2,226 research outputs found
Dissecting Galaxies: Separating Star Formation, Shock Excitation and AGN Activity in the Central Region of NGC 613
The most rapidly evolving regions of galaxies often display complex optical
spectra with emission lines excited by massive stars, shocks and accretion onto
supermassive black holes. Standard calibrations (such as for the star formation
rate) cannot be applied to such mixed spectra. In this paper we isolate the
contributions of star formation, shock excitation and active galactic nucleus
(AGN) activity to the emission line luminosities of individual spatially
resolved regions across the central 3 3 kpc region of the active
barred spiral galaxy NGC613. The star formation rate and AGN luminosity
calculated from the decomposed emission line maps are in close agreement with
independent estimates from data at other wavelengths. The star formation
component traces the B-band stellar continuum emission, and the AGN component
forms an ionization cone which is aligned with the nuclear radio jet. The
optical line emission associated with shock excitation is cospatial with strong
and [Fe II] emission and with regions of high ionized gas velocity
dispersion ( km s). The shock component also traces the
outer boundary of the AGN ionization cone and may therefore be produced by
outflowing material interacting with the surrounding interstellar medium. Our
decomposition method makes it possible to determine the properties of star
formation, shock excitation and AGN activity from optical spectra, without
contamination from other ionization mechanisms.Comment: 16 pages, 12 figures. Accepted for publication in MNRA
Atomic hydrogen, star formation and feedback in the lowest mass Blue Compact Dwarf galaxies
We present the results from a search for HI emission from a sample of newly
discovered dwarf galaxies in the M81 group. HI is detected in three galaxies,
all of which are classified as BCDs. The HI masses of these galaxies are ~ 10^6
M_sun, making these some of the lowest mass BCDs known. For these three
galaxies FUV images (from GALEX) and H-alpha images (from the Russian 6m BTA
telescope) are available.The H-alpha emission is very faint, and, in principle
could be produced by a single O star. Further, in all cases we find offsets
between the peak of the FUV emission and that of the H-alpha emission. Offsets
between the most recent sites of star formation (i.e. those traced by H-alpha)
and the older sites (i.e. those traced by FUV) would be natural if the star
formation is stochastic. In spite of the expectation that the effects of
mechanical feedback from star formation would be most directly seen in the
smallest galaxies with low gravitational potentials, we only see tentative
evidence of outflowing HI gas associated with the star forming region in one of
the galaxies.Comment: 9 pages, 5 figures, 5 tables. Accepted for publication in MNRAS. The
definitive version is available at www.blackwell-synergy.co
The SAMI Galaxy Survey: Global stellar populations on the size-mass plane
We present an analysis of the global stellar populations of galaxies in the
SAMI Galaxy Survey. Our sample consists of 1319 galaxies spanning four orders
of magnitude in stellar mass and includes all morphologies and environments. We
derive luminosity-weighted, single stellar population equivalent stellar ages,
metallicities and alpha enhancements from spectra integrated within one
effective radius apertures. Variations in galaxy size explain the majority of
the scatter in the age--mass and metallicity--mass relations. Stellar
populations vary systematically in the plane of galaxy size and stellar mass,
such that galaxies with high stellar surface mass density are older, more
metal-rich and alpha-enhanced than less dense galaxies. Galaxies with high
surface mass densities have a very narrow range of metallicities, however, at
fixed mass, the spread in metallicity increases substantially with increasing
galaxy size (decreasing density). We identify residual correlations with
morphology and environment. At fixed mass and size, galaxies with late-type
morphologies, small bulges and low Sersic n are younger than early-type, high
n, high bulge-to-total galaxies. Age and metallicity both show small residual
correlations with environment; at fixed mass and size, galaxies in denser
environments or more massive halos are older and somewhat more metal rich than
those in less dense environments. We connect these trends to evolutionary
tracks within the size--mass plane.Comment: 25 pages, 18 figures, MNRAS in press Corrected typo in author lis
An Integrated Approach for Characterizing Aerosol Climate Impacts and Environmental Interactions
