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Abstract 

Cruciferous vegetable consumption correlates with reduced risk of cancer. This 

chemopreventative activity may involve glucosinolates and their hydrolysis products. 

Glucosinolate-derived isothiocyanates have been studied for their toxicity and 

chemopreventative properties, but other hydrolysis products (epithionitriles, nitriles) 

have not been thoroughly examined. We report that these hydrolysis products differ in 

their cytotoxicity to human cells, with toxicity most strongly associated with 

isothiocyanates rather than epithionitriles and nitriles. We explored mechanisms of this 

differential cytotoxicity by examining the role of oxidative metabolism, oxidative stress, 

mitochondrial permeability, reduced glutathione levels, cell cycle arrest and apoptosis. 

2-Propenylisothiocyanate and 3-butenylisothiocyanate both inhibited cytochome P450 

1A (CYP1A) enzyme activity in CYP expressing MCL-5 cells at high cytotoxic doses. 

Incubation of MCL-5 cells with non-cytotoxic doses of 2-propenylisothiocyanate for 24 h 

resulted in a dose-dependent inhibition of ethoxyresorufin O-deethylase, yet failed to 

affect CYP1A1 mRNA expression indicating interference with enzyme activity rather 

than inhibition of transcription. Increased reactive oxygen species (ROS) production 

was observed only for 2-propenylisothiocyanate treatment. 2-Propenylisothiocyanate 

treatment lowered reduced glutathione levels whereas no changes were noted with 3,4-

epithiobutylnitrile. Cell cycle analysis showed that 2-propenylisothiocyanate induced a 

G2/M block whereas other hydrolysis products showed only marginal effects. We found 

that 2-propenylisothiocyanate and 3-butenylisothiocyanate induced cell death 

predominantly via necrosis whereas, 3,4-epithiobutylnitrile promoted both necrosis and 

apoptosis. Thus the activity of glucosinolate hydrolysis products includes cytotoxicity 

that is compound-class specific and may contribute to their putative chemoprotection 

properties. 
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Introduction 

Epidemiological studies have shown that dietary cruciferous vegetables may reduce the 

risk of cancer development and this protective effect is attributed in part to glucosinolate 

degradation products. Clinical studies have reported that higher intakes of cruciferous 

vegetables may reduce the risk of lung, colorectal, breast and prostate cancers and 

major chronic diseases (Willett 2000) (Feskanich et al. 2000) (Voorrips et al. 2000) 

(Gupta et al. 2014) (Zhao et al. 2001).  

 

When Brassica plant tissue is disrupted by chopping or chewing, plant myrosinase 

comes into contact with glucosinolates, causing cleavage of the thioglucoside linkage 

producing an unstable thiohydroximate O-sulfonate that rearranges to yield hydrolysis 

products such as isothiocyanate (ITC), nitrile and epithionitrile (ETN) (Figure 1). The 

aglycone most frequently undergoes a Lossen rearrangement to produce ITC (Bones 

and Rossiter 1996; Bones and Rossiter 2006; Hanschen et al. 2014). If the 

glucosinolate side chain contains a double bond (alkene) in the chemical structure, in 

the presence of epithiospecifer protein (ESP) and ferrous ions, the thiohydroximate 

rearranges to produce an ETN and nitrile (Bones and Rossiter 2006). ESP is more 

sensitive to thermal processing than myrosinase and short periods of steaming can alter 

degradation profiles to increase ITCs with a marked reduction in nitriles and ETNs 

(Sarikamis et al. 2006). Thus ETNs and nitriles are more likely to be formed in raw 

vegetables  (Abd Kadir 2013; Kyung et al. 1995) such as in salads where for example 

cabbage is used. Commonly Brassica vegetables are boiled to the extent where 

myrosinases are deactivated. In this case the  intestinal microflora can metabolise 

glucosinolates to give ITCs and nitriles (Fahey et al. 2012) (Luang-In et al. 2014) (Saha 

et al. 2012). While a great deal of data exists for anti cancer properties of ITCs, 

sulforaphane in particular (Hanschen et al. 2014) (Nakamura and Miyoshi 2010), there 

is far less information on other types of hydrolysis products such as ETNs and nitriles. 

In the seventies and eighties there was concern that ETNs being similar in structure to 

epoxides i.e. a three membered ringed heterocyle with sulfur replacing oxygen, might 

have similar toxicities. Few studies have revealed any negative aspects of sulforaphane 

although recently it has been shown that nucleotide excision repair is impaired (Piberger 
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et al. 2014). Ring strain and the electrophilic nature of the carbon adjacent to the sulfur 

atom enables easy ring opening reactions with nucleophiles such as glutathione and 

DNA components resulting in alkylation (Druckrey et al. 1970; Luthy and Benn 1980). 

Studies at this time showed that ETNs were toxic in rats but at relatively high doses 

compared to those that might be taken in the human diet (Brocker et al. 1984) (Luthy et 

al. 1980) (Nishie and Daxenbichler 1980). Other work suggests that ETNs might be 

mutagenic while also slightly inhibitory to mutagenicity caused by benzpyrene (Uda et 

al. 1992).  More recently the potential benefits of ETNs have been explored where it has 

been shown that 3,4-epithiobutylnitrile was the most potent inducer of cytoprotective 

enzymes of the ETNs tested (Kelleher et al. 2009).  

 

Isothiocyanates are cancer chemopreventive in several animal models; proposed 

mechanisms include modulation of xenobiotic-metabolising enzymes by inhibition of 

cytochrome P450 enzymes (CYPs) (Smith and Yang 2000), inducing phase II 

detoxifying enzymes such as glutathione S-transferases (GST) and NAD[P]H: quinone 

acceptor oxidoreductase 1 (NQ01), activating NF-E2 related factor 2 (NrF2) and the 

arylhydrocarbon receptor (AhR) (Hayes et al. 2008). Studies on structure-activity 

relationship in vivo and in vitro have demonstrated that the length of the alkyl chain of 

arylalkyl ITC also plays a role in the inhibition of CYP enzymes and increases their 

chemopreventive efficacy (Hayes et al. 2008; Munday et al. 2008; Zhang and Talalay 

1994).  Isothiocyanates such as phenethylisothiocyanate and 4-

methylsulfinylbutylisothiocyanate (sulforaphane) have been shown to be capable of 

inducing cell cycle arrest and cell death in cancer cells such as human prostate cancer 

cell lines(Hayes et al. 2008) (Singh et al. 2004); bladder cancer cells (UM-UC-3) 

(Abbaoui et al. 2012); and human leukaemia cells (HL-60) (Xu and Thornalley 2000).  

