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Abstract Probabilistic methods to evaluate the seismic vulnerability of reinforced 

concrete (RC) frames are largely used in the context of performance based design and 

assessment, often describing the structural response using global engineering demand 

parameters (EDPs) such as the maximum interstory drift. While such EDPs are able to 

synthetically describe the structural behavior, the use of local EDPs is necessary to provide a 

more realistic and thorough description of failure mechanisms of low-ductility frames lacking 

seismic details. The objective of this paper is to investigate viable probabilistic seismic 

demand models of local EDPs, which may be used in developing fragility curves for the 

assessment of the low-ductility RC frames. The present work explores adequate regression 

models, probability distributions and uncertainty variation of the demand models. In addition, 

the adequacy of several ground motion intensity measures (IMs) to be used for predictive 

modeling of local EDPs is investigated. A realistic benchmark three-story RC frame 

representative of non-ductile buildings is used as a case study to identify key considerations. 

Keywords Low-ductility Reinforced Concrete Frames, Fragility Curves, Probabilistic Seismic Demand 

Models, Local Engineering Demand Parameters, Intensity Measures 

1. Introduction 

Reinforced concrete (RC) buildings constructed before the introduction of advanced 

seismic design codes have suffered significant damage during past earthquakes due to a lack 

of adequate ductility. These structures represent one of the prevalent construction typologies 

in regions with high seismic activity worldwide. For example, as per the latest survey, experts 

estimate that in California alone approximately 20,000 non-ductile concrete buildings were 

constructed before the introduction of seismic design codes (Liel and Deierlein 2012). This 

highlights the need to develop reliable tools to assess the vulnerability of such structures. 

Performance Based Earthquake Engineering (Cornell and Krawinkler 2000; Moehle and 

Deierlein 2004) has gained momentum to support seismic risk mitigation decision-making by 

disaggregating individual elements of the risk assessment. Seismic fragility curves are key 

elements of this process. Their efficacy hinges on the appropriate selection of a parameter 

used to describe the seismic intensity, denoted as the intensity measure (IM), and of a 

structural response parameter, denoted as the engineering demand parameter (EDP). The 

probabilistic relationship constructed between the IM and the EDP is used to evaluate the 

fragility, or conditional probability of exceeding a structural capacity limit given the level of 

IM. Fragility curves are widely employed in many fields such as seismic risk assessment, 

seismic retrofit prioritization and life cycle cost assessment. 
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Incremental Dynamic Analysis (Vamvatsikos and Cornell 2002) is, amongst others, one of 

the most commonly used methods for generating samples of EDP-IM pairs necessary for 

fragility curve computation. In this procedure, the record-to-record variability is taken into 

account by selecting a bin of ground motion records that are amplitude scaled in order to 

describe the range of seismic intensities. Some limits of the method derive from the large 

amount of non-linear dynamic analyses required and, in some cases, from the excessive 

scaling factors that may be required to span the range of interest of the seismic intensity 

(Luco and Bazzurro 2007). Alternative methodologies which employ probabilistic seismic 

demand models (Cornell et al. 2002) can be used in order to overcome these limits. These 

models describe the variation of seismic demand by providing an analytical relationship 

between the IM and the statistics of the EDPs, obtained by fitting, with a regression model, 

the outcomes of a reduced set of dynamic analyses. In this case the structure is subjected to a 

set of records with different IM values providing a ‘cloud’ rather than a stripe of EDP-IM 

samples. When the intensity of the records is adequate to cause collapse of the structure, this 

technique permits the use of unscaled ground motions and a smaller set of records. Demand 

models are usually developed based on the assumption of a lognormal distribution of the 

demand for a given IM value. Thus, the fitting problem consists of the definition of the two 

functions describing respectively the variation with the IM of the logarithmic mean and 

standard deviation. Probabilistic models depend both on the monitored EDP and on the 

chosen ground motion IM. 

Previous works on this topic have mainly focused on global response parameters, such as 

the top story displacement or the maximum interstory drift over the building height. These 

are synthetic parameters at structure-level and are employed as a proxy for inferring more 

local level (component-level) damage. Global EDPs may be adequate to describe the seismic 

response of structures designed by strength hierarchy rules, but may lead to an inadequate 

approximation in the vulnerability evaluation of low-ductility frames since in this case there 

is not a direct relation between local failure mechanisms and the global behavior (Freddi et al. 

