193 research outputs found

    Time-dependent appearance of myofibroblasts in granulation tissue of human skin wounds

    Get PDF
    Human skin wounds (66) inflicted between 20 h and 7 months prior to biopsy were studied. In order to identify the type of cellular differentiation of the fibroblastic cells in the granulation tissue, alpha-smooth muscle actin and desmin were immunohistochemically localized. The value of any presumed time-dependent appearance and/or disappearance of positively stained cells was tested for the estimation of wound age. In skin specimens with a wound age less than 5 days (n =15) no typical granulation tissue had developed and no alpha-actin-positive myofibroblasts could be detected. The first appearance of positively reacting myofibroblasts was noted in a 5-day-old wound. In 57% of the lesions with a wound age between 5 and 31 days (25 out of 44 cases) typical granulation tissue formation was present and myofibroblasts with positive reaction for alpha-smooth muscle actin could be identified. Numerous positively reacting cells could generally be found in wounds aged between 16 and 31 days, but also in wounds less than 16 days old. In 29% of the cases with a wound age of more than 31 days (2 out of 7 cases) alpha-sma-positive myofibroblasts also occured. Fibroblastic cells positive for desmin could not be seen at all in our series. Our results demonstrate the appearance of alpha-sma-positive myofibroblasts with the initial formation of typical granulation tissue in human skin lesions as early as approximately 5 days after wounding. In contrast to recent experimental results these cells remained detectable in wounds aged more than 2 months in some cases. The immunohistochemical detection of actin-positive cells, therefore, demonstrates whether an unknown skin wound is aged approximately 5 days or more. Even though a time-dependent decrease of myofibroblasts in human granulation tissue after 31 days in human wounds seems probable, the extended presence (up to about 2 months) of these cells allows no further exact age determination of older wounds

    The myofibroblast, multiple origins for major roles in normal and pathological tissue repair

    Get PDF
    Myofibroblasts differentiate, invade and repair injured tissues by secreting and organizing the extracellular matrix and by developing contractile forces. When tissues are damaged, tissue homeostasis must be re-established, and repair mechanisms have to rapidly provide harmonious mechanical tissue organization, a process essentially supported by (myo)fibroblasts. Under physiological conditions, the secretory and contractile activities of myofibroblasts are terminated when the repair is complete (scar formation) but the functionality of the tissue is only rarely perfectly restored. At the end of the normal repair process, myofibroblasts disappear by apoptosis but in pathological situations, myofibroblasts likely remain leading to excessive scarring. Myofibroblasts originate from different precursor cells, the major contribution being from local recruitment of connective tissue fibroblasts. However, local mesenchymal stem cells, bone marrow-derived mesenchymal stem cells and cells derived from an epithelial-mesenchymal transition process, may represent alternative sources of myofibroblasts when local fibroblasts are not able to satisfy the requirement for these cells during repair. These diverse cell types probably contribute to the appearance of myofibroblast subpopulations which show specific biological properties and which are important to understand in order to develop new therapeutic strategies for treatment of fibrotic and scarring diseases

    The Effects Of N, P And Crude Oil On The Decomposition Of Spartina Alterniflora Belowground Biomass

    Get PDF
    We conducted a laboratory experiment to examine how the decomposition of particulate belowground organic matter from a salt marsh is enhanced, or not, by different mixtures of crude oil, nitrogen (N), or phosphorus (P) acting individually or synergistically. The experiment was conducted in 3.8 L sampling chambers producing varying quantities of gas whose volume was used as a surrogate measure of organic decomposition under anaerobic conditions. Gas production after 28 days, from highest to lowest, was +NP = +N \u3e\u3e\u3e +P, or +oil. The gas production under either +P or +oil conditions was indistinguishable from gas production in the control chamber. Nitrogen, not phosphorus, or +NP, was the dominant factor controlling organic decomposition rates in these experiments. The implication for organic salt marsh soils is that shoreline erosion is enhanced by salt marsh oiling, presumably by its toxicity, but not by its effect on the decomposition rates of plant biomass belowground. Nutrient additions, on the other hand, may compromise the soil strength, creating a stronger disparity in soil strength between upper and lower soil layers leading to marsh loss. Nutrient amendments intended to decrease oil concentration in the marsh may not have the desired effect, and are likely to decrease soil strength, thereby enhancing marsh-to-water conversions in organic salt marsh soils

    A Rapid and Highly Sensitive Method of Non Radioactive Colorimetric In Situ Hybridization for the Detection of mRNA on Tissue Sections

