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Abstract 

The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) influence pair bonding, attachment, and 

sociality, as well as anxiety and stress responses in humans and other mammals. The effects of these peptides 

are mediated by genetic variability in their associated receptors, OXTR and the AVPR gene family.. However, 

the role of these genes in regulating social behaviors in non-human primates is not well understood. To address 

this question, we examined whether genetic variation in the OT receptor gene OXTR and the AVP receptor 

genes AVPR1A and AVPR1B influence naturally-occurring social behavior in free-ranging rhesus macaques -- 

gregarious primates that share many features of their biology and social behavior with humans. We assessed 

rates of social behavior across 3,250 hours of observational behavioral data from 201 free-ranging rhesus 

macaques on Cayo Santiago island in Puerto Rico, and used genetic sequence data to identify 25 OXTR, 

AVPR1A, and AVPR1B single-nucleotide variants (SNVs) in the population. We used an animal model to 

estimate the effects of 12 SNVs (n=3 OXTR; n=5 AVPR1A; n=4 AVPR1B) on rates of grooming, approaches, 

passive contact, contact aggression, and non-contact aggression, given and received. Though we found evidence 

for modest heritability of these behaviors, estimates of effect sizes of the selected SNVs were close to zero, 

indicating that common OXTR and AVPR variation contributed little to social behavior in these animals. Our 

results are consistent with recent findings in human genetics that the effects of individual common genetic 

variants on complex phenotypes are generally small. 

Keywords: oxytocin, vasopressin, behavioral genetics, social behavior, rhesus macaques 

 

Introduction 

The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) regulate social behaviors across a variety of 

mammalian species. In various non-human primate (NHP) species, introducing exogenous OT into the central 

nervous system promotes affiliative social relationships and pair bonding behaviors (Smith, Agmo, Birnie, & 
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French, 2010; Snowdon et al., 2010), increases social interaction (Parr, Modi, Siebert, & Young, 2013), and 

inhibits social aversion (Parr et al., 2013). Vasopressin has been less studied in NHPs, but may play a role in 

promoting paternal care in tamarins (Kozorovitskiy, Hughes, Lee, & Gould, 2006). In humans, OT has been 

implicated in a wide variety of social behaviors, ranging from trust and altruism in economic games (Kosfeld, 

Heinrichs, Zak, Fischbacher, & Fehr, 2005) to eye contact and social attention (Auyeung et al., 2015), as well as 

a role in reducing anxiety (Bartz, Zaki, Bolger, & Ochsner, 2011). However, a common limitation of both 

human and NHP research into the role of OT and AVP is the reliance on laboratory tasks in relatively small 

samples, with correspondingly less variable and dynamic social stimuli than in natural environments. Humans 

and many NHP species live in large social groups where maintaining relationships and navigating hierarchies 

are crucial to biological success (L. J. N. Brent, Ruiz-Lambides, & Platt, 2017; Fedigan, 1983; Silk, Alberts, & 

Altmann, 2003; Steptoe, Shankar, Demakakos, & Wardle, 2013). Yet to what extent laboratory findings 

regarding OT and AVP generalize to richer, more realistic social environments remains an open question. In this 

paper, we attempt to address this question by comparing variability in social behavior in free-ranging rhesus 

macaques (Macaca mulatta) in a naturalistic setting, to variability in the genes that encode OT and AVP 

receptors, OXTR and AVPR.  

The OXTR and the AVPR family of genes encode the OT and AVP receptors respectively. While OXTR  is the 

only oxytocin receptor gene, three AVP genes encode three different vasopressin receptors: AVPR1A, AVPR1B, 

and AVPR2. AVPR1A and 1B, but not 2, are expressed in the brain (Freeman, Inoue, Smith, Goodman, & Young, 

2014). Since OT and AVP share similar amino-acid sequences, they can bind to each other’s receptors, albeit 

with different affinities (Freeman et al., 2014; Young & Flanagan-Cato, 2012). This structural commonality may 

contribute to similarities in the range and type of processes that the two neuropeptides mediate. 

Researchers have consistently cited AVPR1A as the AVPR gene most relevant to social functions (Freeman & 

Young, 2016). In humans, genetic variants of AVPR1A are associated with behaviors ranging from altruism in 

an economic game (Israel et al., 2008) to self-reported partner bonding (Walum et al., 2008). AVPR1B variation, 

while not implicated as directly in social behavior, is associated in humans with stress responses (Keck et al., 
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2008) and mood disorders (Dempster et al., 2007). OXTR polymorphisms in humans have been linked to 

variation in a wide range of social behaviors and phenotypes, ranging from attachment style (Costa et al., 2009) 

and prosociality in economic games (Israel et al., 2009) to emotion perception and stress reactivity (Rodrigues, 

Saslow, Garcia, John, & Keltner, 2009) (see (Ebstein, Knafo, Mankuta, Chew, & Lai, 2012) for a more thorough 

review). 

The role of variation in these genes is less studied in NHPs than in humans, though several studies have 

investigated an indel polymorphisms in the 5’ flanking region of AVPR1A in the social behavior of captive great 

apes (Hopkins, Donaldson, & Young, 2012; Latzman, Hopkins, Keebaugh, & Young, 2014; Staes et al., 2015; V. 