2013). This problem is also considered in international codes (FEMA 356; ACI 318; EC8) 

that require monitoring of global as well as local failure conditions in the deterministic 

seismic analysis of existing structures. However, in contemporary probabilistic analyses only 

global responses are traditionally monitored. This choice is driven in part by the high 

computational effort required in probabilistic analyses; however, in order to achieve an 

adequate description of the structural response and to maintain consistency between 

deterministic and probabilistic analyses, this issue should be addressed. Seismic vulnerability 

assessment of non-ductile structures should consider the fragility of multiple structural 

components which affect system level performance as well as losses, as suggested by Freddi 

et al. (2013), Bai et al. (2011) and Ghosh and Padgett (2011). 

The objective of this paper is to investigate the viability of probabilistic seismic demand 

models in the description of the local EDPs response for the assessment of the low-ductility 

RC frames. This involves two main aspects: (1) the definition of adequate probabilistic 

models able to describe the different local failure mechanisms and (2) the sensitivity of the 

results with respect to different IM choices. The derivation of local fragility curves for 

element or component level damage is enabled by the development of demand models for 

local EDPs. 

In the presented study, several EDPs have been considered in order to monitor the most 

relevant failure modes in low-ductility RC frame buildings. Demand models of single 
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structural components are developed for these EDPs, providing insight into the appropriate 

form of regression model. Additionally, hypothesis tests on the typical lognormal distribution 

of demand and variation of the demand uncertainty with the IM are performed. In order to 

provide a comprehensive understanding of the issues concerning the ground motion intensity, 

several IMs proposed in literature (Padgett et al. 2008; Giovenale et al. 2004; Luco and 

Cornell 2007; Katsanos et al. 2010; Alavi and Krawinkler 2004) are analyzed and compared 

to identify which is the most appropriate to be used for predictive modeling of each local 

EDP on the basis of their efficiency and sufficiency. 

For case study purposes, a three-story moment resisting RC frame is adopted, which is 

representative of typical gravity load designed low-rise RC frames constructed in the Eastern 

and Central US. The case study frame was experimentally investigated extensively by Bracci 

et al. (1992a,b) and Aycardi et al. (1992), enabling validation of the finite element model and 

improved confidence in the global and local dynamic response estimates. 

2. Probabilistic Seismic Demand Analysis 

General framework 

The probability of failure due to seismic events can be evaluated by the following 

expression: 

      
0

IMP EDP C G im f im dim


    (1) 

based on the definition of the random variable IM  describing the earthquake intensity, 

whose variability is described by the probability density function  imf IM ; EDP and C  are 

random variables measuring the seismic demand and the seismic capacity of a structural 

component, respectively. The function  G im P EDP C im      is the fragility curve providing 

the conditional probability of failure given the seismic intensity im . 

The IM aims to synthesize the most important characteristic of the ground motion. Ideally, 

an appropriate IM should be able to capture the amplitude, frequency content and duration 

properties of a ground motion which significantly affects the elastic and inelastic response of 

the structure. On the other hand, EDPs are response quantities used to predict structural 

damage and can generally be used to investigate a range of potential inadequacies of 

structures. Probabilistic seismic demand models, investigated in this paper, describe the 

variation of seismic demand by providing an analytical relationship between the IM and the 

statistics of the EDPs allowing the definition of fragility curves by a closed form solution 

(Cornell et al. 2002). 

Ground motions and intensity measures 

The quality of an IM is usually evaluated by the following properties: practicality, 

efficiency, sufficiency and hazard computability. Practicality measures the level of correlation 

between an IM and the demand of the structural components (Padgett et al. 2008). An IM is 

efficient if it reduces the amount of dispersion in the estimated demand (Giovenale et al. 

2004). Sufficiency of the IM is the property that makes the structural response conditionally 

statistically independent of other ground motion characteristics, such as earthquake 

magnitude and source-to-site distance (Luco and Cornell 2007). Hazard computability refers 

to the effort required to assess the probabilistic seismic hazard or availability of hazard curves 

(Giovenale et al. 2004). 