Aerosols exert myriad influences on the earth's environment and climate, and on human health. The complexity of aerosol-related processes requires that information gathered to improve our understanding of climate change must originate from multiple sources, and that effective strategies for data integration need to be established. While a vast array of observed and modeled data are becoming available, the aerosol research community currently lacks the necessary tools and infrastructure to reap maximum scientific benefit from these data. Spatial and temporal sampling differences among a diverse set of sensors, nonuniform data qualities, aerosol mesoscale variabilities, and difficulties in separating cloud effects are some of the challenges that need to be addressed. Maximizing the long-term benefit from these data also requires maintaining consistently well-understood accuracies as measurement approaches evolve and improve. Achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the earth system can be achieved only through a multidisciplinary, inter-agency, and international initiative capable of dealing with these issues. A systematic approach, capitalizing on modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies, can provide the necessary machinery to support this objective. We outline a framework for integrating and interpreting observations and models, and establishing an accurate, consistent, and cohesive long-term record, following a strategy whereby information and tools of progressively greater sophistication are incorporated as problems of increasing complexity are tackled. This concept is named the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON). To encompass the breadth of the effort required, we present a set of recommendations dealing with data interoperability; measurement and model integration; multisensor synergy; data summarization and mining; model evaluation; calibration and validation; augmentation of surface and in situ measurements; advances in passive and active remote sensing; and design of satellite missions. Without an initiative of this nature, the scientific and policy communities will continue to struggle with understanding the quantitative impact of complex aerosol processes on regional and global climate change and air quality
Weak effects of common genetic variation in oxytocin and vasopressin receptor genes on rhesus macaque social behavior
This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordThe neuropeptides oxytocin (OT) and arginine vasopressin (AVP) influence pair bonding, attachment, and sociality, as well as anxiety and stress responses in humans and other mammals. The effects of these peptides are mediated by genetic variability in their associated receptors, OXTR and the AVPR gene family. However, the role of these genes in regulating social behaviors in nonâhuman primates is not well understood. To address this question, we examined whether genetic variation in the OT receptor gene OXTR and the AVP receptor genes AVPR1A and AVPR1B influence naturallyâoccurring social behavior in freeâranging rhesus macaquesâgregarious primates that share many features of their biology and social behavior with humans. We assessed rates of social behavior across 3,250âhr of observational behavioral data from 201 freeâranging rhesus macaques on Cayo Santiago island in Puerto Rico, and used genetic sequence data to identify 25 OXTR, AVPR1A, and AVPR1B singleânucleotide variants (SNVs) in the population. We used an animal model to estimate the effects of 12 SNVs (nâ=â3 OXTR; nâ=â5 AVPR1A; nâ=â4 AVPR1B) on rates of grooming, approaches, passive contact, contact aggression, and nonâcontact aggression, given and received. Though we found evidence for modest heritability of these behaviors, estimates of effect sizes of the selected SNVs were close to zero, indicating that common OXTR and AVPR variation contributed little to social behavior in these animals. Our results are consistent with recent findings in human genetics that the effects of individual common genetic variants on complex phenotypes are generally small.This research supported by NIH grant 5R01âMH096875â02. The CPRC is supported by grant 8âP40 OD012217â25 from the National Center for Research Resources and the Office of Research Infrastructure Programs of the National Institutes of Health
Dissecting galaxies: spatial and spectral separation of emission excited by star formation and AGN activity
The optical spectra of Seyfert galaxies are often dominated by emission lines excited by both star formation and active galactic nucleus (AGN) activity. Standard calibrations (such as for the star formation rate) are not applicable to such composite (mixed) spectra. In this paper, we describe how integral field data can be used to spectrally and spatially separate emission associated with star formation from emission associated with accretion on to an AGN. We demonstrate our method using integral field data for two AGN host galaxies (NGC 5728 and NGC 7679) from the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). The spectra of NGC 5728 and NGC 7679 form clear sequences of AGN fraction on standard emission line ratio diagnostic diagrams. We show that the emission line luminosities of the majority (>85 per cent) of spectra along each AGN fraction sequence can be reproduced by linear superpositions of the emission line luminosities of one AGN dominated spectrum and one star formation dominated spectrum. We separate the Hα, HÎČ, [N II]λ6583, [S II]λλ6716, 6731, [O III]λ5007 and [O II]λλ3726, 3729 luminosities of every spaxel into contributions from star formation and AGN activity. The decomposed emission line images are used to derive the star formation rates and AGN bolometric luminosities for NGC 5728 and NGC 7679. Our calculated values are mostly consistent with independent estimates from data at other wavelengths. The recovered star-forming and AGN components also have distinct spatial distributions which trace structures seen in high-resolution imaging of the galaxies, providing independent confirmation that our decomposition has been successful
- âŠ