A. D. Wilson et al., 2017). (Hopkins et al., 2012), (Latzman et al., 2014), and (V. A. D. Wilson et al., 2017) each 

examined the relationship between the long versus short allele and personality, as measured by observer 

questionnaires, in captive chimpanzees (Pan troglodytes). Hopkins et al. (2012) found a sex-by-genotype 

interaction whereby “dominance” and “conscientiousness” personality traits differed between males and 

females, but only among animals carrying a copy of the long allele, while Wilson et al. (2017) found using the 

same personality dimensions a Hopkins et al. (2012), that the long allele predicted decreased extroversion but 

with no interaction with sex. Latzman et al. (2014), using a similar questionnaire-based data set, but a different 

decomposition into personality dimensions, also reported a sex-by-genotype interaction wherein males carrying 

the long allele were higher for “dominance” and “stability” personality dimensions. (Staes et al., 2015)) also 

looked at captive chimpanzee personality, but used observed rates of specific behaviors to assess personality 

rather than questionnaire ratings, and reported that the long allele was associated with total time spent giving 

and receiving grooming. (Staes et al., 2016) reported a study of the same polymorphism in captive bonobos 

rather than chimpanzees, using both observer questionnaires and behavioral rate observations, and found the 

long allele associated with higher “attentiveness” and lower “openness”. To our knowledge only Staes et al. 

(2015) has examined OXTR in NHPs social behavior, which reported no effect of an intronic SNV. 

In the present study, we drew on a large set of behavioral and genetic sequence data from the free-ranging 

rhesus macaque colony on Cayo Santiago Island off the coast of Puerto Rico. Rhesus macaques are an excellent 
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model organism for studying biological and environmental influences on social behavior due to their extensive 

use in laboratory and field research, and complex social behaviors that are critical to their survival and 

reproductive output (Lauren J. N. Brent et al., 2013; L. J. N. Brent et al., 2017; Massen et al., 2012). The large 

macaque population and minimal human intervention on Cayo Santiago provide a unique opportunity to study 

the genetic influence of OXTR and AVPR variation in a naturalistic setting where social environment more 

closely resembles conditions in the wild and social behavior can directly impact biological success.  

Demographic, life history, and pedigree data are also available for the Cayo population,  which allows us to 

disentangle the effects of specific genetic regions from the influence of environment and overall genetic 

similarity. Though OT and AVP have been implicated in a variety of behaviors that include both social and non-

social, here our interest lay specifically with social interactions between monkeys that indicate the quality and 

nature of their social relationships. Accordingly, we focused on rate of giving and receiving grooming, 

approaches towards another macaque (approach), being in non-grooming physical contact (passive contact), of 

aggression that resulted in physical contact between macaques (contact aggression),  aggressive actions and 

threats that did not result in physical contact. 

 

Methods 

Study site 

The studied population is a colony of rhesus macaques living on the island of Cayo Santiago, a 15-hectare 

island located 1km off the southeastern coast of Puerto Rico. This is a free-ranging, freely-breeding population 

with known pedigrees, rich data on life histories and fitness, and extensive genetic and observational data on 

behavior. The colony was founded in 1938 with a population of 409 Indian-origin rhesus macaques and is 

currently maintained by the Caribbean Primate Research Center (CPRC; University of Puerto Rico Medical 

Sciences Campus). The population as of July 2017 numbered 1571 animals self-organized into six different 

social groups. 537 of the animals are adults of age six or above, and 758 are juveniles between the ages of one 

Page 5 of 38

John Wiley & Sons

American Journal of Primatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Madlon-Kay 6 

and five. Researcher and caretaker intervention in the population is minimal. Animals in the colony are provided 

commercially available monkey chow daily and unlimited access to water. Animals are handled only during 

designated annual trapping periods, during which infants are tagged for identification. Despite the lack of 

immigration since its founding there is little evidence for high rates of inbreeding on Cayo Santiago (Blomquist, 

2009; Widdig et al., 2016). All procedures described below were approved by the University of Puerto Rico’s 

Institutional Animal Care and Use Committee (IACUC #A6850108) and adhered to the legal requirements of 

the United States of America and the American Society of Primatologists' Principles for the Ethical Treatment of 

Primates. 

Genetic data 

Animals were captured by CPRC staff and technicians during annual trapping procedures. Following capture, 

subjects were caged and anesthetized for blood draws using an intramuscular injection of ketamine HCl, 

10mg/kg body weight. Blood was drawn by animal health technicians, and animals were released after full 

recovery from anesthesia. DNA was immediately isolated from blood in the field using commercially available 

QIAGEN extraction kits (QIAamp DNA Blood Mini Kit). Extracted DNA was stored frozen until shipment to 

the Genomics and Microbiology Research Lab at the North Carolina Museum of Natural Sciences, where 

libraries were prepared for next-generation sequencing, and a catalog of variants were genotyped. We used 

standard tools to identify single nucleotide variants (SNVs) by aligning sequence reads to the three genes of 

interest (OXTR, AVPR1A and AVPR1B) from the two most recent published rhesus macaque reference 

assemblies (Rhesus Macaque Genome Sequencing and Analysis Consortium et al., 2007; Zimin et al., 2014), as 

well as the current reference assembly (rheMac8 or Mmul_8.0.1). 