Many studies on different IMs have been performed in the recent years by considering 
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their properties and their viability for demand response prediction. Results depend on the 

particular response parameter observed (EDP) and on the characteristic of the considered 

structural system. For a general overview of the topic the reader can refer to Padgett et al. 

(2008), Luco and Cornell (2007), Katsanos et al. (2010) and Baker and Cornell (2005). 

Engineering Demand Parameters for low-ductility RC frames 

“Engineering Demand Parameters are structural response quantities that can be used to 

predict damage to structural and non structural component systems” (ATC 58). EDPs 

selected should correlate well with a measure of damage of the structure as well as with 

decision variables, such as, direct dollar losses and duration of downtime (Medina and 

Krawinkler 2003). Appropriate response indicators of the structure can be chosen based on 

the observation of failure modes highlighted in past earthquake events (Liel and Deierlein 

2012). Global deformational parameters, such as the maximum story displacement and the 

maximum interstory drift are often used to estimate overall structural damage, while the 

maximum story acceleration is employed to evaluate building contents and non-structural 

damage. The use of global EDPs is suggested from some current guidelines (FEMA 356; 

HAZUS-MH 2.0) and several authors, e.g. Elwood and Moehle (2005), investigated the 

definition of capacity limits associated to global EDPs. Only a limited number of studies (i.e. 

Kazantsi and Vamvatsikos 2015) and guidelines (i.e. NIST 2010, FEMA-P58) recommend 

the use of story-level EDPs as a proxy for component damage. While global EDPs are 

structure-level parameters and local EDPs are component-level parameters, this type of EDPs 

based on story-level parameters can be considered as an intermediate-level EDPs. Although 

no detailed recommendations are provided, the use of local EDPs is also suggested if the 

damage of a single component is better correlated with such parameters. Depending on the 

type of component investigated, they may include, stresses and strain levels for steel and 

concrete fibers, forces and deformations, such as axial and shear forces, moments, curvatures 

and rotations. For some of these local parameters, capacity models have been largely 

investigated in the past and are extensively discussed in literature (Kappos et al 1999). In 

other cases (e.g. curvatures, moments, etc.), probabilistic models of the capacity could be 

obtained by propagating the uncertainties characterizing the mechanical behavior of the fibers 

(Tubaldi et al. 2012). However, further investigations may be required for the definition of 

adequate capacity models for local EDPs. 

Probabilistic Seismic Demand Model 

The use of probabilistic demand models generally permits the definition of fragility curves 

by a closed form solution (Cornell et al. 2002) and introduces an approximating function for 

the structural response. The relationship between the median structural demand, ˆEDP , and 

the IM is usually approximated by a power law model (linear model in the log-log space): 

  ˆ bEDP im a im   (2) 

where a  and b  are regression coefficients. In order to complete the probabilistic 

representation, the demand has traditionally been assumed as lognormally distributed with 

logarithmic standard deviation, 
IMEDP

  as reported in Fig. 1. The dispersion is expressed 

conditioned upon the seismic intensity to reflect the potential dependence of the variation in 

demand upon im . However, homoscedasticity of the demand, i.e. EDPIMEDP
  , is often 

practically assumed. Under these assumptions along with a common assumption of the 
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capacity as lognormally distributed, the probability that a value of the demand exceeds the 

capacity can be written as: 

  
 

2 2

ˆ ˆln ln
1

CEDP IM

C EDP im
G im

 

 
  

  
 

 (3) 

where (·) is the standard normal cumulative distribution function and the capacity C  is a 

lognormal random variable, Ĉ  is the median value and C  is the logarithmic standard 

deviation. Several authors have used this approach to develop fragility curves for RC 

buildings while using global EDPs (Hueste and Bai 2007) and homoscedasticity of the 

demand model was usually assumed (Bai et al. 2011; Celik and Ellingwood 2010). In order to 

conform with the homoscedasticity assumption, some authors (i.e. Jalayer 2003) recommend 

performing regression of the demand locally in the region of IM values of interest. However, 

this procedure may be impractical when several EDPs or/and several limit states are 

considered at the same time. While considering maximum interstory drift as an EDP, other 

authors have found that the linear regression model in the log-log space was not accurate 

enough to represent the demand response. Ramamoorthy et al. (2006) developed fragility 

curves for low-rise RC buildings observing that a bilinear fit of the maximum interstory drift 

better represents the real behavior of the structure over the entire range of IM. Bai et al. 