 

For this study we have selected the potential hydrolysis products (Figure 1) of two 

glucosinolates 2-propenyl- and 3-butenylglucosinolate which are found in Brassica 

vegetables. We have used the MCL-5 human lymphoblastoid cell line that has been 

engineered to express CYPs 1A1, 1A2, 2E1, 2A6, 3A4 (Crespi 1991). The cHol cell line 

is identical to the MCL-5 line, but does not express the transfected CYP genes. The two 
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cell lines, differing only in the metabolic competency, facilitate study of the role of CYP 

enzymes in xenobiotic oxidation, formation of reactive oxygenated intermediates (ROI), 

depletion of reduced glutathione, cellular damage, apoptosis and mutagenicity (Crespi 

1991). Here we have examined the involvement of oxidative stress and glutathione 

depletion leading to cell death induced by the glucosinolate hydrolysis products and 

show that cytotoxicity is dependent on the nature of the hydrolysis product.  

 

 

Material and Methods 

Chemicals 

RPMI 1640, L-glutamine, penicillin, streptomycin and hygromycin B were purchased 

from Invitrogen Corporation (Paisley, Scotland, UK). AlamarBlue® reagent and histidinol 

were purchased from Sigma Aldrich Company (Poole, England, UK). All other 

chemicals unless stated in the text were obtained from Sigma Aldrich Company. 2-

Propenylisothiocyanate and 3-butenylnitrile were purchased from Sigma-Aldrich and 

fractionally distilled. The purity of compounds was assessed using GC-MS (Hewlett 

Packard 6890 GC linked to a 5973 MSD). Analysis was carried out on a Rtx®-200MS 

(Crossbend® trifluoropropylpolysiloxane) (30m X 0.25 mm) 0.25 µm film thickness. The 

GC was programmed at an initial temperature of 50˚C (5 min) and to a final temperature 

of 270˚C (linear gradient, 25 min) and held for 5 min. 

 

3-Butenylisothiocyanate (3,4-BUT-ITC) 

3,4-BUT-ITC was synthesised according to the procedures of Ettlinger and Hodgkins 

(Ellinger 1955). The product was purified by distillation (80 0C, 30 mm Hg) and the 

structure confirmed by GC-MS and 1H-NMR spectroscopy.  1H NMR (400 MHz, CDCl3): 

δ 2.5358 (q, 2H, H-4, J = 2.44), 3.6527 (t, 2H, H-3, J = 6.60), 5.2828 (m, 2H, H-1), 

5.8880 (ddt, 1H, H-2, J = 17.04, 10.2, 6.76). MS (EI) m/z (%): 72 (100), 113 (M+, 70), 55 

(19), 85 (10), 114 (1, 5). 

 

3,4-Epithiobutylnitrile (3,4-ETBUT-NIT) and 4,5-epithiopentylnitrile (4,5-ETPENT-NIT) 
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Starting from the bromides (2-propenylbromide and 3-butenylbromide), 3,4-ETBUT-NIT 

and 4,5-ETPENT-NIT were synthesised according to the procedures described by 

Luethy et al. (Luethy et al. 1980). The resulting ETNs were purified by column 

chromatography on florisil.  Florisil (8 g) was washed with pentane and the reaction 

product (approx 40 mg) dissolved in ether and applied to the column. The product was 

eluted (5 ml fractions) using a sequential mixture of pentane and ether in the ratio of 4:1 

(10 ml), 3:1 (15 ml), 2:1 (15 ml)  and finally 1:1 (20 ml). The elution of the ETNs was 

monitored by GC-MS. The ETNs eluted in the 3:1 pentane:ether fraction and were 

evaporated in a gentle stream of nitrogen gas to give approximately 25 mg of pure 

ETNs. The purity was confirmed by GC-MS and 1H-NMR spectroscopy.,4-ETBUT-NIT: 

1H NMR (400 MHz, CDCl3): δ 2.4280 (dd, 1H, H-1, J= 5.04, 1.64), 2.7013 (dd, 1H, H-1, 

J = 6.12, 1.60), 2.8974 (dq, 2H, H-3, J = 12.96, 5.64), 3.1817 (m, 1H). MS (EI) m/z (%): 

99(M+, 100), 72 (26), 98 (8), 71 (7), 70 (5), 59 (3), 58 (3); 4,5-ETPENT-NIT: δ 1.7623 

(m, 1H), 2.3608 (dd, 1H, J = 5.36, 1.32), 2.4324 (m, 1H), 2.6601 (m, 2H), 3.0920 (m, 

1H). MS (EI) m/z (%): 113(M+, 100), 86(18), 80(16). 

 

4-Pentenylnitrile (4,5-PENT-NIT) 

4,5-PENT-NIT is an intermediate in the synthesis of 4,5-ETPENT-NIT (Luethy et al. 

1980) and was purified by fractional distillation (bp, 79-81, 98 mm Hg) and the structure 

confirmed by GC-MS and 1NMR (Gribkov et al. 2006; Luethy et al. 1980). 1H NMR (400 

MHz, CDCl3): δ 2.4908 (m, 4H), 5.2470 (ddt, 2H, J = 12.44, 5.60, 1.20), 5.9107 (ddt, 1H, 

J = 16.68, 10.4, 6.28). MS (EI) m/z (%): 81(M+, 89), 66(8), 54(100). 

 

 

Cell culture 

The two human B lymphoblastoid cells, MCL-5 (metabolically competent and 

expressing CYP1A1, 1A2, 2E1, 2A6, 3A4 and epoxide hydrolase) and cHo1 (no 

engineered CYP expression) grow in suspension and were used throughout this study. 

MCL-5 and cHo1 cells were maintained in RPMI 1640 media containing L-glutamine (2 

mM), supplemented with horse serum (45 mL), penicillin/streptomycin (100 μg/mL), 

hygromicine B (200 µg/mL) and histinidol (2 mM). Cells were incubated in a 5% CO2 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

7 

 

atmosphere at 37ºC.  Cell numbers were assessed using a haemocytometer and 

viability assessed using trypan blue exclusion. 