    Get PDF
    Background: Non Radioactive colorimetric In Situ Hybridization (NoRISH) with hapten labeled probes has been widely used for the study of gene expression in development, homeostasis and disease. However, improvement in the sensitivity of the method is still needed to allow for the analysis of genes expressed at low levels. Methodology/Principal Findings: A stable, non-toxic, zinc-based fixative was tested in NoRISH experiments on sections of mouse embryos using four probes (Lhx6, Lhx7, ncapg and ret) that have different spatial patterns and expression levels. We showed that Z7 can successfully replace paraformaldehyde used so far for tissue fixation in NoRISH; the morphology of the cryosections of Z7-fixed tissues was excellent, and the fixation time required for tissues sized 1 cm was 1 hr instead of 24 hr for paraformaldehyde. The hybridization signal on the sections of the Z7-treated embryos always appeared earlier than that of the PFA-fixed embryos. In addition, a 50–60 % shorter detection time was observed in specimen of Z7-treated embryos, reducing significantly the time required to complete the method. Finally and most importantly, the strength of the hybridization signal on the sections of the Z7-treated embryos always compared favorably to that of the sections of PFAfixed embryos; these data demonstrate a significant improvement of the sensitivity the method that allows for the analysis of mRNAs that are barely or not detected by the standard colorimetric NoRISH method. Conclusions/Significance: Our NoRISH method provides excellent preservation of tissue morphology, is rapid, highl

    Fibrosis in the kidney: is a problem shared a problem halved?

    Get PDF
    Fibrotic disorders are commonplace, take many forms and can be life-threatening. No better example of this exists than the progressive fibrosis that accompanies all chronic renal disease. Renal fibrosis is a direct consequence of the kidney's limited capacity to regenerate after injury. Renal scarring results in a progressive loss of renal function, ultimately leading to end-stage renal failure and a requirement for dialysis or kidney transplantation

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    ALMS1-Deficient Fibroblasts Over-Express Extra-Cellular Matrix Components, Display Cell Cycle Delay and Are Resistant to Apoptosis

    Get PDF
    Alström Syndrome (ALMS) is a rare genetic disorder (483 living cases), characterized by many clinical manifestations, including blindness, obesity, type 2 diabetes and cardiomyopathy. ALMS is caused by mutations in the ALMS1 gene, encoding for a large protein with implicated roles in ciliary function, cellular quiescence and intracellular transport. Patients with ALMS have extensive fibrosis in nearly all tissues resulting in a progressive organ failure which is often the ultimate cause of death. To focus on the role of ALMS1 mutations in the generation and maintenance of this pathological fibrosis, we performed gene expression analysis, ultrastructural characterization and functional assays in 4 dermal fibroblast cultures from ALMS patients. Using a genome-wide gene expression analysis we found alterations in genes belonging to specific categories (cell cycle, extracellular matrix (ECM) and fibrosis, cellular architecture/motility and apoptosis). ALMS fibroblasts display cytoskeleton abnormalities and migration impairment, up-regulate the expression and production of collagens and despite the increase in the cell cycle length are more resistant to apoptosis. Therefore ALMS1-deficient fibroblasts showed a constitutively activated myofibroblast phenotype even if they do not derive from a fibrotic lesion. Our results support a genetic basis for the fibrosis observed in ALMS and show that both an excessive ECM production and a failure to eliminate myofibroblasts are key mechanisms. Furthermore, our findings suggest new roles for ALMS1 in both intra- and extra-cellular events which are essential not only for the normal cellular function but also for cell-cell and ECM-cell interactions

    Mechanical stretch and shear flow induced reorganization and recruitment of fibronectin in fibroblasts

    Get PDF
    It was our objective to study the role of mechanical stimulation on fibronectin (FN) reorganization and recruitment by exposing fibroblasts to shear fluid flow and equibiaxial stretch. Mechanical stimulation was also combined with a Rho inhibitor to probe their coupled effects on FN. Mechanically stimulated cells revealed a localization of FN around the cell periphery as well as an increase in FN fibril formation. Mechanical stimulation coupled with chemical stimulation also revealed an increase in FN fibrils around the cell periphery. Complimentary to this, fibroblasts exposed to fluid shear stress structurally rearranged pre-coated surface FN, but unstimulated and stretched cells did not. These results show that mechanical stimulation directly affected FN reorganization and recruitment, despite perturbation by chemical stimulation. Our findings will help elucidate the mechanisms of FN biosynthesis and organization by furthering the link of the role of mechanics with FN
    corecore