Our variant calling pipeline integrated read alignment using bwa-mem (H. Li & Durbin, 2009), PCR duplicate 

removal using picard, as implemented within SAMtools (H. Li et al., 2009) and simultaneous SNV discovery 

using GATK (McKenna et al., 2010). We excluded SNVs with minor allele frequency <0.05, where the minor 

(vs major) allele refers to the allele that is less (vs more) frequent in the sampled population. If genotype 

coverage depth fell below a minimum of two reads, then genotypes were imputed using standard default 

Page 6 of 38

John Wiley & Sons

American Journal of Primatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Madlon-Kay 7 

parameters in the software Beagle version 4.1 (Browning & Browning, 2016). All variants were annotated using 

the software SNPeff (Cingolani et al., 2012), and SNVs of interest were those predicted as having high, 

moderate, or low impact. Genotypes and their predicted impact results were then compared across all three 

reference assemblies. All reported genotypes were denoted using rheMac8 genomic coordinates. Next, 

designated missense variants were assessed for predicted functional impact (e.g., protein structure, protein 

stability, binding affinity, etc.) using the SNAP2 browser (Hecht, Bromberg, & Rost, 2015). Finally, human 

orthologues of the macaque SNVs were identified using KAVIAR and the UCSC Genome Browser (Glusman, 

Caballero, Mauldin, Hood, & Roach, 2011; Kent et al., 2002). We used dbSNP (build 150) to determine whether 

any human orthologues had known clinical significance (Sherry et al., 2001).  

Nearby SNVs are often highly correlated to the level of redundancy, which can cause issues in interpreting and 

estimating phenotypic effects. Accordingly, we iteratively identified pairs of the SNVs with a correlation >0.9 

and randomly removed one of the SNVs, repeating the process until no such pairs existed. Only the SNVs 

which survived this process were included in the behavioral analyses. 

Behavioral data 

The data is comprised of ten-minute focal samples(Altmann, 1974). The order in which animals were observed 

was semi-randomized to equalize the times of day and year of each animal’s observation periods. Observers 

recorded the times at which the monkey engaged in any behaviors specified by a rhesus macaque-specific 

ethogram consisting of both social and non-social behaviors (Lauren J. N. Brent, 2010). A total of 201 

macaques (123 females, 78 males) were both represented in the behavioral data set and had genotype data 

available. The behavioral data used in this study were 19,501 ten-minute focal observations collected from adult 

(age > 6 years) male and female macaques from five social groups, F, R, V, HH, and KK. Observational data 

was collected from group KK in 2014, from group F during 2011 through 2016 , from group V during 2015 and 

2016, and from group HH and R during years 2014 and 2015, respectively. If an animal had an unusually small 

number of focal observations taken for their group in a given year, their focal observations from that year were 

removed from the data set. The threshold for removal was two standard deviations below the mean number of 
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focal observations across animals for their social group in that year. The total number of focal observations per 

animal across all years ranged from 174 (approximately 29 hours) to 11 (approximately 1.83 hours), with an 

average of 79.99 focal observations per animal (approximately 13.16 hours). 

The following behaviors were analyzed in this study:  

1. Grooming: Running the hands or mouth through the hair of another monkey for at least 5 s.  

2. Passive contact: Sitting or lying in physical contact with another animal without grooming.  

3. Approach: One individual approaches another to within arms’ reach (2 m) without physical contact, and 

remains within that distance for at least 5 s. 

4. Contact aggression: Direct physical contact such as a bite, hit, push, or grab. 

5. Noncontact aggression: A lunge, charge, or chase that does not result in direct physical contact, or a 

threatening gesture that entails some combination of staring, barks, head bobs, and opening one’s mouth 

with covered teeth. 

Each behavior except for passive contact was further divided into whether the focal animal performed the action 

or received the action from another animal, for a total of nine interaction types. Only social interactions 

involving another adult macaque were used in this study; interactions with infant or juvenile macaques were not 

used. 

Pedigree data 

We obtained animal pedigrees from a long-term database maintained by the CPRC. From the founding of the 

population up through 1992, maternal identity was ascertained by behavioral observations, such as nurturing 

behaviors and lactation. For most macaques born after 1992, both maternal and paternal identity were 

ascertained genetically through the analysis of 29 microsatellite markers (Lauren J. N. Brent et al., 2013). In this 

study, maternity was known from genetics for 195 macaques (97%), while paternity was known from genetics 

for 197 macaques (98%). When maternity was not known from genetics, maternity assignments from behavior 

were used. The population pedigree was used to generate a kinship matrix across animals via R package 

kinship2. We multiplied each element of the kinship matrix by two to create the genetic covariance matrix in 

Page 8 of 38

John Wiley & Sons

American Journal of Primatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Madlon-Kay 9 

order to measure the heritability of social behaviors. Maternal identity was known on average for 6 (1.4 sd) 

previous generations, and paternal identity was known on average for 2 (0.8 sd) previous generations. 

Data processing and model specification 

We used individual 10-minute focal observations as the basic unit of analysis rather than aggregating those focal 

observations into rates of behaviors for each animal across longer periods of time. The motivation for this 

approach is that when animals have different numbers of focal observations being aggregated into a single rate, 

the rates of animals with fewer focal observations will be intrinsically more noisy and less precise than those of 

animals with more focal observations, and thus should be weighed less. By using individual focal observations 

as data points, the number of focal observations itself for a given animal in a given year provides the 

appropriate weighting. 

