2,114 research outputs found

    A unifying representation for a class of dependent random measures

    Full text link
    We present a general construction for dependent random measures based on thinning Poisson processes on an augmented space. The framework is not restricted to dependent versions of a specific nonparametric model, but can be applied to all models that can be represented using completely random measures. Several existing dependent random measures can be seen as specific cases of this framework. Interesting properties of the resulting measures are derived and the efficacy of the framework is demonstrated by constructing a covariate-dependent latent feature model and topic model that obtain superior predictive performance

    Topological defect networks for fractons of all types

    Get PDF
    Fracton phases exhibit striking behavior which appears to render them beyond the standard topological quantum field theory (TQFT) paradigm for classifying gapped quantum matter. Here, we explore fracton phases from the perspective of defect TQFTs and show that topological defect networks—networks of topological defects embedded in stratified 3+1-dimensional (3+1D) TQFTs—provide a unified framework for describing various types of gapped fracton phases. In this picture, the subdimensional excitations characteristic of fractonic matter are a consequence of mobility restrictions imposed by the defect network. We conjecture that all gapped phases, including fracton phases, admit a topological defect network description and support this claim by explicitly providing such a construction for many well-known fracton models, including the X-cube and Haah's B code. To highlight the generality of our framework, we also provide a defect network construction of a fracton phase hosting non-Abelian fractons. As a byproduct of this construction, we obtain a generalized membrane-net description for fractonic ground states as well as an argument that our conjecture implies no topological fracton phases exist in 2+1-dimensional gapped systems. Our paper also sheds light on techniques for constructing higher-order gapped boundaries of 3+1D TQFTs

    Earworms from three angles

    Get PDF
    Involuntary, spontaneous cognitions are common, everyday experiences that occur against a backdrop of deliberate goal-directed mentation (Christoff, Ream & Gabrieli, 2004). One such phenomenon may hold special promise for empirical investigatio n of this often elusive experience. Involuntary musical imagery (IN MI) or ‘earworms’ are vivid, identifiable, and affect 91.7% of the population at least once a week (Liikkanen, 2012). tilizing an online survey instrument (http://earwormery.com/) we collected several thousand reports of earworm episodes, in collaboration with the BBC. Study 1 employed a qualitative grounded theory analysis to explore themes relating to the situationalantecedents of INMI experiences (Williamson et al.,2011). The analysis revealed four main trigger themes for INMI experiences and categorized the role of ifferent music media. Study 2 used structural equation modeling (SEM) to relate individual differences in INMI characteristics and isolated an influence of obsess ive compulsive traits. Study 3 comprised a computational analysis of the musical structure of several hundred earworm tunes and compared them to matched control tunes. A statistical classification model was employed to predict whether a tune could be classified as an earworm based on its melodic features. The use of INMI as a model of spontaneous cognition has generated findings regarding the phenomenological experience as well as the role of different behavioural and cognitive contributing factors. This body of work demonstrates the feasibility of studying spontaneous cognitions through musical imagery, which has the potential to enhance our understanding of the intricate relationships between cognitive control, involuntary memory, and the environmen

    Quantifying spatio-temporal boundary condition uncertainty for the North American deglaciation

    Full text link
    Ice sheet models are used to study the deglaciation of North America at the end of the last ice age (past 21,000 years), so that we might understand whether and how existing ice sheets may reduce or disappear under climate change. Though ice sheet models have a few parameters controlling physical behaviour of the ice mass, they also require boundary conditions for climate (spatio-temporal fields of temperature and precipitation, typically on regular grids and at monthly intervals). The behaviour of the ice sheet is highly sensitive to these fields, and there is relatively little data from geological records to constrain them as the land was covered with ice. We develop a methodology for generating a range of plausible boundary conditions, using a low-dimensional basis representation of the spatio-temporal input. We derive this basis by combining key patterns, extracted from a small ensemble of climate model simulations of the deglaciation, with sparse spatio-temporal observations. By jointly varying the ice sheet parameters and basis vector coefficients, we run ensembles of the Glimmer ice sheet model that simultaneously explore both climate and ice sheet model uncertainties. We use these to calibrate the ice sheet physics and boundary conditions for Glimmer, by ruling out regions of the joint coefficient and parameter space via history matching. We use binary ice/no ice observations from reconstructions of past ice sheet margin position to constrain this space by introducing a novel metric for history matching to binary data

    The music that helps people sleep and the reasons they believe it works: A mixed methods analysis of online survey reports

    Get PDF
    Sleep loss is a widespread problem with serious physical and economic consequences. Music can impact upon physical, psychological and emotional states, which may explain anecdotal reports of its success as an everyday sleep aid. However, there is a lack of systematic data on how widely it is used, why people opt for music as a sleep aid, or what music works; hence the underlying drivers to music-sleep effects remain unclear. We investigated music as a sleep aid within the general public via a mixed methods data online survey (n = 651) that scored musicality, sleep habits, and open text responses on what music helps sleep and why. In total, 62% of respondents stated that they used music to help them sleep. They reported fourteen musical genres comprising 545 artists. Linear modelling found stress, age, and music use as significant predictors of sleep quality (PSQI) scores. Regression tree modelling revealed that younger people with higher musical engagement were significantly more likely to use music to aid sleep. Thematic analysis of the open text responses generated four themes that described why people believe music helps sleep: music offers unique properties that stimulate sleep (Provide), music is part of a normal sleep routine (Habit), music induces a physical or mental state conducive to sleep (State), and music blocks an internal or external stimulus that would otherwise disrupt sleep (Distract). This survey provides new evidence into the relationship between music and sleep in a population that ranged widely in age, musicality, sleep habits and stress levels. In particular, the results highlight the varied pathways of effect between music and sleep. Diversity was observed both in music choices, which reflected idiosyncratic preferences rather than any consistent musical structure, and in the reasons why music supports good sleep, which went far beyond simple physical/mental relaxation