 

AlamarBlue ® assay 

Cytotoxicity was assessed using AlamarBlue® assay (Invitrogen, Life Technologies). 

AlamarBlue® indicator dye changes colour and fluoresces in response to cellular 

enzymic reduction of resazurin to fluorescent resorufin by viable cells.  For both MCL-5 

and cHo1 cells, the reduction is proportional to the number of viable cells present in the 

sample (data not shown).  Briefly, MCL-5 cells were harvested and seeded (105 

cells/well) in 24 well plates and left overnight in a humidified incubator with a 5% CO2 

atmosphere at 37ºC to equilibrate. Twenty μL of vehicle control (96% ethanol) or test  

compounds, 2,3-PROP-ITC, 3,4-BUT-NIT, 3,4-ETBUT-NIT, 3,4-BUT-ITC, 4,5-ETPENT-

NIT and 4,5-PENT-NIT (dissolved in 96% ethanol) were added into 2 mL media 

containing cells and incubated for 48 h. At the end of the incubation period, 

AlamarBlue® (200μL, 0.4%) was added to each well and incubated for 8 hours. The 

fluorescence was monitored at 560nm excitation wavelength and 590nm emission 

wavelength using a BMG Polarstar fluorimetric plate reader.   

 

Trypan blue exclusion assay 

Cell number was determined using a haemocytometer and viability evaluated using an 

assay based on the exclusion of trypan blue dye (0.4%, 100 l). Cells  were seeded 

(104 cells/well) in 24  well plates and allowed to equilibrate.  

 

Oxidative Stress Measurement using a Diclorofluorescein (DCF) Assay 

Oxidative stress was determined fluorometrically using diclorofluorescein (DCF) (Said et 

al. 2007); (Shao et al. 2008). Cells (2.0 x105) were seeded into 24 well plates and 

equilibrated overnight. 6-Carboxy-2’7’-dichlorodihydrofluorescein diacetate (carboxy-

H2DCFDA, 20 µL, 30 µM) in RPMI media (1 mL) was added to each well and incubated 

for 30 mins at 37°C to load cells, which were then centrifuged (2000 g). Medium was 

aspirated and the cells washed with phosphate buffered saline (PBS). New RPMI 1640 

medium (990 µL) was added into each well. Glucosinolate hydrolysis products (10 µL in 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

8 

 

RPMI 1640 media to give a final concentration of 0.1 to 100 μM) were added and the 

cells were incubated from 0.5 h to 24 h. Fluorescent measurements (excitation at 485 

nm and emission at 520 nm) were taken from 0.5 h -  24 h using a BMG Polarstar 

fluorimetric plate reader. Measurements were recorded for 4 independent cultures. 

 

EROD activity  

EROD activity was measured in a dynamic assay in a pre-heated (37°C) plate reader 

with readings taken every 10 min for up to 120 min. Glucosinolate hydrolysis products in 

ethanol (10 µL) were added into RPMI 1640 phenol red free media (1 mL) containing 

cells (2 x 106) to give a final concentration of 0.1 to 100 μM and pre-incubated for 40 

min at 37°C. Immediately after pre-incubation, 7-ethoxyresorufin (dissolved in DMSO, 

1µL) was added to each well to give a final concentration of 5mM. CYP1 mediated 7-

ethoxyresorufin metabolism to resorufin was measured fluometrically (excitation at 

560nm and emission at 580nm) in a pre-heated plate reader at 37˚C. A resorufin 

standard curve was generated using resorufin stock solution serially diluted in RPMI 

1640 phenol red free media containing cells (2 x 106) cells. As a positive control for 

CYP1 activity, Aroclor 1254-induced rat liver S9 (20 g protein) was used in a reaction 

mixture containing 0.1M Tris-HCL (pH 7.4), NADPH (0.5 mM), glucose-6-phosphate (10 

mM), MgCl2 (2 mM), glucose-6-phosphate dehydrogenase (3 units/mL) with 7-

ethoxyresorufin (5 mM final concentration) to give a final volume of 1 mL. In some 

experiments, cells were pretreated with 2,3-PROP-ITC (0 – 2 M) or 3,4-BUT-ITC (0 – 

75 M) for 24 h, then EROD was measured as described above. 

 

 

Reduced Glutathione  

Cells (2.0 x 105) were plated in 24 well plates containing RPMI 1640 media with 

supplements. Glucosinolate hydrolysis products in ethanol (20 µL), were added into 2 

mL media containing cells to give a final concentration of 0.1 to 100 µM. The treated 

cells were incubated for 0.5 to 24 h at 37°C. The samples were analysed for reduced 

glutathione using a method based on that previously described (Hissin and Hilf 1976). 

The cells were harvested from each well and centrifuged at 2000 g for 5 min at 4°C. The 
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media were then kept at -80°C until required. The cell pellets were washed twice with 

phosphate buffered saline (300 μL, pH 7.5) and centrifuged (2,000 g, 5 min, 4°C). Each 

washed cell pellet was lysed in 40 μL of digitonin solution (1.5 mM in 1% DMSO in 

deionised water, prepared according to Tramontina et al., (Tramontina et al. 2000) and 

centrifuged (14000 rpm, 5 min, 4°C). The lysed cells in digitonin solution were incubated 

in a water bath (37°C, 10 min), followed by gentle shaking for 10 min at room 

temperature and re-centrifuged (14, 000 rpm, 5 min, 4°C). The lysates (40 μL) were 

mixed with 160 μL 6.5% 5-sulfosalicylic acid on ice for 20 min and centrifuged at 14000 

rpm for 5 min at 4°C. The supernatants were kept at -80°C until required. The 

supernatant fraction was diluted 5000 fold with sodium phosphate buffer (100 mM, pH 

7.5) and 100 L used for the assay in 96 well plates. In each well, 33.4 µL of O-

phthaldialdehyde (OPA) was added, and wells covered to avoid light exposure, then 

incubated for 30 min at room temperature before fluorescence reading was measured at 

excitation 320nm and emission 460 nm at temperature 37°C. A reduced glutathione 

(GSH) calibration curve (range of 0.78 µM to 25 µM) was used for determination of GSH 

content in the samples. 