(2011) developed fragility curves following the same approach. Tubaldi et al. (2016) 

investigated the use of demand models for the evaluation of earthquake-induced pounding of 

adjacent structures finding that bilinear demand models provide a more accurate description 

of the seismic demand due to its ability to account for the changes of the relative 

displacement demand due to structural yielding. Mackie and Stojadinovic (2003) defined 

demand models for bridges analyzing several EDPs and finding that a good fit of local EDPs 

such as material stress and strain can be obtained by adopting a bilinear regression. 

Fig. 1 is illustrative and shows possible relations between im  and the demand by 

employing (a) linear and (b) bilinear demand models in the log-log space. Linear and bilinear 

regression are achieved by minimizing the error between the mathematical model and the 

demand samples. 
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Fig. 1 Parameters of the: a) linear demand model, b) bilinear demand model in the log-log space 

3. Probabilistic Seismic Demand Models for Low-ductility RC Frames 

Existing RC frames differ in geometry and distribution of mechanical properties of 

structural components; however similar failure paths are generally observed in RC frames 

designed neglecting seismic actions. Extensive studies on the failure modes of RC frames, 

a) b) 
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based experimental studies and on post earthquake reconnaissance are reported in literature 

(Elwood and Moehle 2005, Liel and Deierlein 2012). In order to evaluate the viability and the 

effectiveness of the use of specific forms of demand models, a case study reported in 

literature representative of low-ductility RC frames has been selected. The numerical model 

corresponds to the three-story RC moment resisting frame experimentally tested by Bracci et 

al. (1992a). The building has been designed for gravity loads only and without any seismic 

detailing, by applying the design rules existing before the introduction of modern seismic 

provisions. This case study has been selected because experimental results are available for a 

1:3 reduced scale model of the frame and of its subassemblages (Bracci et al. 1992a,b; 

Aycardi et al. 1992). This allows an accurate validation of the finite element model at global 

as well as at local level and permits a reliable test of the probabilistic study. The validation of 

the model has been performed by comparing the displacement demand of a shaking table test 

performed with a PGA up to 0.3g as well as by comparing the cyclic response of columns and 

subassemblages subjected to drift demand up to 4%. Fig. 2 contains the general layout of the 

structure including the notation for beams (B), columns (C) and joints (J). A detailed 

description and validation of the numerical model is reported in the Appendix. 

Table 1 reports the considered IMs chosen to evaluate the probabilistic models of local 

EDPs. The IMs were selected among the most diffused and scalar IMs relatively easy to use 

and for which seismic hazard curves are either readily available or computable with a 

reasonable effort. The structure dependent IMs are calculated with respect to the fundamental 

period of the structure (T1 = 1.323 sec) and by using a damping ratio of 5%. The spectral 

acceleration predictor SaCM(T1) is the IM proposed by Cordova et al. (2000) employing the 

coefficient suggested by Lin et al. (2011). For computing the inelastic spectral displacement, 

Sdi(T1) a non-linear single degree of freedom system with a 5% post-yield hardening stiffness 

ratio has been employed. The period and the yield displacement of the bilinear system are 

estimated from the results of a non-linear static analysis as done in Tothong and Luco (2007). 