We represented each focal observation in terms of the total amount of each behavior that occurred during that 

focal observation. For behaviors with durations, such as grooming, that amount corresponded to the total time 

spent engaged in that behavior, while for events such as approaches, it was the number of times that behavior 

occurred during an observation. The distributions of behavior amounts across focal observations were highly 

right-skewed and zero-inflated for each of the behaviors examined in this study. Furthermore, some behavior 

amounts were continuous (e.g., amount of time grooming), while others were discrete (number of times 

aggressive acts occurred). These issues rendered ordinary linear regression inappropriate. Therefore, for each 

focal observation, each behavior was discretized into one of three ordered categories, or levels. The levels 

corresponded to a behavior not occurring at all (none), occurring at a low rate (low), and occurring at a high rate 

(high) during a given focal observation. Focal observations in which the behavior did occur were assigned to the 

“none” category, and we divided the remaining observations into the “low” and “high” categories by performing 

a median split on the behavior amounts. Note that the median used for the median split was calculated using 

only the focal observations not in the “none” category. The end result is that each focal observation was 

represented as a vector of category labels (none, low, or high), one for each behavior. This approach preserved 
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information about relative amounts of behaviors while avoiding problems arising from mismatches between an 

assumed distribution of observations (e.g. normal or poisson) and the true distribution. 

We assessed the contribution of the genetic variants to social behaviors using multivariate ordered logistic 

regression. We included age (linear and quadratic), sex, dominance rank (linear and quadratic), age-by-sex 

(linear and quadratic) and rank-by-sex (linear and quadratic) interactions as fixed effects covariates in the 

model. Nonlinear terms were included for age because the effect of aging one year likely changes across the 

lifespan, and for dominance rank because the difference between low and middle-ranked macaques may not be 

the same as the difference between middle and high ranked macaques. Dominance rank was represented on an 

ordered categorical scale: low-ranking animals outranked less than 50% of their social group, medium-ranking 

animals outranked between 50% and 80%; and high-ranking animals outranked greater than 80%. All covariates 

were mean-centered, and the linear and quadratic age terms were orthogonalized against each other and z-

scored. 

Additive genetic effects, permanent environment effects, maternal effects, and the year and group during which 

the observation took place (that is, observations from each year-group pair being grouped together) were 

included as random effects. We defined genetic and permanent environment effects as those associated with 

particular animals that were consistent across focal observations of the same animal, but they differed in 

whether the effects were correlated across animals. Additive genetic effects refer to animal-specific effects that 

were assumed to be correlated across animals according to their kinship, here calculated using the Cayo 

pedigree, while permanent environment effects were assumed to be independent across animals (Fisher, 1918; 

Kruuk, 2004). We also note that permanent environment effects are “permanent” in the sense that they are 

consistent within an animal across the full timespan that the animal was studied. Finally, maternal effects were 

effects consistent across all focal observations of animals with the same dam (A. J. Wilson et al., 2010). The 

magnitude of the additive genetic variance component relative to the other sources of variation determined the 

narrow-sense heritability of a phenotype. 
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The effects of genotypes on behaviors was modeled as random effects with a heavy-tailed distribution, details of 

which are described in the section below. The motivation for treating genotypic effects as random rather than 

fixed is to provide regularization and prevent false positives (Gelman, Hill, & Yajima, 2012). This approach is 

also consistent with the approach used by genomic prediction tools, which generally assume that for complex 

phenotypes, many genetic variants have some small effect that comes from a common distribution that is 

estimated directly (Yang et al., 2011; Zhou et al., 2013). Animal genotypes were coded as the number of minor 

alleles at each locus (Balding, 2006; Yang, Lee, Goddard, & Visscher, 2011). 

Regression model and fitting procedure 

We used a multivariate ordinal logistic version of the animal model: 

 

where  is the level (0, 1, or 2) of behavior  that occurred during focal observation ,  is a vector of fixed 

effects covariates, and  is a vector of random effects covariates. The vector  is the vector of SNVs belonging 

to the animal  , while  is the focal animal followed during observation . 

The parameters ,  and  are the regression weights for behavior  associated with the fixed effects, random 

effects, and SNV effects respectively. The parameters  represent the overall additive genetic component to the 

phenotype of animal , as in the traditional animal model (Henderson, Kempthorne, Searle, & von Krosigk, 

1959; Kruuk, 2004). The parameters , where , are offsets that determine the baseline probabilities 

of each level of behavior . 

To avoid false positives when estimating the genetic effects, we regularized the effect estimates using a flexible 

sparsity-inducing prior: 
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where  is the effect of a minor allele at locus  on behavior . The genetic effects are given a Student's t 

distribution centered at zero with four degrees of freedom, with a width  that is estimated from the data and is 

given a normal prior truncated at zero. This and similar priors have been used frequently in the estimation of 

genetic effects and predicting genetic values for animal breeding (T. Meuwissen & Goddard, 2010; T. H. 

Meuwissen, Hayes, & Goddard, 2001; Resende et al., 2012; Zhou, Carbonetto, & Stephens, 2013). This prior 

has the property that effects for which the evidence is weak will be penalized and pooled towards zero, 

preventing overfitting, but because of the t-distribution's heavy tails, large effects for which there is strong 

evidence will be preserved. 

Finally, the fixed effects, random effects terms are given weakly-informative priors (Gelman, 2006): 

 

Where  is the relatedness matrix among animals, and  and  are the random effect variance components and 

the additive genetic variance components respectively. Note that although for brevity only one random effect 

covariance component is listed in the equations, separate variances were fit for the animal identity and observer 

identity random effects terms. 

Following (S. W. Davies, Scarpino, Pongwarin, Scott, & Matz, 2015; Nakagawa & Schielzeth, 2010; Vazquez et 

al., 2009), we estimated the narrow-sense heritability of each behavior  using the equation 

 where  is the sum of the variance components associated with permanent environmental 

and maternal effects. Note that heritability as estimated here refers to heritability of the latent continuous 

variables underlying logistic regression, rather than of the discrete behavioral data itself. Further, because fixed 
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effects are not taken into account, it is the heritability in a population of animals belonging to the same social 

group and sex, and of similar age and rank, and so on. 