 

Mitochondria membrane permeability  

Rhodamine 123 (Rho123) is a cationic fluorescent dye, which permeates living cells and 

can be used to measure mitochondrial trans-membrane potential (ΔΨm). As previously 

described (Tang and Zhang 2005), Rh123 is sequestered by normal mitochondria, 

which then fluoresce; when ΔΨm is lost, the fluorescence is diminished. We have used 

this approach to assess ΔΨm in cHo1 and MCL-5 cells by fluorimetry at excitation of 500 

nm and emission of 550 nm using a microplate reader (Polarstar, BMG). 

 

Cells (2 x105) were seeded in each well of a 24 well plate and equilibrated overnight in a 

CO2 incubator at 37°C. To load cells, rhodamine 123 (20 µL, 510 µM) was added to 

each well with cells in RPMI 1640 media (1mL) and incubated for 30 mins. The cells 

were centrifuged (10 min, 5˚C, 2000 g), the media was aspirated and replaced with 

fresh RPMI 1640 media. Glucosinolate hydrolysis products in ethanol (10 µL) were 
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added into 1 mL of media containing cells, to give a final concentration of 0.1 to 100 μM 

and incubated for 0.5h to 24h with periodic fluorescence measurements.  

 

Cell cycle 

Cells (5 x 105) were seeded in 12 well plates containing 5 mL RPMI media. After an 

overnight pre-equilibration period, the cells were exposed to the glucosinolate hydrolysis 

products (100 µM and 10 µM) for 24h to 48h in triplicate cultures.  Immediately after the 

incubation period the plates were centrifuged (10 min, 2000 rpm, 5˚C), the media was 

aspirated and replaced with 1 mL of ice-cold 70% ethanol and kept at -20˚C overnight to 

fix the treated cells. The fixed cells were harvested by centrifugation (5 min, 2000 rpm, 

5˚C) then washed with PBS and resuspended thoroughly (to get single cell 

suspensions) in propidium iodide staining solution containing 5 mg/mL propidium iodide 

(PI), 0.1 µg/mL RNase and 0.1% triton-x100, followed by incubation (30 min, 37°C). 

Samples were analysed using flow cytometry (BD LSRFortessa, USA) and data were 

quantified using FlowJo software version 7.0. (Tree Star Inc., OR, USA)  

 

Apoptosis 

Apoptosis analysis was carried out using Alexa® Fluor 488 annexin V and PI dye kit 

(invitrogen,UK). MCL-5 cells (106 cells) were seeded in 6 well plates containing 10 mL 

RPMI media. After overnight pre-equilibration, the cells were exposed to glucosinolate 

hydrolysis products (100 µM) for up to 48h in triplicate independent cultures.  

Immediately after the incubation period, the plates were centrifuged (10 min, 2000 rpm, 

5˚C), the media was aspirated and the cells were washed with phosphate buffer saline 

(PBS). The washed cells were centrifuged to remove PBS then resuspended in 

annexin-binding buffer (100 µL, Invitrogen), followed by addition of Alexa® Fluor 488 

annexin V (5 µL, Invitrogen) and PI working solution (1 µL, 100 µg/mL, Invitrogen). The 

cells were incubated at room temperature in the dark for 15 min then annexin-binding 

buffer (400 µL) was added to give final volume of 500 µL and mixed gently on ice. 

Immediately, the stained cells were analysed by flow cytometry (emission at 530 nm 

and excitation at 488 nm). The cell populations were analysed using FlowJo 7.0 

software. 
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RNA Extraction and Quantitative RT-PCR (Q-PCR) 

Following treatment, cells (3x106) were collected by centrifugation (200xg, 5 minutes, 

RT) and the pellet resuspended in 0.5ml Trizol (Invitrogen, Paisley, UK) for RNA 

extraction, quantified (Implen nanophotometer, GmbH, Munchen, Germany) and ratios 

A260/280 and A260/230 used to assess quality. To synthesise cDNA 1µl random 

primers was added to 500ng of RNA (final volume of 15µl with RNase/DNase-free 

dH2O) and incubated (65°C, 5 minutes). The mixture was placed on ice before addition 

of 0.2mM dNTPs, 5µl 5x first strand buffer, 2µl 0.1mM DTT and 0.5µl Superscript II 

reverse transcriptase (Superscript II kit, Life Technologies). Samples were run on a 

thermocycler (25°C, 10 minutes; 42°C, 90 minutes; 70°C, 15 minutes). CYP1A1 cDNA 

was amplified using Q-PCR. Primer sequences were as described by Hummerich et al., 

(Hummerich et al. 2004). As an internal control, endogenous glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) cDNA from the same cellular extracts was also 

amplified. cDNA was amplified using Taqman Fast 2x Universal PCR master mix, No 

AmpErase UNG (Life Technologies) in triplicate. Q-PCR data were analysed using the 

ABI 7500 Sequence Detection System (Life Technologies) and comparative Ct Method 

(ΔCT Method) (Livak and Schmittgen 2001). Calibration was based on the expression of 

GAPDH. 

 

Statistical Analysis 

A one way analysis of variance followed by a Dunnett’s multiple comparison test was 

used to determine significant differences between groups. 

 

 

Results 

 

Effects of glucosinolate hydrolysis products on cell viability 

The cytotoxic effect of the glucosinolate hydrolysis products was examined using the 

AlamarBlue® assay with the metabolically competent MCL-5 cells and cHo1 cells. Cells 

were treated for 48 hours with compounds (0-100 M) then assessed for cell number 

and viability compared to the vehicle control.  The results shown in figure 2 indicate that 
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2,3-PROP-ITC is the most cytotoxic of the glucosinolate products examined and 

induces dose-dependent toxicity in both cell lines.  Of the other compounds, 3,4-BUT-

ITC, 3,4-ETBUT-NIT and 4,5-ETPENT-NIT show dose-dependent toxicity in both cell 

lines but there is little toxicity noted with the other compounds examined (Fig 2). The 

concentrations of glucosinolate hydrolysis products at which there was a 50% loss of 

cell viability (EC50) are shown in table 1. In contrast, 4,5-PENT-NIT increased Alamar 

Blue reduction in both cell lines at all doses examined and 4,5-ETPENT-NIT and 3,4-

BUT-ITC both increased reduction in MCL-5 cells at doses <1 M. This increased 

reduction of Alamar Blue was not due to a significant increase in viable cell number, 

determined by Trypan Blue exclusion (data not shown), and therefore appears to be a 

stimulation of the reduction process.    

