4,832 research outputs found

    Thermal issues at the SSC

    Get PDF
    A variety of heat transfer problems arise in the design of the Superconducting Super Collider (SSC). One class of problems is to minimize heat leak from the ambient to the SSC rings, since the rings contain superconducting magnets maintained at a temperature of 4 K. Another arises from the need to dump the beam of protrons (traveling around the SSC rings) on to absorbers during an abort of the collider. Yet another category of problems is the cooling of equipment to dissipate the heat generated during operation. An overview of these problems and sample heat transfer results are given in this paper

    Thermodynamically stable noncomposite vortices in mesoscopic two-gap superconductors

    Full text link
    In mesoscopic two-gap superconductors with sizes of the order of the coherence length noncomposite vortices are found to be thermodynamically stable in a large domain of the THT - H phase diagram. In these phases the vortex cores of one condensate are spatially separated from the other condensate ones, and their respective distributions can adopt distinct symmetries. The appearance of these vortex phases is caused by a non-negligible effect of the boundary of the sample on the superconducting order parameter and represents therefore a genuine mesoscopic effect. For low values of interband Josephson coupling vortex patterns with L1L2L_1 \neq L_2 can arise in addition to the phases with L1=L2L_1 =L_2, where L1L_1 and L2L_2 are total vorticities in the two condensates. The calculations show that noncomposite vortices could be observed in thin mesoscopic samples of MgB2_{2}.Comment: 5 pages, 3 figures, to be published in Europhysics Letter

    The effect of kinesthetic and spatial information in manual control performance

    Get PDF

    Study of intermixing in a GaAs/AlGaAs quantum-well structure using doped spin-on silica layers

    Get PDF
    The effect of two different dopants, P and Ga, in spin-on glass (SOG) films on impurity-free vacancy disordering (IFVD) in GaAs/AlGaAs quantum-well structures has been investigated. It is observed that by varying the annealing and baking temperatures, P-doped SOG films created a similar amount of intermixing as the undoped SOG films. This is different from the results of other studies of P-doped SiO₂ and is ascribed to the low doping concentration of P, indicating that the doping concentration of P in the SiO₂ layer is one of the key parameters that may control intermixing. On the other hand, for all the samples encapsulated with Ga-doped SOG layers, significant suppression of the intermixing was observed, making them very promising candidates with which to achieve the selective-area defect engineering that is required for any successful application of IFVD.One of the authors (H.H.T.) acknowledges a fellowship awarded to him by the Australian Research Council

    Scanning SQUID microscopy of vortex clusters in multiband superconductors

    Get PDF
    In type-1.5 superconductors, vortices emerge in clusters, which grow in size with increasing magnetic field. These novel vortex clusters and their field dependence are directly visualized by scanning SQUID microscopy at very low vortex densities in MgB2 single crystals. Our observations are elucidated by simulations based on a two-gap Ginzburg-Landau theory in the type-1.5 regime.Comment: 4 pages, 5 figures, to be published in Physical Review

    Alpha-nucleus potential for alpha-decay and sub-barrier fusion

    Full text link
    The set of parameters for alpha-nucleus potential is derived by using the data for both the alpha-decay half-lives and the fusion cross-sections around the barrier for reactions alpha+40Ca, alpha+59Co, alpha+208Pb. The alpha-decay half-lives are obtained in the framework of a cluster model using the WKB approximation. The evaluated alpha-decay half-lives and the fusion cross-sections agreed well with the data. Fusion reactions between alpha-particle and heavy nuclei can be used for both the formation of very heavy nuclei and spectroscopic studies of the formed compound nuclei.Comment: 10 pages, 5 figure

    A Benchmarking Study of Matching Algorithms for Knowledge Graph Entity Alignment

    Full text link
    How to identify those equivalent entities between knowledge graphs (KGs), which is called Entity Alignment (EA), is a long-standing challenge. So far, many methods have been proposed, with recent focus on leveraging Deep Learning to solve this problem. However, we observe that most of the efforts has been paid to having better representation of entities, rather than improving entity matching from the learned representations. In fact, how to efficiently infer the entity pairs from this similarity matrix, which is essentially a matching problem, has been largely ignored by the community. Motivated by this observation, we conduct an in-depth analysis on existing algorithms that are particularly designed for solving this matching problem, and propose a novel matching method, named Bidirectional Matching (BMat). Our extensive experimental results on public datasets indicate that there is currently no single silver bullet solution for EA. In other words, different classes of entity similarity estimation may require different matching algorithms to reach the best EA results for each class. We finally conclude that using PARIS, the state-of-the-art EA approach, with BMat gives the best combination in terms of EA performance and the algorithm's time and space complexity.Comment: 11 pages, 1 figure, 7 table

    Ultrafast trapping times in ion implanted InP

    Get PDF
    As⁺ and P⁺implantation was performed on semi-insulating (SI) and p-type InP samples for the purpose of creating a material suitable for ultrafast optoelectronic applications. SI InP samples were implanted with a dose of 1×10¹⁶ cm⁻² and p-type InP was implanted with doses between 1×10¹² and 1×10¹⁶ cm⁻². Subsequently, rapid thermal annealing at temperatures between 400 and 700 °C was performed for 30 sec. Hall-effect measurements, double-crystal x-ray diffraction, and time-resolved femtosecond differential reflectivity showed that, for the highest-annealing temperatures, the implanted SI InP samples exhibited high mobility, low resistivity, short response times, and minimal structural damage. Similar measurements on implantedp-type InP showed that the fast response time, high mobility, and good structural recovery could be retained while increasing the resistivity
    corecore