We estimated posteriors for the model parameters using Markov-Chain Monte-Carlo sampling sampling via the 

Stan software package (Stan Development Team, 2016). We ran three chains with 1000 samples each, 

discarding the first 200 iterations of each as burn-in, for a total of 2400 samples used for inference. 

Convergence was assessed using the Rhat metric reported by the rstan package. 

We report the estimated effects of a SNV on behavior as the percent change in the odds of a behavior occurring 

associated with having one more copy of the minor allele. This corresponds to  rather than the raw  

values themselves. The reported point estimates of all parameters, effects, and quantities of interest are posterior 

means. We estimated the phenotypic variance contributed to behavior  by all the SNVs together as , 

where  is the matrix of mean-centered genotypes. 

 

Results 

OXTR and AVPR variants 

We identified a total of 25 SNVs of interest (6 OXTR, 13 AVPR1A, and 6 AVPR1B). Table 1 shows genomic 

coordinates and descriptive information for these variants. Of these 25 SNVs, eight were missense variants (see 

Table 2). Two of the missense variants (one in AVPR1A and one in AVPR1B) were predicted to impact the 

structure of the receptor, according to assessments in SNAP2. Eleven SNVs had known analogues in the human 

genome, though none of those SNVs had known clinical significance (see Table 3). After pruning for high 

linkage disequilibrium among the 25 SNVs (see Methods), we retained 12 SNVs for phenotypic analysis (3 

OXTR, 5 AVPR1A, and 4 AVPR1B). 

Heritability and repeatability of rates of social behaviors 
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Before examining effects of specific single-nucleotide variants on social behaviors, we first assessed both 

genetic and non-genetic variability in social behaviors across individuals. Figure 1 shows the proportion of 

variance accounted for by additive genetic variance (heritability); the variance accounted for by permanent 

environmental effects; and the variance accounted for by maternal effects.  

The three variance component estimates were modest for all behaviors. We estimated that the largest and 

smallest additive genetic effects accounted for 3.8% (passive contact) and 1.2% (noncontact aggression 

received) of total variance of their respective behaviors. Similarly the largest and smallest estimated permanent 

environment effects were 5.1% (contact aggression received) and 0.6% (approach given) of total variability, and 

the largest and smallest maternal effects were 3.1% (grooming given) and 0.5% (approach received). Posterior 

uncertainty for all three variance components were such that negligibly small variance contributions could not 

be ruled out for most behaviors. The explained variance had a greater than one-in-ten chance of being below 1% 

for all variance components and all phenotypes, with the exception that the additive genetic variance component 

explained <1% of the variability of approaches (given) with probability 0.06. 

Some of this posterior uncertainty is due to the fact that additive genetic and permanent environment are 

effectively correlated because permanent environmental effects are independant per-animal effects, and animals 

are genetically identical to themselves. Similarly, the fact that many dams had only one offspring in the data set 

(201 macaques with 156 unique dams) resulted in a correlation between maternal and permanent environmental 

effects. This relationship made it difficult for the model to distinguish between one effect being large and the 

others small, or the reverse. However, the sum of the three variance components was better determined, as can 

be seen in Figure 1, from the fact that in several behaviors, the sum had smaller 95% credible intervals than any 

individual variance component. The sum of heritability, permanent environmental effects, and maternal effects 

is the “repeatability” of a trait within individuals; that is, variability that is consistent within animals across 

observations, but that is not explained by the demographic and environmental variables in the fixed effects or 

the observation period random effect. Repeatability contributed >1% of total variance with probabilities >0.95 

for all nine behaviors. 
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Effect sizes and credible intervals for the fixed effects parameters are shown in Supplementary Figure 1. 

Effects of SNVs on rates of social behaviors 

The estimated effects on social behavior of oxytocin and vasopressin SNV minor alleles are shown in Fig. 2. All 

effects were small, with the absolute average effect size estimated as a 0.2% change in the odds of a social 

behavior occurring, and the largest absolute effect estimated as a 1.7% change in odds. The 95% credible 

intervals (CI) included zero for all loci and all behaviors. Collectively, all SNVs together contributed between 

0.03% and 0.04% of total phenotypic variation for each behavior. 

Beyond encompassing an effect size of zero, posterior distributions of the SNV effect sizes also indicated that 

the range of plausible effect sizes was small. Out of the 108 effects estimated (9 behaviors by 12 SNVs), 105 

had 95% CIs that did not extend beyond an absolute effect size of a 6% change in odds. Of the remaining three 

effects whose CIs did exceed 6%, two were associated with AVPR1A missense variant chr11:62125302. The 

effects of this SNV were detected for approaches given (1.2% effect size, CI=[-1.7%, 8.7%]) and approaches 

received (1.6% effect size, CI=[-1.2%, 11.1%]).  

Our analyses described above used both male and female rhesus macaques, but it is possible that genetic effects 

differ between sexes. We therefore re-analyzed our behavioral data using only female focal animals interacting 

with other adult females. Supplementary Figures 2 and 3 depict the results of this analysis, which were both 

qualitatively and quantitatively similar to the analysis that included both sexes. 

 

Discussion 

Our analysis of OXTR and AVPR genetic variants sought to measure the relationship between genetic variation 

in those genes and rates of spontaneous social interactions in a naturalistic setting in rhesus macaques, a highly 

social primate species. Our results are consistent with genetic variation in OXTR and AVPR having little to no 

influence on rates of social interaction. Though a number of previous studies found relationships between social 
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behaviors and genetic variants in these genes, including in NHPs, this result is not entirely surprising and has 

several potential explanations. 

