640 research outputs found

    Optimal equilibria of the best shot game

    Full text link
    We consider any network environment in which the "best shot game" is played. This is the case where the possible actions are only two for every node (0 and 1), and the best response for a node is 1 if and only if all her neighbors play 0. A natural application of the model is one in which the action 1 is the purchase of a good, which is locally a public good, in the sense that it will be available also to neighbors. This game typically exhibits a great multiplicity of equilibria. Imagine a social planner whose scope is to find an optimal equilibrium, i.e. one in which the number of nodes playing 1 is minimal. To find such an equilibrium is a very hard task for any non-trivial network architecture. We propose an implementable mechanism that, in the limit of infinite time, reaches an optimal equilibrium, even if this equilibrium and even the network structure is unknown to the social planner.Comment: submitted to JPE

    Statics and dynamics of selfish interactions in distributed service systems

    Get PDF
    We study a class of games which model the competition among agents to access some service provided by distributed service units and which exhibit congestion and frustration phenomena when service units have limited capacity. We propose a technique, based on the cavity method of statistical physics, to characterize the full spectrum of Nash equilibria of the game. The analysis reveals a large variety of equilibria, with very different statistical properties. Natural selfish dynamics, such as best-response, usually tend to large-utility equilibria, even though those of smaller utility are exponentially more numerous. Interestingly, the latter actually can be reached by selecting the initial conditions of the best-response dynamics close to the saturation limit of the service unit capacities. We also study a more realistic stochastic variant of the game by means of a simple and effective approximation of the average over the random parameters, showing that the properties of the average-case Nash equilibria are qualitatively similar to the deterministic ones.Comment: 30 pages, 10 figure

    Large deviations of cascade processes on graphs

    Full text link
    Simple models of irreversible dynamical processes such as Bootstrap Percolation have been successfully applied to describe cascade processes in a large variety of different contexts. However, the problem of analyzing non-typical trajectories, which can be crucial for the understanding of the out-of-equilibrium phenomena, is still considered to be intractable in most cases. Here we introduce an efficient method to find and analyze optimized trajectories of cascade processes. We show that for a wide class of irreversible dynamical rules, this problem can be solved efficiently on large-scale systems

    Containing epidemic outbreaks by message-passing techniques

    Get PDF
    The problem of targeted network immunization can be defined as the one of finding a subset of nodes in a network to immunize or vaccinate in order to minimize a tradeoff between the cost of vaccination and the final (stationary) expected infection under a given epidemic model. Although computing the expected infection is a hard computational problem, simple and efficient mean-field approximations have been put forward in the literature in recent years. The optimization problem can be recast into a constrained one in which the constraints enforce local mean-field equations describing the average stationary state of the epidemic process. For a wide class of epidemic models, including the susceptible-infected-removed and the susceptible-infected-susceptible models, we define a message-passing approach to network immunization that allows us to study the statistical properties of epidemic outbreaks in the presence of immunized nodes as well as to find (nearly) optimal immunization sets for a given choice of parameters and costs. The algorithm scales linearly with the size of the graph and it can be made efficient even on large networks. We compare its performance with topologically based heuristics, greedy methods, and simulated annealing

    Probabilistic seismic demand modeling of local level response parameters of an RC frame

    Get PDF
    Probabilistic methods to evaluate the seismic vulnerability of reinforced concrete (RC) frames are largely used in the context of performance based design and assessment, often describing the structural response using global engineering demand parameters (EDPs) such as the maximum interstory drift. While such EDPs are able to synthetically describe the structural behavior, the use of local EDPs is necessary to provide a more realistic and thorough description of failure mechanisms of low-ductility frames lacking seismic details. The objective of this paper is to investigate viable probabilistic seismic demand models of local EDPs, which may be used in developing fragility curves for the assessment of the low-ductility RC frames. The present work explores adequate regression models, probability distributions and uncertainty variation of the demand models. In addition, the adequacy of several ground motion intensity measures (IMs) to be used for predictive modeling of local EDPs is investigated. A realistic benchmark three-story RC frame representative of non-ductile buildings is used as a case study to identify key considerations

    Vision-Based Structural Monitoring: Application to a Medium-Span Post-Tensioned Concrete Bridge under Vehicular Traffic

    Get PDF
    Video processing for structural monitoring has attracted much attention in recent years thanks to the possibility of measuring displacement time histories in the absence of stationary points close to the structure, using hardware that is simple to operate and with accessible costs. Experimental studies show a unanimous consensus on the potentialities of vision-based monitoring to provide accurate results that can be equivalent to those obtained from accelerometers and displacement transducers. However, past studies mostly involved steel bridges and footbridges while very few applications can be found for concrete bridges, characterised by a stiffer response with lower displacement magnitudes and different frequency contents of their dynamic behaviour. Accordingly, the attention of this experimental study is focused on the application of a vision-based structural monitoring system to a medium-span, post-tensioned, simply supported concrete bridge, a very common typology in many road networks. The objective is to provide evidence on the quality of the results that could be obtained using vision-based monitoring, understanding the role and influence on the accuracy of the measurements of various parameters relevant to the hardware settings and target geometry, highlighting possible difficulties, and providing practical recommendations to achieve optimal results
    • …
    corecore