4,549 research outputs found

    Dose-dependent synergistic and antagonistic mutation responses of binary mixtures of the environmental carcinogen benzo[a]pyrene with food-derived carcinogens

    Get PDF
    Cooking food at high temperatures produces genotoxic chemicals and there is concern about their impact on human health. DNA damage caused by individual chemicals has been investigated but few studies have examined the consequences of exposure to mixtures as found in food. The current study examined the mutagenic response to binary mixtures of benzo[a]pyrene (BaP) with glycidamide (GA), BaP with acrylamide (AC), or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) with GA at human-relevant concentrations (sub-nM). The metabolically competent human MCL-5 cells were exposed to these chemicals individually or in mixtures and mutagenicity was assessed at the thymidine kinase (TK) locus. Mixture exposures gave dose-responses that differed from those for the individual chemicals; for the BaP-containing mixtures, an increased mutation frequency (MF) at low concentration combinations that were not mutagenic individually, and decreased MF at higher concentration combinations, compared to the calculated predicted additive MF of the individual chemicals. In contrast, the mixture of PhIP with GA did not increase MF above background levels. These data suggest BaP is driving the mutation response and that metabolic activation plays a role; in mixtures with BaP the increased/decreased MF above/below the expected additive MF the order is PhIP > AC > GA. The increase in MF at some low concentration combinations that include BaP is interesting and supports our previous work showing a similar response for BaP with PhIP, confirming this response is not limited to the BaP/PhIP combination. Moreover, the lack of a mutation response for PhIP with GA relative to the response of the individual chemicals at equivalent doses is interesting and may represent a potential avenue for reducing the risk of exposure to environmental carcinogens; specifically, removal of BaP from the mixture may reduce the mutation effect, although in the context of food this would be significantly challenging

    Determining the relationship between nanoparticle characteristics and immunotoxicity: key challenges and approaches

    Get PDF
    The growing wealth of information regarding the influence that physicochemical characteristics play on nanoparticle biocompatibility and safety is allowing improved design and rationale for their development and preclinical assessment. Accurate and appropriate measurement of these characteristics accompanied by informed toxicological assessment is a necessity for the development of safe and effective nanomedicines. While particle type, formulation and mode of administration dictate the individual causes for concern through development, the benefits of nanoformulation for treatment of the diseased state are great. Here we have proposed certain considerations and suggestions, which could lead to better-informed preclinical assessment of nanomaterials for nanomedicine, as well as how this information can and should be extrapolated to the physiological state of the end user

    The selective cytotoxicity of the alkenyl glucosinolate hydrolysis products and their presence in Brassica vegetables.

    Get PDF
    © 2015 Elsevier Ireland Ltd.Cruciferous vegetable consumption correlates with reduced risk of cancer. This chemopreventative activity may involve glucosinolates and their hydrolysis products. Glucosinolate-derived isothiocyanates have been studied for their toxicity and chemopreventative properties, but other hydrolysis products (epithionitriles and nitriles) have not been thoroughly examined. We report that these hydrolysis products differ in their cytotoxicity to human cells, with toxicity most strongly associated with isothiocyanates rather than epithionitriles and nitriles. We explored mechanisms of this differential cytotoxicity by examining the role of oxidative metabolism, oxidative stress, mitochondrial permeability, reduced glutathione levels, cell cycle arrest and apoptosis. 2-Propenylisothiocyanate and 3-butenylisothiocyanate both inhibited cytochome P450 1A (CYP1A) enzyme activity in CYP expressing MCL-5 cells at high cytotoxic doses. Incubation of MCL-5 cells with non-cytotoxic doses of 2-propenylisothiocyanate for 24. h resulted in a dose-dependent inhibition of ethoxyresorufin O-deethylase, yet failed to affect CYP1A1 mRNA expression indicating interference with enzyme activity rather than inhibition of transcription. Increased reactive oxygen species (ROS) production was observed only for 2-propenylisothiocyanate treatment. 2-Propenylisothiocyanate treatment lowered reduced glutathione levels whereas no changes were noted with 3,4-epithiobutylnitrile. Cell cycle analysis showed that 2-propenylisothiocyanate induced a G2/M block whereas other hydrolysis products showed only marginal effects. We found that 2-propenylisothiocyanate and 3-butenylisothiocyanate induced cell death predominantly via necrosis whereas, 3,4-epithiobutylnitrile promoted both necrosis and apoptosis. Thus the activity of glucosinolate hydrolysis products includes cytotoxicity that is compound-class specific and may contribute to their putative chemoprotection properties

    Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells

    Get PDF
    The anti-diabetic drug metformin regulates T-cell responses to immune activation and is proposed to function by regulating the energy-stress-sensing adenosine-monophosphate-activated protein kinase (AMPK). However, the molecular details of how metformin controls T cell immune responses have not been studied nor is there any direct evidence that metformin acts on T cells via AMPK. Here, we report that metformin regulates cell growth and proliferation of antigen-activated T cells by modulating the metabolic reprogramming that is required for effector T cell differentiation. Metformin thus inhibits the mammalian target of rapamycin complex I signalling pathway and prevents the expression of the transcription factors c-Myc and hypoxia-inducible factor 1 alpha. However, the inhibitory effects of metformin on T cells did not depend on the expression of AMPK in T cells. Accordingly, experiments with metformin inform about the importance of metabolic reprogramming for T cell immune responses but do not inform about the importance of AMPK

    Perceptual Context in Cognitive Hierarchies

    Full text link
    Cognition does not only depend on bottom-up sensor feature abstraction, but also relies on contextual information being passed top-down. Context is higher level information that helps to predict belief states at lower levels. The main contribution of this paper is to provide a formalisation of perceptual context and its integration into a new process model for cognitive hierarchies. Several simple instantiations of a cognitive hierarchy are used to illustrate the role of context. Notably, we demonstrate the use context in a novel approach to visually track the pose of rigid objects with just a 2D camera

    A global perspective on marine photosynthetic picoeukaryote community structure

    Get PDF
    A central goal in ecology is to understand the factors affecting the temporal dynamics and spatial distribution of microorganisms and the underlying processes causing differences in community structure and composition. However, little is known in this respect for photosynthetic picoeukaryotes (PPEs), algae that are now recognised as major players in marine CO2 fixation. Here, we analysed dot blot hybridisation and cloning–sequencing data, using the plastid-encoded 16S rRNA gene, from seven research cruises that encompassed all four ocean biomes. We provide insights into global abundance, α- and β-diversity distribution and the environmental factors shaping PPE community structure and composition. At the class level, the most commonly encountered PPEs were Prymnesiophyceae and Chrysophyceae. These taxa displayed complementary distribution patterns, with peak abundances of Prymnesiophyceae and Chrysophyceae in waters of high (25:1) or low (12:1) nitrogen:phosphorus (N:P) ratio, respectively. Significant differences in phylogenetic composition of PPEs were demonstrated for higher taxonomic levels between ocean basins, using Unifrac analyses of clone library sequence data. Differences in composition were generally greater between basins (interbasins) than within a basin (intrabasin). These differences were primarily linked to taxonomic variation in the composition of Prymnesiophyceae and Prasinophyceae whereas Chrysophyceae were phylogenetically similar in all libraries. These data provide better knowledge of PPE community structure across the world ocean and are crucial in assessing their evolution and contribution to CO2 fixation, especially in the context of global climate change

    Supersymmetry Flows, Semi-Symmetric Space Sine-Gordon Models And The Pohlmeyer Reduction

    Full text link
    We study the extended supersymmetric integrable hierarchy underlying the Pohlmeyer reduction of superstring sigma models on semi-symmetric superspaces F/G. This integrable hierarchy is constructed by coupling two copies of the homogeneous integrable hierarchy associated to the loop Lie superalgebra extension f of the Lie superalgebra f of F and this is done by means of the algebraic dressing technique and a Riemann-Hilbert factorization problem. By using the Drinfeld-Sokolov procedure we construct explicitly, a set of 2D spin \pm1/2 conserved supercharges generating supersymmetry flows in the phase space of the reduced model. We introduce the bi-Hamiltonian structure of the extended homogeneous hierarchy and show that the two brackets are of the Kostant-Kirillov type on the co-adjoint orbits defined by the light-cone Lax operators L_\pm. By using the second symplectic structure, we show that these supersymmetries are Hamiltonian flows, we compute part of the supercharge algebra and find the supersymmetric field variations they induce. We also show that this second Poisson structure coincides with the canonical Lorentz-Invariant symplectic structure of the WZNW model involved in the Lagrangian formulation of the extended integrable hierarchy, namely, the semi-symmetric space sine-Gordon model (SSSSG), which is the Pohlmeyer reduced action functional for the transverse degrees of freedom of superstring sigma models on the cosets F/G. We work out in some detail the Pohlmeyer reduction of the AdS_2xS^2 and the AdS_3xS^3 superstrings and show that the new conserved supercharges can be related to the supercharges extracted from 2D superspace. In particular, for the AdS_2xS^2 example, they are formally the same.Comment: V2: Two references added, V3: Modifications in section 2.6, V4: Published versio