First, many genetic associations identified in the human literature entailed analyses of behavior from laboratory 

tasks (Johansson et al., 2012; Knafo et al., 2008; Rodrigues et al., 2009) or from clinical phenotypes such as 

autism and mood disorders (Dempster et al., 2007; Israel et al., 2008; Lerer et al., 2008). It may be that genetic 

influences become attenuated in the more naturalistic social situations and non-clinical phenotypes studied here. 

Previous studies in great apes were more similar to ours in that they involved natural, non-clinical social 

behaviors, but to our knowledge these examined only captive populations in zoos and research colonies 

(Hopkins et al., 2012; Latzman et al., 2014; Staes et al., 2015; V. A. D. Wilson et al., 2017). Such settings are 

more constrained than Cayo Santiago in that animals cannot easily self-sort into distinct social groups, and 

human researchers and caretakers often intervene in reproductive success, health, access to resources for 

members of the population, and in order to prevent aggression that could cause serious injury or death. It is 

possible that in a naturalistic, unconstrained environment such as Cayo Santiago, environmental variability is 

larger and effectively “drowns out” genetic contributions.  Second, our results are consistent with recent 

findings that in general, complex behavioral and morphological phenotypes have a massively polygenic genetic 

architecture and individual variants have very small effects (Anney et al., 2012; Benjamin et al., 2012; Boyle, 

Li, & Pritchard, 2017; Chabris et al., 2013; G. Davies et al., 2011; Yang et al., 2010, 2015). Accordingly, it 

appears that sample sizes of tens of thousands or more may be required to reliably distinguish from zero the 

effects of common genetic variants (Lango Allen et al., 2010; McCarroll, Feng, & Hyman, 2014; Rietveld et al., 

2013, 2014; Speliotes et al., 2010).  

Finally, it is worth noting that, historically, both genome-wide and candidate gene studies of complex 

phenotypes with small sample sizes have low replication rates and are prone to false-positives (Chabris et al., 

2012; Hart, de Wit, & Palmer, 2013; Ho et al., 2010; Ioannidis, Tarone, & McLaughlin, 2011; Siontis, 

Patsopoulos, & Ioannidis, 2010). We know of two reported replication failures of OXTR gene effects (Apicella 

et al., 2010; Munk, Hermann, El Shazly, Grant, & Hennig, 2016). Furthermore, two recent meta-analyses 
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reported equivocal results regarding the influence of two heavily studied human OXTR SNVs on sociality, with 

(Bakermans-Kranenburg & van Ijzendoorn, 2014; J. Li et al., 2015). Similarly, though several studies have 

implicated a 5’ AVPR1A polymorphism in chimpanzee social behavior, the identified effects have been 

inconsistent. Hopkins et al (2012) and Latzman et al (2014) reported sex-by-genotype interactions and no main 

effects, whereas Staes et al (2015) and Wilson et al (2017) found only main effects of genotype on personality 

traits and no interactions with sex. While Staes et al (2015) and Wilson et al (2017) both reported effects of 

genotype on personality traits relating to prosocial and affiliative behaviors, the effects were in opposite 

directions, with the same allele predicting higher prosociality in Staes et al (2015) and lower in Wilson et al 

(2017). While there may be unknown moderators that account for the differences between these studies, these 

inconsistent findings may also be the result of a lack of statistical power (Gelman & Carlin, 2014; Lemoine et 

al., 2016; Open Science Collaboration, 2015). Adding weight to this interpretation, we note that several of the 

papers listed above do not control for overall genetic relatedness within the population, do not adjust p-values 

for multiple comparisons or otherwise regularize effect estimates, or both, which can increase the likelihood of 

finding a false-positive genetic association.  It may therefore be prudent to view OXTR and AVPR associations 

as preliminary, both in humans and in great apes, until they have been directly replicated. 

Though we did not find evidence that OXTR and AVPR variants influenced social behavior, our results do 

suggest that social behaviors on Cayo Santiago have a modest additive genetic component. This is consistent 

with previous research on the same macaque population (Lauren J. N. Brent et al., 2013, 2014).  This finding is 

also consistent with the theory that genetic influences on the social behaviors studied here are driven by small 

effects across large numbers of genetic polymorphisms (Fisher, 1918), however, it is worth noting that the 

magnitude of additive genetic effects relative to permanent environment and maternal effects was not well 

resolved in this study. 

Our results do not indicate that all genotypic variability in the Cayo Santiago rhesus macaque population in 

OXTR and AVPR have small or no effects on rates of social interaction. Rare variants with very low MAF and 

de novo mutations are likely to have larger effects on complex phenotypes than common variants (Gratten, 
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Wray, Keller, & Visscher, 2014; Neale et al., 2012), and because common variants are imperfectly correlated 

with rare variants and not at all with de novo variants (Eberle, Rieder, Kruglyak, & Nickerson, 2006; Speed, 

Hemani, Johnson, & Balding, 2012), those sources of genetic variability are not well captured by the SNVs 

genotyped in this study. Future research may profitably target rare rather than common genetic variants.  

Alternatively, it may be fruitful to broaden the scope of the common variants examined to include not just the 

OXTR and AVPR genes themselves but also the broader gene networks that may impact OT and AVP function. 