 

Cytochrome P450 activity 

A proposed mechanism whereby the glucosinolate hydrolysis products exert their 

chemopreventative activity is via inhibition of xenobiotic metabolism. We therefore 

examined the effect of treating the metabolically competent MCL-5 cells with each of the 

glucosinolate hydrolysis products (0-100 M) and measured ethoxyresorufin O-

deethylase (EROD), a marker of CYP1A activity. The results show that 2,3-PROP-ITC 

and 3,4-BUT-ITC inhibit EROD, but only at the highest dose employed (100 M) (Fig 3). 

Caution must be exercised in interpreting these results as at high doses (>10 M) these 

ITCs are cytotoxic (Figure 2). In the EROD experiment, the cells were preincubated for 

40 mins then EROD dynamically assessed over the next 2 hs. Within this 160 min 

period, metabolic activity continued but cytotoxicity was increasingly likely to be a 

confounding factor. All other glucosinolate hydrolysis products failed to significantly 

affect EROD (Fig 3) 

 

To further explore the effect of the ITCs on CYP activity, we incubated MCL-5 cells with 

sub-cytotoxic doses of 2,3-PROP-ITC (0-2 M) for 24 h, then performed the EROD 

assay. Under these conditions, we observed a statistically significant dose-dependent 

inhibition of EROD (Fig 4B).  To determine whether this inhibition was a direct effect on 

enzymic activity or altered CYP1A1 gene expression, we used qPCR to determine 
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CYP1A1 mRNA levels and showed treatment had no effect (Fig 4C).  In contrast similar 

experiments with 3,4-BUT-ITC treatment (0 – 75 M) had no effect on EROD (Fig 4A).   

 

Oxidative stress  

Another proposed mechanism involved in the chemopreventative activity of cruciferous 

vegetables is induction of oxidative stress. We therefore assessed the effect of 

treatment of cells with the individual glucosinolate hydrolysis products on the formation 

of reactive oxygen species (ROS). ROS production after treatment with 2,3-PROP-ITC 

was more pronounced in the metabolically competent MCL-5 cell line compared to the 

cHo1 cells. The effect was both temporally and dose-dependent with maximum effect in 

MCL-5 cells at 24 h (Fig 5).  

 

None of the other glucosinolate hydrolysis products examined significantly induced ROS 

activity in either cell line at any of the doses or times examined (the example of 3,4-

ETBUT-NIT is given in Fig 5), whereas the hydrogen peroxide positive control gave a 

clear ROS response. 

 

Glutathione Determination 

The tripeptide glutathione helps to maintain redox homeostasis to protect cells from free 

radical damage. The depletion of reduced glutathione levels at early times of exposure 

to chemicals is one of the signs of cell stress (Circu and Aw 2008). Reduced glutathione 

was assessed using the OPA assay to determine the effect of treatment with 

glucosinolate hydrolysis products. The reaction of reduced glutathione and non-

fluorescent OPA gives the fluorescent product glutathione-O-phthalaldehyde (GSH-

OPA) (Simons and Johnson 1978). Two of the compounds that exhibited toxicity, 2,3-

PROP-ITC and 3,4-ETBUT-NIT were used to treat cHo1 and MCL-5 cells and the 

reduced GSH levels were assessed. 

 

Since 2,3-PROP-ITC induced toxicity, oxidative stress and inhibited cytochrome P450 

enzyme activity, we hypothesized that the compound may deplete reduced glutathione 

levels. As shown in Figure 6, in MCL-5 cells treated with 2,3-PROP-ITC (10 µM and 100 
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µM) there was an early transient increase in GSH concentrations compared to vehicle 

control, then levels decreased significantly after 4 -8 h of exposure. After 24 h of 

exposure, the cellular GSH levels significantly increased presumably due to enhanced 

synthesis of GSH in response to the toxicity. A similar trend was observed in the cHo1 

cells, although only the elevated levels of GSH observed after 24 h of treatment were 

significantly different from control. 

 

As shown in Figure 6, treatment of cells with 3,4-ETBUT-NIT resulted in no significant 

alterations in GSH levels compared to vehicle control. 

 

Mitochondria Permeability 

Previous studies have shown that the isothiocyanates were able to inhibit mitochondrial 

trans-membrane potential (ΔΨm) in human bladder cancer UM-UC3 cells (Tang and 

Zhang 2005). We therefore examined the ability of the glucosinolate hydrolysis products 

used in the current study to affect mitochondrial membrane permeability in cHol and 

MCL-5 cells using loss of Rh123 fluorescence from pre-loaded cells.  

 

Treatment with H2O2 (positive control) induced mitochondrial permeability that became 

increasingly pronounced from 8 h onwards (Fig 7). Although not significantly different 

from controls, similar effects were also be seen with high dose 2,3-PROP-ITC (100 µM) 

in the cHo1 cell line but was less evident in the MCL-5 cell line and only became readily 

apparent at the 24 h time point. The effect was both dose and time dependent. 

 

Treatment with 3,4-ETBUT-NIT, 3,4-BUT-NIT, 3,4-BUT-ITC, 4,5-ETPENT-NIT and 4,5-

PENT-NIT all failed to affect rhodamine loss in either cell type (data not shown). 

 

Cell cycle 

Previous literature has described the ability of ITCs to induce G2/M phase arrest (Smith 

et al. 2004). However, there are no reported effects of the ETNs and nitriles on cell 

cycle. Based on our cytotoxicity study, we hypothesised that ITCs and ETNs affect the 

cell cycle. Therefore, we examined the effect of treating cHol and MCL-5 cells with 2,3-
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PROP-ITC, 3,4-BUT-ITC, 3,4-ETBUT-NIT, 4,5-ETPENT-NIT, 3,4-BUT-NIT and 4,5-

PENT-NIT on cell cycle using  propidium iodide (PI) intercalation with DNA and flow 

cytometry, (Zhu and Gooderham 2002). 