The use of vector valued IMs may be interesting for future investigation but are not 

considered in this study since they open a full range of alternative model forms, 

combinatorial expansion of the problem considering IM pairs, and practical challenges in 

implementation. 
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Fig. 2 General layout of the structure (Adopted from Bracci et al. 1992a) 

The seismic response of the system is affected by uncertainties in the earthquake input 

(record-to-record variability), in the properties defining the system (model parameter 

uncertainty), and by lack of knowledge (epistemic uncertainty). However, only the effect of 

record-to-record variability is considered in this study since other sources of uncertainty (e.g. 
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modeling uncertainty) may be considered a posteriori by means of default values of a 

dispersion measure assumed by data available in literature (Fajfar and Dolšek 2012). The 

uncertainty affecting the seismic input is taken into account by selecting a set of 240 natural 

records that reflect the variability in duration, frequency content, and other characteristics of 

the input expected to act on the system. This set has been selected by Baker et al. (2011) to be 

used in analyzing a variety of structural systems that would potentially be located in active 

seismic regions, and has a range of IM characteristics as indicated in Table 1. These records 

are representative of a wide range of variation in terms of source to site distance (R) (from 

8.71 to 126.9 km), soil characteristics (Vs30 spans from 203 to 2016.1 m/sec) and magnitude 

(M) (from 5.3 to 7.9). Pulse like records are not included. 

In order to investigate all of the possible failure modes, 11 EDPs are considered as shown 

in Table 2. In addition to the local level EDPs, intermediate EDPs and the commonly used 

global EDPs have been included in the list. Demand models for all of the considered IM-EDP 

pairs are developed by using the dynamic responses from 240 time history analyses in what is 

often termed a ‘cloud analysis’. Demand models are developed for all of the structural 

components of the frame reported in Fig. 2. The shear force (Vmax) is evaluated in the 21 

beams and columns; strains (s,max, c,max), curvature (max) and moment (Mmax) are considered 

in both the ends of each structural element (42 components); joint stresses (j,tens,max, 

j,compr,max) are considered in all the joints (12 components); interstory drift (i,max), story 

velocity (St.Veli,max) and story acceleration (St.Acci,max) are evaluated at each story of the 

frame (3 components each). The base shear is defined by a single component. Overall, 

considering all of the EDP-IM pairs, 2453 probabilistic seismic demand models have been 

developed. Only the demand models using Sa(T1) are shown as examples to explore the 

regression form, however, all EDP-IM pairs were evaluated confirming that the behavior in 

terms of viability of linear versus bilinear regression (in log-log space) is consistent across all 

IMs.  

Fig. 3 illustrates the demand models constructed in the log-log space for four different 

among global and intermediate EDPs, including (a) interstory drift at the 1st level (1), (b) top 

story velocity, (c) top story acceleration, and (d) base shear (Vb). The results reveal that linear 

regression of the structural demands relative to Sa(T1) provides a good fit for the drift, 

velocity, and acceleration responses. In contrast, bilinear regression is needed to obtain a 

better fit of the analyses results for the base shear where, after the elastic limit of the force is 

exceeded, the slope of the regression is lower capturing the post yielding behavior of the 

structure. In addition, it can be observed that for the interstory drift at the 1st level (1) in Fig. 

3 (a), the dispersion increases with increasing IM values; differently, for the base shear (Vb) 

in Fig. 3 (d) the dispersion is reduced as IM increases. Top story velocity and top story 

acceleration, respectively, in Fig. 3 (b) and (c) show a lower variation of the dispersion with 

increasing IM values. 

Table 1 Intensity Measures (IMs) 

IMs Description Formula Units Range 

Structure Dependent IMs 

Sa Spectral Acceleration at T1  - g 0.0051 - 0.9806 

Sv Spectral Velocity at T1  - cm/sec 1.897 - 204.97 

Sd Spectral Displacement at T1  - cm 0.218 - 42.40 
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Sdi Inelastic Spectral Displacement at T1  - cm 0.218 - 48.32 

SaC Sa Predictor (Cordova et al.)  
 

 

 

0.5

1

1

1

2a

a

a

S T
S T

S T

  
 
  

 g 0.0013 - 0.259 

SaCM Sa Predictor (Cordova et al. modified) 
 

 

 

0.5

1

1

1

1.5a

a

a

S T
S T

S T

  
 
  

 g 0.0013 - 0.281 

Structure Independent IMs 

PGA Peak Ground Acceleration - g 0.019 - 1.068 

PGV Peak Ground Velocity - cm/sec 1.261 - 130.28 

PGD Peak Ground Displacement - cm 0.188 - 119.70 

Sa-02s Spectral Acceleration at 0.2 sec - g 0.041 - 2.136 

Sa-1s Spectral Acceleration at 1 sec - g 0.0121 - 1.3925 

Table 2 Engineering Demand Parameters (EDPs) 