Recent research suggests that aggregating information across large numbers of common variants may permit the 

identification of genetic contributions from specific genomic regions, even in sample sizes that are small 

relative to those used in traditional GWAS research (Benjamin et al., 2012; Yang, Manolio, et al., 2011), 

however, little is currently known regarding the sample sizes required to reliably estimate the contributions of a 

gene set or network. 

 

 Conclusion 

Though the relationship between social behavior, the molecules OT and AVP and their associated receptor 

genes, OXTR and AVPR has been studied extensively in laboratory settings in humans and captive animal 

populations, it is unknown to what extent those findings generalize to spontaneous behaviors in naturalistic 

environments. We examined this issue using an extensive behavioral and genomic data set from the free-ranging 

rhesus macaque population on Cayo Santiago, focusing on the relationship between OXTR and AVPR single 

nucleotide variants and social interactions related to the quality and kind of social relationships between 

animals. We found that the effects of SNVs in OXTR and AVPR on rates of social interactions were very small 

and possibly nonexistent, consistent with the idea that common genetic variants have generally weak effects on 

complex phenotypes. 
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Figure 1: Proportion of residual variance attributed to additive genetic, permanent environmental, maternal 

effects, and the total proportion of residual variance explained by the three factors together. Points indicate 

posterior means, while thick lines and thin lines indicate 80% and 95% central credible intervals, respectively. 

 

Figure 2: Effect sizes of OXTR, AVPR1a, and AVPR1b SNVs on social behaviors. Effect sizes are shown in 

terms of the additive effect of a minor allele on the percent change in the odds of a social behavior occurring 

during a focal observation. Points indicate posterior means, while thick lines and thin lines indicate 80% and 

95% central credible intervals, respectively. 

 

Figure S1: Effect sizes for fixed effects.  Effect sizes are shown in terms of the percent change in the odds of a 

social behavior occurring during a focal observation associated with a unit increase in the dependant variable. 

Points indicate posterior means, while thick lines and thin lines indicate 80% and 95% central credible intervals, 

respectively. 

 

Figure S2: Proportion of residual variance attributed to variance components and their sum for social behaviors 

between adult females only. Points indicate posterior means, while thick lines and thin lines indicate 80% and 

95% central credible intervals, respectively. 

 

Figure S3: Effect sizes of SNVs on social behaviors between adult females only. Effect sizes are shown in terms 

of the additive effect of a minor allele on the percent change in the odds of a social behavior occurring during a 

focal observation. Points indicate posterior means, while thick lines and thin lines indicate 80% and 95% central 

credible intervals, respectively. 

 

Table 1: OXTR, AVPR1A, AVPR1B SNVs  

Table 2: OXTR, AVPR1A, AVPR1B missense variants 

Table 3: OXTR, AVPR1A, AVPR1B human genome analogs 

Page 29 of 38

John Wiley & Sons

American Journal of Primatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 1: Proportion of residual variance attributed to additive genetic, permanent environmental, maternal 
effects, and the total proportion of residual variance explained by the three factors together. Points indicate 

posterior means, while thick lines and thin lines indicate 80% and 95% central credible intervals, 

respectively.  
 

102x68mm (300 x 300 DPI)  

 

 

Page 30 of 38

John Wiley & Sons

American Journal of Primatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 2: Effect sizes of OXTR, AVPR1a, and AVPR1b SNVs on social behaviors. Effect sizes are shown in 
terms of the additive effect of a minor allele on the percent change in the odds of a social behavior occurring 
during a focal observation. Points indicate posterior means, while thick lines and thin lines indicate 80% and 

95% central credible intervals, respectively.  
 

153x102mm (300 x 300 DPI)  

 

 

Page 31 of 38

John Wiley & Sons

American Journal of Primatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure S1: Effect sizes for fixed effects.  Effect sizes are shown in terms of the percent change in the odds of 
a social behavior occurring during a focal observation associated with a unit increase in the dependant 
variable. Points indicate posterior means, while thick lines and thin lines indicate 80% and 95% central 

credible intervals, respectively.  
 

153x102mm (300 x 300 DPI)  

 

 

Page 32 of 38

John Wiley & Sons

American Journal of Primatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure S2: Proportion of residual variance attributed to variance components and their sum for social 
behaviors between adult females only. Points indicate posterior means, while thick lines and thin lines 

indicate 80% and 95% central credible intervals, respectively.  

 
102x68mm (300 x 300 DPI)  

 

 

Page 33 of 38

John Wiley & Sons

American Journal of Primatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure S3: Effect sizes of SNVs on social behaviors between adult females only. Effect sizes are shown in 
terms of the additive effect of a minor allele on the percent change in the odds of a social behavior occurring 
during a focal observation. Points indicate posterior means, while thick lines and thin lines indicate 80% and 

95% central credible intervals, respectively.  
 

153x102mm (300 x 300 DPI)  

 

 

Page 34 of 38

John Wiley & Sons

American Journal of Primatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Research highlights 

 

• We examined whether genetic variation in the OT receptor gene OXTR and the AVP receptor 

genes AVPR1A and AVPR1B influence naturally-occurring social behavior in free-ranging 

rhesus macaques, gregarious primates that share many features of their biology and social 

behavior with humans. 

• We measured rates of grooming, approaches, passive contact, contact aggression, and non-

contact aggression, given and received, across 3,250 hours of observational behavioral data 

from 201 free-ranging rhesus macaques on Cayo Santiago island in Puerto Rico, and used 

genetic sequence data to identify 25 OXTR, AVPR1A, and AVPR1B single-nucleotide variants 

(SNVs) in the population. 