 

2,3-PROP-ITC  

In cHo1 cells treated with 2,3-PROP-ITC for 24 h, there was a dose dependent 

increase in the sub G1 population. The sub G1 signal is indicative of cells undergoing 

cell death, primarily apoptotic cell death. This effect is more pronounced at 48 h (Fig 8). 

At 24 h, the effect of 2,3-PROP-ITC treatment of cHo1 cells on the G1 population is 

marginal but at 48 h the G1 population was much lower, whereas there was a decrease 

in the S phase population at 24h but the effect was lost at 48h (Fig 8). However the 

G2/M population was dose-dependently increased at 24 h (Fig 8) but the effect was lost 

at 48 h.  

 

With MCL-5 cells treated with 2,3-PROP-ITC for 24 h, there was an increase in sub G1 

population that was dose dependent and persistent up to 48 h (Fig 8). There was some 

reduction in the G1 and the S phase populations, and a significant increase in the G2/M 

population at high concentration at 24 h (Fig 8). The effect on the sub-G1 population 

was more pronounced at 48h after treatment as was the reduction in the S phase 

population. 

 

3,4-ETBUT-NIT  

3,4-ETBUT-NIT treatment of cHo1 for 24 h showed little change in the different phase 

populations and there was little evidence of changes in cell death (sub G1) at this 

timepoint (Fig 9). By 48 h of treatment there was an increased sub G1 population but no 

evidence of change in the other phases. Similar changes were noted in the cell cycle of 

MCL-5 cells after 3,4-ETBUT-NIT treatment (Fig 9). 

 

3,4-BUT-ITC  

3,4-BUT-ITC treatment of cHo1 for up to 48 h induced an increase in the sub G1 peak 

with increasing dose (see Fig 9). This coincided with a dose-dependent decrease in the 
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G1 population at 48 H. Neither the S, nor the G2M populations appeared to be affected 

by the treatment. Treatment of  MCL-5 cells with 3-BUTITC for up to 48 h did not induce 

dose-dependent significant effects on the cell cycle (Fig 9).  

 

4,5-ETPENT-NIT, 3,4-BUT-NIT and 4,5-PENT-NIT  

Treatment of cHo1 and MCL-5 cells with 4,5-ETPENT-NIT, 3,4-BUT-NIT and 4,5-

PENT-NIT for up to 48 h failed to alter the cell cycle populations (data not shown). 

 

Assessment of cell death by flow cytometry 

Annexin V and propidium iodide (PI) combination staining can be used to determine if 

the mechanism of cell death is through apoptosis or necrosis (Darzynkiewicz et al. 

2001), (Zhu and Gooderham 2002). Based on the cell viability and cell cycle data, we 

chose to look further at 3 compounds (2,3-PROP-ITC, 3,4-BUT-ITC and 3,4-ETBUT-

NIT).  Each of the three compounds were found to induce cell death in both cHol and 

MCL5 cells. 2,3-PROP-ITC and 3,4-BUT-ITC exposure (100 μM) for 48 h induced a 

significant levels of necrotic cell death in both cHol and MCL5 cells (Fig 10). This 

necrosis effect was also observed for 3,4-ETBUT-NIT (100 μM) treatment and there 

was a trend for an increased percentage of apoptotic cells (1.5 fold compared to control) 

in both cell types (Fig 10) . 

 

 

Discussion 

Glucosinolate hydrolysis products especially ITC are capable of inducing cell death. The 

cytotoxic effect of the glucosinolate hydrolysis products was thought to correspond to 

the effects on CYP enzyme activity and glutathione levels in the cells. Moreover, Wu et 

al., (Wu et al. 2005) reported that the potency of the apoptotic effect induced by ITC 

depends on the structure of the chemical as well as the cells that were used in the 

study. However, the glucosinolate hydrolysis products include not only ITCs but also 

ETNs and nitriles, thus we investigated the potential cell death induced by different 

types of glucosinolate hydrolysis products. We found that the glucosinolate hydrolysis 

products were cytotoxic to both MCL-5 (engineered to express CYP enzymes) and 
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cHo1 (no engineered CYP expression) cells and that the role of metabolism was 

chemical-specific. It has been reported that Brassica vegetables were able to induce 

CYP1A2 activity (Lampe et al. 2000), and  others  (Conaway et al. 1996; La Marca et al. 

2012)  demonstrated that ITC were able to inhibit CYP enzymes 1A1 and 1A2. These 

findings suggest a mechanism whereby ITC inhibition of CYP is followed by 

compensation leading to CYP induction. More relevant to the present study, La Marcia 

et al. (La Marca et al. 2012) reported that 2,3-PROP-ITC and 3,4-BUT-ITC failed to 

inhibit EROD at 40 M. Consistent with this, in our investigation 2,3-PROP-ITC  and 

3,4-BUT-ITC  only showed a significant inhibition of CYP1A activity at the highest dose 

used (100 μM) in our ITC/ethoxyresorufin co-incubation experiments. However, it is 

important to note that at these high concentrations both 2,3-PROP-ITC and 3,4-BUT-

ITC are cytotoxic and the CYP inhibition is therefore confounded by this toxicity. We 

therefore explored this further by examining EROD activity in MCL-5 cells that had been 

pretreated with sub-cytotoxic doses of 2,3-PROP-ITC (0 – 2 M) for 24 h. Under these 

conditions, 2,3-PROP-ITC significantly inhibited EROD in a dose-dependent manner, 

but failed to alter CYP1A1 gene expression. These observations suggest that treatment 

with sub-cytotoxic doses of 2,3-PROP-ITC impairs CYP1A1 enzyme activity but does 

not alter gene expression within the 24 h treatment time period. A downstream 

consequence of this enzyme impairment could result in electron uncoupling which may 

lead to the oxidative stress noted here. In contrast, under the same experimental 

conditions, sub-cytotoxic doses of 3,4-BUT-ITC failed to inhibit EROD, suggesting that 

the effects noted with high dose 3,4-BUT-ITC treatment were related to cytotoxicity.   