EDP Description Performance characteristic Units 
Local EDPs 

s,max Steel strain - longitudinal 

reinforcements 

Flexural and axial behavior - 

c,max Concrete strain – longitudinal fibers Flexural and axial behavior - 

max Curvature Flexural behavior 1/m 

j,tens,max Joint tensile stress Joint behavior kN/m2 

j,compr,max Joint compressive stress Joint behavior kN/m2 

Vmax Shear Shear resistance kN 

Mmax Moment Flexural resistance kNm 

Global and Intermediate EDPs 

Vb,max Base shear Structural behavior kN 

 i,max Interstory drift Structural and non-structural behavior 

vior 

rad 

St.Vel i,max Story velocity Contents and non-structural behavior m/sec 

St.Acc 

i,max

Story acceleration Contents and non-structural behavior m/sec2 

Demand models for local EDPs have been developed for all critical sections of the 

structure. For most of the sections, which exhibit significant non-linear behavior, a bilinear 

regression is indispensable to adequately represent the demand. Fig. 4 to 7 report the linear vs 

bilinear regression model for local EDPs. The EDPs reported are: Fig. 4 (a) curvature (max) 

and (b) bending moment (Mmax) for upper column C1-1; Fig. 5 (a) steel strain in longitudinal 

reinforcements (s,max) and (b) concrete strain in the maximum compressed fiber (c,max) for 

upper column C1-1; Fig. 6 (a) shear force (Vmax) of column C1-1 and (b) shear force (Vmax) 

of beam B1-1; Fig. 7 (a) concrete tensile (j,tens,max) and (b) compressive stress (j,comp,max) of 

joint J1-1. Steel and concrete maximum strains are strictly correlated with the sectional 

curvature and thus their behavior is comparable. For these EDPs, bilinear regressions of the 

demand are found to be the best fits reflecting typical stress-strain bilinear behavior of the 

materials and typical moment-curvature bilinear behavior for sections. For deformation-based 

EDPs (i.e. max, s,max, c,max) the slope of the second segment of the bilinear regression is 

higher, while for force-based EDPs (i.e. Mmax, Vmax, j,tens,max, j,comp,max) there is the opposite 

situation capturing the post yielding behavior of the components. In addition, it can be 

observed that with deformation-based EDPs the dispersion increases with increasing IM 

values; differently with force-based EDPs the dispersion reduces with increasing IM values. 
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This different behavior, observed also while looking at global and intermediate EDPs, is a 

consequence of the fact that for deformation-based EDPs, in the post-elastic field a small 

variation of the force causes a high variation of the displacement. With force-based EDPs the 

dispersion is reduced as a consequence of the upper bound that characterizes this type of 

EDP. In particular, it is possible to observe that for deformation-based EDPs the higher 

increase in dispersion corresponds with the breakpoint of the bilinear regression. Additional 

considerations regarding the variation of the dispersions are reported in Section 5. 

  

  
Fig. 3 Demand models for global and intermediate EDPs: a) Interstory drifts for 1th story, b) Top 

story velocity, c) Top story acceleration, d) Base shear. Sa(T1) is used as the IM for illustration 

  
Fig. 4 Demand models comparing linear and bilinear regression for local EDPs: a) Curvature and b) 

Bending moment in the upper section of column C1-1. Sa(T1) is used as the IM for illustration 

a) b) 

c) d) 

a) b) 
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Fig. 5 Demand models comparing linear and bilinear regression for local EDPs: a) Concrete strain 

and b) Steel strain in the upper section of column C1-1. Sa(T1) is used as the IM for illustration 

  
Fig. 6 Demand models comparing linear and bilinear regression for local EDPs: a) Shear force in the 

column C1-1, b) Shear force in the beam B1-1. Sa(T1) is used as the IM for illustration 

  
Fig. 7 Demand models comparing linear and bilinear regression for local EDPs: a) Tensile stress and 

b) Compressive stress in the joint J1-1. Sa(T1) is used as the IM for illustration 