• Though we found evidence for modest heritability of these behaviors, estimates of effect sizes 

of the selected SNVs were close to zero, indicating that common OXTR and AVPR variation 

contributed little to social behavior in these animals. Our results are consistent with recent 

findings in human genetics that the effects of individual common genetic variants on complex 

phenotypes are generally small. 
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Gene Position Consequence Type 
Read 

Depth 

Mapping 

Quality 

Reference 

Allele 

Alternate 

Allele 

Alternate Allele 

Frequency 

Included in 

Behavioral Analysis 

OXTR chr2:57649859 missense variant 893 59.95 G T 0.72  

OXTR chr2:57649912 synonymous variant 917 59.97 A C 0.34  

OXTR chr2:57650182 synonymous variant 1117 60 C T 0.34  

OXTR chr2:57650410 synonymous variant 1018 60 C G 0.48 Yes 

OXTR chr2:57650752 synonymous variant 1693 59.96 C T 0.34 Yes 

OXTR chr2:57664901 synonymous variant 2717 59.99 A G 0.28 Yes 

AVPR1A chr11:62121832 missense variant 1767 60 A C 0.09 Yes 

AVPR1A chr11:62124427 synonymous variant 1830 53.03 C T 0.91  

AVPR1A chr11:62124548 missense variant 1912 60.01 C A 0.36 Yes 

AVPR1A chr11:62124701 missense variant 1650 60 A C 0.48  

AVPR1A chr11:62124871 synonymous variant 1046 60 C G 0.89  

AVPR1A chr11:62124901 synonymous variant 1049 60 G A 0.11  

AVPR1A chr11:62124906 missense variant 1069 60 A T 0.72 Yes 

AVPR1A chr11:62125186 synonymous variant 822 60 T C 0.1  

AVPR1A chr11:62125214 missense variant 947 60 A G 0.09  

AVPR1A chr11:62125231 synonymous variant 970 60 C T 0.46  

AVPR1A chr11:62125240 synonymous variant 925 60 T C 0.1  

AVPR1A chr11:62125243 synonymous variant 911 60 A G 0.1 Yes 

AVPR1A chr11:62125302 missense variant 1027 60 G A 0.48 Yes 

AVPR1B chr1:160482462 synonymous variant 1353 60 G A 0.83 Yes 

AVPR1B chr1:160482464 missense variant 1290 59.97 C T 0.89  

AVPR1B chr1:160482644 synonymous variant 1288 59.97 G A 0.87 Yes 

AVPR1B chr1:160482660 synonymous variant 1282 59.96 G A 0.88  

AVPR1B chr1:160482702 synonymous variant 1274 60 C G 0.88 Yes 

AVPR1B chr1:160488705 synonymous variant 1615 59.99 T C 0.44 Yes 

Table 1. OXTR, AVPR1A,  and AVPR1B SNVs 
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Gene Position 
Amino Acid 

Substitution 

Amino Acid 

Position 
Functional Effect SNAP2 Score Expected Accuracy 

OXTR chr2:57649859 Ala>Ser 6 no effect -88 93% 

AVPR1A chr11:62121832 Ile>Val 419 no effect -98 97% 

AVPR1A chr11:62124548 Ala>Glu 263 no effect -70 82% 

AVPR1A chr11:62124701 Gln>Pro 212 no effect -25 61% 

AVPR1A chr11:62124906 Met>Leu 144 effect 44 71% 

AVPR1A chr11:62125214 Asp>Gly 41 no effect -38 66% 

AVPR1A chr11:62125302 Ala>Thr 12 no effect -91 97% 

AVPR1B chr1:160482464 Ala>Val 84 effect 59 75% 

Table 2. OXTR, AVPR1A, AVPR1B missense variants 
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Gene Macaque Position 
Human Genome 

Liftover Position 

Human Genome 

Liftover rsID 

Clinical Significance 

in Humans 

OXTR chr2:57649859 chr3:8768172   

OXTR chr2:57649912 chr3:8768119 rs780323772 none known 

OXTR chr2:57650182 chr3:8767849 rs775129787 none known 

OXTR chr2:57650410 chr3:8767621 rs762128258 none known 

OXTR chr2:57650752 chr3:8767279 rs769535684 none known 

OXTR chr2:57664901 chr3:8752980 rs146441685 none known 

AVPR1A chr11:62121832 chr12:63147370   

AVPR1A chr11:62124427 chr12:63149937   

AVPR1A chr11:62124548 chr12:63150058 rs776846916 none known 

AVPR1A chr11:62124701 chr12:63150211 rs190242785 none known 

AVPR1A chr11:62124871 chr12:63150381 rs553995625 none known 

AVPR1A chr11:62124901 chr12:63150411   

AVPR1A chr11:62124906 chr12:63150416   

AVPR1A chr11:62125186 chr12:63150696   

AVPR1A chr11:62125214 chr12:63150724   

AVPR1A chr11:62125231 chr12:63150741   

AVPR1A chr11:62125240 chr12:63150750   

AVPR1A chr11:62125243 chr12:63150753   

AVPR1A chr11:62125302 chr12:63150812   

AVPR1B chr1:160482462 chr1:206116822   

AVPR1B chr1:160482464 chr1:206116640 rs138075414 none known 

AVPR1B chr1:160482465 chr1:206116639   

AVPR1B chr1:160482660 chr1:206116624   

AVPR1B chr1:160482702 chr1:206116582 rs781803425 none known 

AVPR1B chr1:160488705 chr1:206110210 rs781813621 none known 

Table 3. OXTR, AVPR1A, AVPR1B SNV human genome analogs 
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