 

Reactive oxygen species (ROS) are mediators of intracellular signalling cascades and 

excessive production of ROS may lead to oxidative stress, which can promote 

apoptosis or necrosis (Singh et al. 2005) (Wu et al. 2005). Our results have shown that 

2,3-PROP-ITC was able to induce reactive oxygen species in MCL-5 cells. The other 

glucosinolate hydrolysis compounds we examined had only marginal effect on ROS 

production.  Reactive oxygen species are capable of damaging key biological molecules 

in the cell and this is prevented by reaction with nucleophilic glutathione (GSH)(Loo 

2003). In addition, all ITC are characterised with a functional group (N=C=S) that is 
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highly electrophilic because of their central carbon. This electrophilic group may react 

with nitrogen-, oxygen- and sulphur-based nucleophiles, including GSH to form thiourea 

derivatives, thiocarbamates and dithiocarbamates, respectively.  

 

We therefore investigated whether the oxidative stress noted here may affect GSH level 

after the glucosinolate hydrolysis products were exposed to the cells. Our results show 

that GSH levels in MCL-5 cells were decreased at 4h to 8h with 2,3-PROP-ITC (10 μM 

and 100 μM) exposure. Interestingly, after 8 h of the treatment, the GSH level gradually 

increased in both cell lines, consistent with GSH synthesis due to the increased cellular 

requirement. With 2,3-PROP-ITC, which is highly electrophilic and easily reacts with 

nucleophiles such as the –SH group in GSH structure, the decrease in GSH levels was 

likely due to ITC conjugation. When cells are redox imbalanced after exposure to 

reactive electrophilic chemicals, there is a decline in GSH levels and promotion of ROS 

production further contributing to GSH decline and a concomitant induction of cell death.  

 

In theory, ROS and subsequent lipid peroxide production in mitochondria can affect 

mitochondrial functions such respiration and oxidative phosphorylation, inner membrane 

barrier properties, maintenance of mitochondrial membrane potential (ΔΨm) and 

mitochondrial Ca2+ buffering capacity (Zhang et al. 1990) (Bellomo et al. 1991) (Ott et 

al. 2007). The excessive production of ROS could potentially stimulate Ca2+ 

relocalisation which may cause the opening of the permeability transition pore (PTP) 

and lead to cell death (Ott et al. 2007).  This mechanism could be one of the 

contributors to cell death noted in the present study. Our analysis showed an increase 

of rhodamine fluorescence at 30 min followed by a trend for the loss of mitochondrial 

trans-membrane potential at 6 h to 24 h after 2,3-PROP-ITC (10 uM and 100 uM) 

exposure, however these changes were not significantly different from the controls. This 

suggests a potential loss of mitochondrial transmembrane potential, (ΔΨm) leading to 

cell death (Zamzami and Kroemer 2001); (Tang and Zhang 2004). The other 

compounds showed very little effect on the mitochondrial membrane potential (ΔΨm).  
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Previous studies have shown that 2,3-PROP-ITC could induce G2/M phase arrest in 

HT29 (Lund et al., 2001), GBM 8401 (Chen et al. 2010) and PC-3 cells (Xiao et al. 

2003). Our results have shown that the exposure of 2,3-PROP-ITC (100 uM) for 24 and 

48 h to cHo1 and MCL-5 cells induced an increase of the G2/M phase population and 

similar trend was observed in the cells that were treated with 3,4-BUT-ITC. Thus these 

two glucosinolate hydrolysis compounds were able to inhibit cell proliferation and arrest 

the cell cycle. On the other hand, 3,4-ETBUT-NIT treatment was also seen to be 

cytotoxic but showed cell cycle arrest at G1 phase rather than G2/M. This G1 arrest 

suggests mechanisms of cytotoxicity differ between the ITCs and ETNs.  

 

Apoptosis induced by 2,3-PROP-ITC has been described (Chen et al. 2010), (Tang and 

Zhang 2005). Xiao et al.,(Xiao et al. 2003) postulated that 2,3-PROP-ITC induced 

apoptosis in prostate cancer cells, PC-3 and LNCaP, through cell cycle arrest by 

reducing activity of Cdk1/cyclin B kinase complex and down-regulation of G2/M 

regulating proteins. Tang and Zhang, (Tang and Zhang 2005) found that 2,3-PROP-ITC 

caused mitochondria membrane damage (inner and outer membrane) in human bladder 

cancer, promoting release of cytochrome c into cytoplasm which triggers caspase-9 and 

apoptosis induction. Mitotic arrest was reported to be induced by 2,3-PROP-ITC along 

with mitochondria-mediated apoptosis through release of cytochrome c, which triggers 

caspase-9 and caspase-3 (Geng et al. 2011) (Tang and Zhang 2005). Although, a lot of 

studies have proposed that 2,3-PROP-ITC induces apoptosis, others suggest that this is 

not a mechanism of ITC mediated cell death (Smith et al. 2004). Our results indicate 

that 2,3-PROP-ITC, 3,4-BUT-ITC and 3,4-ETBUT-NIT caused cell death predominantly 

via necrosis and additionally 3,4-ETBUT-NIT induces apoptosis.  

 

The question arises as to what extent ETNs are present in the human diet and what if 

any beneficial effects they have. It has been shown that in some cabbages that 3,4-

ETBUT-NIT is the dominant product (Kyung et al. 1995) and we have shown that this is 

also true for two commonly available cabbages in the UK, Sweetheart and Savoy. 

Analysis showed that 3,4-ETBUT-NIT was the dominant product giving values of 2.31 

µmol ± 0.84 and  24.77 µmol ± 1.84/100 g fresh weight for Sweetheart and Savoy 
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respectively (Abd Kadir 2013). 2,3-PROP-ITC and 3,4-BUT-NIT were not detected. 

Thus it would seem that ETNs are likely consumed as part of the diet where raw 

Brassica vegetables are eaten. The dose would potentially be comparable to ITCs 

assuming that ETNs are readily produced during eating. Thus more work is required, 

particularly human studies where ETN metabolism can be monitored and the types of 

metabolite determined.     

 

In summary, in attempting to understand the putative chemopreventative properties of 

the cruciferous vegetables, we have explored the cellular toxicity of glucosinolate 

hydrolysis products and confirm that toxicity is predominantly associated with the ITCs 

and to a lesser extent the ETNs. Our data also suggest that the mechanisms of cell 

death are different between the two chemical groups and this finding merits further 

investigation.  
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Table 1: Cytotoxicity of glucosinolate hydrolysis products after 48 h of treatment. 

