Lagrange et Euler/Euler pour la description des Ă©coulements diphasiques Ă inclusions dispersĂ©es. Finalement, le comportement de la mĂ©thode multi-fluide dans des jets bi-dimensionnels et dans une turbulence homogĂšne isotrope tri-dimensionnelle permet de montrer sa prĂ©cision pour la description de la dynamique de sprays Ă©vaporant dans des configurations plus complexes. La rĂ©solution de la polydispersion du spray permet de dĂ©crire prĂ©cisĂ©ment la fraction massique de combustible en phase vapeur, un Ă©lĂ©ment clĂ© pour les applications de combustion. De plus, l efficacitĂ© du calcul parallĂšle par dĂ©composition de domaine avec la mĂ©thode multi-fluide permet d envisager son utilisation Ă l Ă©chelle d applications industrielles.The multi-fluid model, providing a Eulerian description of polydisperse sprays, appears as an interesting method for two-phase combustion applications. Its relevance as a numerical tool for industrial device simulations is evaluated in this work. This evaluation assesses the feasibility of multi-fluid simulations in terms of computational cost and analyzes their precision through comparisons with reference methods for spray resolution. In order to define such a reference, the link between the available methods for spray resolution is provided, highlighting their corresponding level of modeling. A first framework of 2-D vortical flows is used to assess the mathematical structure of the multi-fluid model governing system of equations. The link between the mathematical peculiarities and the physical modeling is provided, and a robust numerical scheme efficient for 2-D/3-D configurations is designed. This framework is also used to evaluate the multi-fluid description of evaporating spray sizeconditioned dynamics through quantitative, time-resolved, comparisons with a Lagrangian reference and with experimental data. In order to assess the multi-fluid efficiency in configurations more representative of industrial devices, a numerical solver is designed, providing a framework devoted to spray method evaluation. An original implementation of the multifluid method, combining genericity and efficiency in a parallel framework, is achieved. The coupling with a Eulerian/Lagrangian solver for dispersed two-phase flows, developed at CORIA, is conducted. It allows a precise evaluation of Euler/Lagrange versus Euler/Euler approaches, in terms of precision and computational cost. Finally, the behavior of the multi-fluid model is assessed in 2D-jets and 3-D Homogeneous Isotropic Turbulence. It illustrates the ability of the method to capture evaporating spray dynamics in more complex configurations. The method is shown to describe accurately the fuel vapor mass fraction, a key issue for combustion applications. Furthermore, the method is shown to be efficient in domain decomposition parallel computing framework, a key issue for simulations at the scale of industrial devices.CHATENAY MALABRY-Ecole centrale (920192301) / SudocSudocFranceF
Adaptive Mesh Refinement and High Order Geometrical Moment Method for the Simulation of Polydisperse Evaporating Sprays
Predictive simulation of liquid fuel injection in automotive engines has become a major challenge for science and applications. The key issue in order to properly predict various combustion regimes and pollutant formation is to accurately describe the interaction between the carrier gaseous phase and the polydisperse evaporating spray produced through atomization. For this purpose, we rely on the EMSM (Eulerian Multi-Size Moment) Eulerian polydisperse model. It is based on a high order moment method in size, with a maximization of entropy technique in order to provide a smooth reconstruction of the distribution, derived from a Williams-Boltzmann mesoscopic model under the monokinetic assumption [O. Emre (2014) PhD Thesis, Ăcole Centrale Paris; O. Emre, R.O. Fox, M. Massot, S. Chaisemartin, S. Jay, F. Laurent (2014) Flow, Turbulence and Combustion 93, 689-722; O. Emre, D. Kah, S. Jay, Q.-H. Tran, A. Velghe, S. de Chaisemartin, F. Laurent, M. Massot (2015) Atomization Sprays 25, 189-254; D. Kah, F. Laurent, M. Massot, S. Jay (2012) J. Comput. Phys. 231, 394-422; D. Kah, O. Emre, Q.-H. Tran, S. de Chaisemartin, S. Jay, F. Laurent, M. Massot (2015) Int. J. Multiphase Flows 71, 38-65; A. ViĂ©, F. Laurent, M. Massot (2013) J. Comp. Phys. 237, 277-310]. The present contribution relies on a major extension of this model [M. Essadki, S. de Chaisemartin, F. Laurent, A. Larat, M. Massot (2016) Submitted to SIAM J. Appl. Math.], with the aim of building a unified approach and coupling with a separated phases model describing the dynamics and atomization of the interface near the injector. The novelty is to be found in terms of modeling, numerical schemes and implementation. A new high order moment approach is introduced using fractional moments in surface, which can be related to geometrical quantities of the gas-liquid interface. We also provide a novel algorithm for an accurate resolution of the evaporation. Adaptive mesh refinement properly scaling on massively parallel architectures yields a precise integration of transport in physical space limiting both numerical dissipation as well as the memory trace of the solver. A series of test-cases is presented and analyzed, thus assessing the proposed approach and its parallel computational efficiency while evaluating its potential for complex applications
A new high order moment method for polydisperse evaporating sprays dedicated to the coupling with separated two-phase flows in automotive engine
International audienceLiquid fuel injection modeling and simulation in automotive engines face new challenges related to the need for predictive simulations of combustion regimes. Recently, derived from a statistical approach at mesoscopic level, a high order method of moments coupled to realizable, robust and accurate numerical methods [1], has been obtained and shown to describe properly the dynamics of polydisperse evaporating sprays and its coupling to a turbulent gaseous flow field [2]. However, building up a global multi-scale model with the capability to resolve the whole injection process requires a major breakthrough in terms of both modeling and numerical methods. A new model for evaporating polydisperse sprays with easy coupling capabilities to the separated phases zone is proposed in the present contribution, as well as specific numerical methods and implementation in the p4est library [3] for adaptive mesh refinement and massively parallel computing. The key ingredient is a good choice of variables, which can describe both the polydisperse character of a spray as well as the topology of an interface. After verification cases, some two-phase simulations, challenging both in terms of physics and of high performance computing, have been conducted using adaptive mesh refinement [4]. We focus here on a 3D simulation of a spray in the presence of a frozen Homogeneous Isotropic Turbulence (HIT) gaseous carrier flow and assess the ability of the model and of the related numerical methods to capture the physics of such flows