    Mechanism of age-dependent susceptibility and novel treatment strategy in glutaric acidemia type I

    Get PDF
    Glutaric acidemia type I (GA-I) is an inherited disorder of lysine and tryptophan metabolism presenting with striatal lesions anatomically and symptomatically similar to Huntington disease. Affected children commonly suffer acute brain injury in the context of a catabolic state associated with nonspecific illness. The mechanisms underlying injury and age-dependent susceptibility have been unknown, and lack of a diagnostic marker heralding brain injury has impeded intervention efforts. Using a mouse model of GA-I, we show that pathologic events began in the neuronal compartment while enhanced lysine accumulation in the immature brain allowed increased glutaric acid production resulting in age-dependent injury. Glutamate and GABA depletion correlated with brain glutaric acid accumulation and could be monitored in vivo by proton nuclear magnetic resonance (1H NMR) spectroscopy as a diagnostic marker. Blocking brain lysine uptake reduced glutaric acid levels and brain injury. These findings provide what we believe are new monitoring and treatment strategies that may translate for use in human GA-I

    Noninvasive measurements of arterial stiffness: Repeatability and interrelationships with endothelial function and arterial morphology measures

    Get PDF
    Corey J Huck1, Ulf G Bronas1, Eric B Williamson1, Christopher C Draheim1, Daniel A Duprez2, Donald R Dengel1,31School of Kinesiology, University of Minnesota, Minneapolis, MN, USA; 2Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN; 3Research Service, Minneapolis Veterans Affairs Medical Center, Minneapolis, MN, USABackground: Many noninvasive arterial assessment techniques have been developed, measuring different parameters of arterial stiffness and endothelial function. However, there is little data available comparing different devices within the same subject. Therefore, the purpose of this study was to examine the repeatability and interrelationships between 3 different techniques to measure arterial stiffness and to compare this with forearm-mediated dilation.Methods: Carotid-radial pulse wave velocity was measured by the Sphygmocor (SPWV) and Complior (CPWV) devices, cardio-ankle vascular index (CAVI) was measured by the VaSera device, vascular structure and function was assessed using ultrasonography and evaluated for reliability and compared in 20 apparently healthy, college-aged men and women.Results: The intraclass correlation coefficient and standard error of the mean for the Sphygmocor (R = 0.56, SEM = 0.69), Complior (R = 0.62, SEM = 0.69), and VaSera (R = 0.60, SEM = 0.56), indicated moderate repeatability. Bland-Altman plots indicated a mean difference of 0.11 ± 0.84 for SPWV, 0.13 ± 1.15 for CPWV, and –0.43 ± 0.90 for CAVI. No significant interrelationships were found among the ultrasound measures and SPWV, CPWV, and CAVI.Conclusions: The three noninvasive modalities to study arterial stiffness reliably measures arterial stiffness however, they do not correlate with ultrasound measures of vascular function and structure in young and apparently healthy subjects.Keywords: Pulse wave velocity, intima-media thickness, flow-mediated dilatio

    Sortase-mediated labelling of lipid nanodiscs for cellular tracing

    Get PDF
    Lipid nanodiscs have broad applications in membrane protein assays, biotechnology and materials science. Chemical modification of the nanodiscs to expand their functional attributes is generally desirable for all of these uses. We present a method for site-selective labelling of the N-terminus of the nanodisc’s membrane scaffold protein (MSP) using the Sortase A protein. Labelling of the MSP was achieved when assembled within the lipid nanodisc architecture, demonstrating that this method can be used as a retrofit approach to modification of preformed nanodiscs before or during application. We label the MSP with a fluorescent fluorescein moiety and use them to image nanodisc uptake into HeLa cells. The Sortase A labelling method could be employed as a general approach to labelling nanodiscs with application-specific functionalities

    Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease

    Get PDF
    Maple syrup urine disease (MSUD) is an inherited disorder of branched-chain amino acid metabolism presenting with lifethreatening cerebral oedema and dysmyelination in affected individuals. Treatment requires life-long dietary restriction and monitoring of branched-chain amino acids to avoid brain injury. Despite careful management, children commonly suffer metabolic decompensation in the context of catabolic stress associated with non-specific illness. The mechanisms underlying this decompensation and brain injury are poorly understood. Using recently developed mouse models of classic and intermediate maple syrup urine disease, we assessed biochemical, behavioural and neuropathological changes that occurred during encephalopathy in these mice. Here, we show that rapid brain leucine accumulation displaces other essential amino acids resulting in neurotransmitter depletion and disruption of normal brain growth and development. A novel approach of administering norleucine to heterozygous mothers of classic maple syrup urine disease pups reduced branched-chain amino acid accumulation in milk as well as blood and brain of these pups to enhance survival. Similarly, norleucine substantially delayed encephalopathy in intermediate maple syrup urine disease mice placed on a high protein diet that mimics the catabolic stress shown to cause encephalopathy in human maple syrup urine disease. Current findings suggest two converging mechanisms of brain injury in maple syrup urine disease including: (i) neurotransmitter deficiencies and growth restriction associated with branchedchain amino acid accumulation and (ii) energy deprivation through Krebs cycle disruption associated with branched-chain ketoacid accumulation. Both classic and intermediate models appear to be useful to study the mechanism of brain injury and potential treatment strategies for maple syrup urine disease. Norleucine should be further tested as a potential treatment to prevent encephalopathy in children with maple syrup urine disease during catabolic stress
    • …
    corecore