    Amniotic fluid volume: Rapid MR-based assessment at 28-32 weeks gestation

    Get PDF
    Objectives: This work evaluates rapid magnetic resonance projection hydrography (PH) based amniotic fluid volume (AFV) estimates against established routine ultrasound single deepest vertical pocket (SDVP) and amniotic fluid index (AFI) measurements, in utero, at 28-32 weeks gestation. Manual multi-section planimetry (MSP) based measurement of AFV is used as a proxy reference standard. Methods: 35 women with a healthy singleton pregnancy (20-41 years) attending routine antenatal ultrasound were recruited. SDVP and AFI were measured using ultrasound, with same day MRI assessing AFV with PH and MSP. The relationships between the respective techniques were assessed using linear regression analysis and Bland-Altman method comparison statistics. Results: When comparing estimated AFV, a highly significant relationship was observed between PH and the reference standard MSP (R2=0.802, p<0.001). For the US measurements, SDVP measurement related most closely to amniotic fluid volume, (R2=0.470, p<0.001), with AFI demonstrating a weaker relationship (R2=0.208, p=0.007). Conclusion: This study shows that rapid MRI based PH measurement is a better predictor of AFV, relating more closely to our proxy standard than established US techniques. Although larger validation studies across a range of gestational ages are required this approach could form part of MR fetal assessment, particularly where poly or oligohydramnios is suspected.This study was supported by the National Institute of Health Research, Cambridge Biomedical Research Centre. The authors also acknowledge the support of Addenbrooke’s Charitable Trust and thank the participants for their contribution to the study.This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s00330-015-4179-

    Pyrimidine-2,4,6-triones are a new class of voltage-gated L-type Ca(2+) channel activators.

    Get PDF
    Cav1.2 and Cav1.3 are the main L-type Ca(2+) channel subtypes in the brain. Cav1.3 channels have recently been implicated in the pathogenesis of Parkinson’s disease. Therefore, Cav1.3-selective blockers are developed as promising neuroprotective drugs. We studied the pharmacological properties of a pyrimidine-2,4,6-trione derivative (1-(3-chlorophenethyl)-3-cyclopentylpyrimidine-2,4,6-(1H,3H,5H)-trione, Cp8) recently reported as the first highly selective Cav1.3 blocker. Here we show, in contrast to this previous study, that Cp8 reproducibly increases inward Ca(2+) currents of Cav1.3 and Cav1.2 channels expressed in tsA-201 cells by slowing activation, inactivation and enhancement of tail currents. Similar effects are also observed for native Cav1.3 and Cav1.2 channels in mouse chromaffin cells, while non-L-type currents are unaffected. Evidence for a weak and non-selective inhibition of Cav1.3 and Cav1.2 currents is only observed in a minority of cells using Ba(2+) as charge carrier. Therefore, our data identify pyrimidine-2,4,6-triones as Ca(2+) channel activators

    Perinatal and long term effects of maternal uterine artery adenoviral VEGF-A165 gene therapy in the growth restricted guinea pig fetus

    Get PDF
    Uterine artery application of adenoviral vascular endothelial growth factor gene therapy (Ad.VEGF-A165) increases uterine blood flow and fetal growth in experimental animals with fetal growth restriction (FGR). Whether Ad.VEGF-A165 reduces lifelong cardiovascular disease risk imposed by FGR remains unknown. Here, pregnant guinea pigs fed 70% normal food intake to induce FGR received Ad.VEGF-A165 (1x1010 viral particles, n=15) or vehicle (n=10), delivered to the external surface of the uterine arteries, in mid-pregnancy. Ad libitum fed controls received vehicle only (n=14). Litter size, gestation length, and perinatal mortality were similar in control, untreated FGR and FGR+Ad.VEGF-A165 animals. Compared to controls, birth weight was lower in male but higher in female pups following maternal nutrient restriction, whilst both male and female FGR+Ad.VEGF-A165 pups were heavier than untreated FGR pups (P&lt;0.05 ANOVA). Postnatal weight gain was 10-20% greater in female FGR+Ad.VEGF-A165 than untreated FGR pups, depending on age, although neither group differed from controls. Maternal nutrient restriction reduced heart weight in adult female offspring, irrespective of Ad.VEGF-A165 treatment, but did not alter ventricular wall thickness. In males, postnatal weight gain and heart morphology were not affected by maternal treatment. Neither systolic, diastolic nor mean arterial pressure, adrenal weight, basal or challenged plasma cortisol were affected by maternal undernutrition or Ad.VEGF-A165 in either sex. Therefore, increased fetal growth conferred by maternal uterine artery Ad.VEGF-A165 is sustained postnatally in FGR female guinea pigs. In this study we did not find evidence for an effect of maternal nutrient restriction or Ad.VEGF-A165 therapy on adult offspring blood pressure
    • …
    corecore