The comparison of model form for all EDPs and additional tests that focus on the model 

skills evaluation reveal that when local EDPs are used, bilinear regressions are indispensable 

to obtain adequate demand models. Since in many cases the vulnerability evaluations focus 

on the worst damage condition over the entire building, evaluation of the regression model 

has been performed also considering the maximum value of each EDP among all the 

structural components. This study confirms the results obtained for the single component. 

a) b) 

a) b) 

a) b) 
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4. Intensity measure comparison for different EDPs 

Having identified the regression model form for each EDP, a comparison of alternative 

IMs is conducted. Conditions of practicality, sufficiency, efficiency and hazard computability 

are evaluated. All of the IM-EDP pairs evaluated in this paper are considered practical and 

amongst others, the efficiency is assumed as the main decision criteria (Padgett et al. 2008). 

The properties of the IMs are derived for each considered EDP and for each component of the 

structure. Successively, average values for each EDP among the components and average 

values among EDPs and components are derived as synthetic parameters to rapidly screen the 

overall ability of the IM for the entire structure. 

4.1. Efficiency 

Efficiency indicates the amount of variability of an EDP given an IM and is quantified by 

the dispersion, 
EDP IM

 (Giovenale et al. 2004). Results to indentify the ‘best’ IM based on 

reduced 
EDP IM

 are reported in Table 3. 

Table 3 Mean values of EDP|IM across all components for each EDP used to evaluate IM efficiency 

  Structure dependent IMs Structure independent IMs 

 n.comp. Sa Sv Sd Sdi SaC SaCM PGA PGV PGD Sa-02s Sa-1s 

Local EDPs 

s,max 42 0.30 0.32 0.30 0.29 0.33 0.32 0.62 0.39 0.52 0.69 0.41 

c,max 42 0.26 0.28 0.26 0.25 0.28 0.27 0.54 0.34 0.46 0.61 0.36 

max 42 0.17 0.18 0.17 0.17 0.20 0.19 0.38 0.24 0.32 0.42 0.25 

j,tens,max 12 0.05 0.06 0.05 0.05 0.08 0.07 0.16 0.10 0.12 0.17 0.10 

j,compr,max 12 0.06 0.07 0.06 0.06 0.10 0.09 0.21 0.13 0.16 0.22 0.12 

Vmax 21 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.03 0.05 0.05 0.03 

Mmax 42 0.20 0.21 0.20 0.20 0.24 0.22 0.44 0.28 0.37 0.49 0.29 

Global and Intermediate EDPs 

Vb,max 1 0.10 0.10 0.10 0.10 0.15 0.13 0.34 0.21 0.25 0.36 0.19 

 i,max 3 0.24 0.27 0.24 0.23 0.29 0.27 0.60 0.36 0.49 0.67 0.36 

St.Vel 3 0.22 0.18 0.22 0.21 0.28 0.26 0.44 0.28 0.43 0.51 0.28 

St.Acc 3 0.42 0.38 0.42 0.43 0.46 0.45 0.21 0.38 0.50 0.29 0.39 

Average 223 0.20 0.21 0.20 0.19 0.23 0.22 0.42 0.27 0.35 0.47 0.28 

These results show that structure dependent IMs tend to be much more efficient for all the 

considered EDPs relative to the structure independent IMs. Among the structure independent 

IMs, Sa-1s and PGV have the lowest dispersions. The efficiency of Sa-1s can be attributed to the 

closeness in fundamental period of the structure (T1=1.323s) to the fixed 1s period considered 

in the IM. Differently, PGV is recognized as an efficient IM for energy-based response 

parameters and this finding is consistent with past studies relevant to global EDPs (Conte et 

al. 2003). Among the structure dependent IMs, Sdi(T1), Sa(T1) and Sd(T1) are found to be the 

‘best’ IMs consistent with previously obtained results from studies on framed structures and 

bridges (Mackie and Stojadinovic 2003; Tothong and Luco 2007) while considering global 

EDPs. The dispersions of Sv(T1), SaCM(T1) and SaC(T1) are slightly larger, but these IMs are 

still relatively efficient, in particular with respect to the structure independent IMs. The 

optimal IM in terms of efficiency does not tend to show dependence upon EDP of interest, 

and consistent results can be observed looking at each EDP independently. The story 
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acceleration is the only exception. In fact, with this EDP there is no substantial difference 

between the efficiency of structure dependent and structure independent IMs. 