Glucosinolate hydrolysis 

products 

EC50 in cHo1 

(µM) 

EC50 in MCL 5 

(µM) 

2-propenylisothiocyanate 
 (2,3-PROP-ITC) 

35.8 18.2 

3-butenylisothiocyanate 
(3,4-BUT-ITC) 

>100 >100 

3,4-epithiobutylnitrile 
(3,4-ETBUT-NIT) 

31.0 25.0 

4,5-epithiopentylnitrile 
(4,5-ETPENT-NIT) 

38.6 61.6 

3-butenylnitrile 
(3,4-BUT-NIT) 

> 100 > 100 

4-pentenylnitrile 
(4,5-PENT-NIT) 

> 100 > 100 

EC50 values are the concentrations that achieved a 50% loss of cell viability as 

measured in the Alamar Blue assay within the 48 h period of incubation and were 

determined from the data presented in figure 2.   
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Figure legends 

Figure 1: Structures of the glucosinolate hydrolysis products used in this study, (1) 2,3-
propenylisothiocyanate (2,3-PROP-ITC); (2) 3,4-butenylnitrile (3,4-BUT-NIT); (3) 3,4-
epithiobutylnitrile (3,4-ETBUT-NIT); (4) 3-butenylisothiocyanate (3,4-BUT-ITC); (5) 4-
pentenylnitrile (4,5-PENT-NIT); (6) 4,5-epithiopentylnitrile (4,5-ETPENT-NIT).  
 
Figure 2:  Effect of treatment of a) cHo1 b) MCL 5 cells with the glucosinolate hydrolysis 
products on cell viability at 48 h as assessed by AlamarBlue® assay. Results are shown 
as percentage of vehicle control cell viability and are displayed as mean ± SD for 
independent cultures (n=4). 
 
Figure 3: Ethoxyresorufin O-deethylase activity in MCL5 cells exposed to A) 3,4-BUT-
ITC, B) 2,3-PROP-ITC, C) 3,4-ETBUT-NIT, D) 4,5-ETPENT-NIT, E) 3,4-BUT-NIT and F) 
4,5-PENT-NIT. Values are % of the control  (mean ± SEM of independent cultures, 
n=3). One way ANOVA (Dunnet’s post test) analysis was performed.  **P<0.01, 
***P<0.001. 
 
Figure 4: Ethoxyresorufin O-deethylase activity in MCL5 cells pretreated for 24 h with A) 
3,4-BUT-ITC and B) 2,3-PROP-ITC. CYP1A1 mRNA expression in MCL5 cells 
pretreated for 24 h with C) 2,3-PROP-ITC. Values are % of the control  (mean ± SEM of 
independent cultures, n=3). One way ANOVA (Dunnet’s post test) analysis was 
performed.  *P<0.05.  A significant trend is shown in B) p-trend <0.05.  
 
Figure 5: Induction of reactive oxygen species (ROS) by treatment of cells with 
glucosinolate hydrolysis products. 
A, C (cHo1 cells) and B, D (MCL-5 cells) treated with A, B  2,3-PROP-ITC; C, D 3,4-
ETBUT-NIT. Values are mean ± SEM for independent cultures (n=4). Two way ANOVA 
(Benferroni post-test) analysis was performed.  **P<0.01, ***P<0.001. 
 
Figure 6: Dose and temporal effects of 2,3-PROP-ITC (A and B) and 3,4-ETBUT-NIT (C 
and D) on reduced glutathione levels in cHo1 (A and C) and MCL 5 (B and D) cells. 
Values are means ± SE of independent cultures (n=3). One way ANOVA analysis 
(Dunnet test) was performed. ** indicates P<0.01 and *** indicates P<0.001 significant 
difference between vehicle control and treatment. 
 
Figure 7: Mitochondrial transmembrane potential measured by loss of Rhodamine 123 
(Rh123) in A) cHo1 cells and B) MCL5 cells after treatment with 2,3-PROP-ITC. Values 
are mean ± SEM for independent cultures (n=3). *P<0.05,  **P<0.01, ***P<0.001 
compared to vehicle control. 
 
Figure 8: Effect of 2,3-PROP-ITC on the cell cycle distribution of A) cHo1 cells and B) 
MCL5 cells after 24 h and 48 h treatment. Cell cycle profile after treatment with 2,3-
PROP-ITC in cHo1 cells for 24 (Aa) and 48 (Ab) hours and in MCL5 cells for 24 (Ba) 
and 48 (Bb) hours. Values are mean ± SEM for independent cultures (n=3) analysed by 
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FlowJo version 7.6.4. *P<0.05, **P<0.01, ***P<0.001significantly different from 
respective control (ANOVA). 
 
Figure 9: Cell cycle profile of cHo1 (A, C, E and G) and MCL 5 (B, D, F and H) cell 
populations after treatment with 3,4-ETBUT-NIT for 24 (A and B) and 48 (C and D) 
hours or with 3,4-BUT-ITC for 24 (E and F) or 48 (G and H) hours. Values are mean ± 
SEM for independent cultures (n=3) analysed by FlowJo version 7.6.4. *P<0.05, 
**P<0.01, ***P<0.001 significantly different from respective control (ANOVA). 
  
Figure 10: Flow cytometry analysis of annexin V and PI staining  profile of cHo1 (A) and 
MCL 5 (B) cells after treatment with 2,3-PROP-ITC, 3,4-BUT-ITC and 3,4-ETBUT-NIT.  
Q1 and Q2 show cells with increased PI staining (indicative of necrotic cells), Q3 and 
Q2 shows increased annexin V staining (indicative of apoptotic cells). Cells appearing in 
Q2 are likely to be a late apoptotic population. The proportions of cHo1 cells that are 
alive (Aa), apoptotic (Ab) or necrotic (Ac) or of MCL5 cells that are alive (Ba), apoptotic 
(Bb) or necrotic (Bc) after 48 h of treatment are shown. Values are mean ± SEM for 
independent cultures (n=3) analysed by FlowJo version 7.6.4. *P<0.05, **P<0.01, 
***P<0.001significantly different from respective control (ANOVA).  
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