4.2. Sufficiency 

The IMs are evaluated for sufficiency in terms of conditional statistical independence of 

the response from magnitude (M) and distance (R) (Padgett et al. 2008; Luco and Cornell 

2007). It is acknowledged that sufficiency with respect to other characteristics such as 

‘epsilon’ (Baker and Cornell 2005) or duration is also desirable, but these extended tests are 

beyond the scope of the current study. Residuals from the demand models are considered in a 

linear regression with M and R. Hypothesis tests of residual independence from M or R are 

conducted resulting in p-values (Hines et al. 2003) used to assess the sufficiency. The p-value 

is defined as the probability of rejecting the null hypothesis in an analysis of variance, which 

states that the coefficient of regression is zero. Smaller p-values indicate stronger evidence 

for rejecting the null hypothesis and evidence of insufficient IM (Padgett et al. 2008).  

Tables 4 and 5 show the results for sufficiency hypothesis tests for M and R, respectively. 

In particular, the fraction of components where the sufficiency hypothesis test is satisfied is 

reported for all of the considered EDPs and IMs. P-values lower than the assumed cut off 

value of 0.025 (Hines et al. 2003) indicate that the sufficiency hypothesis test is rejected. 

Consistent results are obtained using different values of the statistical significance level. 

Among all of the IM-EDP pairs, PGA and Sa-02s are found to be insufficient with respect to 

magnitude, while PGD is found to be insufficient with respect to distance. PGV is the IM that 

best satisfies the sufficiency hypothesis test with respect to both M and R while all the others 

IMs are considered equally sufficient. It is interesting to observe that in most of the cases, 

story acceleration presents a lack of sufficiency with respect to the distance.  

 
Table 4 Check of the sufficiency hypothesis test with respect magnitude (M): Fraction of components 

where it is satisfied (cut off of the p-value equal to 0.025) 

  Structure dependent IMs Structure independent IMs 

 n.comp. Sa Sv Sd Sdi SaC SaCM PGA PGV PGD Sa-02s Sa-1s 

Local EDPs 

s,max 42 0.95 0.90 0.95 0.98 1.00 0.95 0.12 0.98 0.98 0.05 0.83 

c,max 42 0.90 0.86 0.90 0.95 0.98 0.95 0.12 0.95 1.00 0.00 0.79 

max 42 0.98 0.88 0.95 1.00 1.00 0.95 0.07 1.00 0.98 0.02 0.81 

j,tens,max 12 0.95 1.00 0.95 1.00 1.00 1.00 0.00 1.00 0.95 0.00 0.90 

j,compr,max 12 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 

Vmax 21 0.92 0.92 0.92 1.00 1.00 1.00 0.00 0.92 0.83 0.00 0.83 

Mmax 42 0.95 0.95 0.95 1.00 0.98 0.95 0.02 0.95 0.98 0.02 0.86 

Global and Intermediate EDPs 

Vb,max 1 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 

 i,max 3 1.00 0.67 1.00 1.00 1.00 1.00 0.00 1.00 0.67 0.00 0.33 

St.Vel 3 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.33 0.33 0.00 1.00 

St.Acc 3 1.00 1.00 1.00 1.00 1.00 1.00 0.67 1.00 1.00 0.67 1.00 

Average 223 0.95 0.91 0.94 0.99 0.99 0.96 0.07 0.96 0.95 0.03 0.84 

Note: Bold value indicates insufficient IM. 
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Table 5 Check of the sufficiency hypothesis test with respect distance (R): Fraction of components 

where it is satisfied (cut off of the p-value equal to 0.025) 

  Structure dependent IMs Structure independent IMs 

 n.comp. Sa Sv Sd Sdi SaC SaCM PGA PGV PGD Sa-02s Sa-1s 

Local EDPs 

s,max 42 0.86 0.81 0.86 0.76 0.76 0.74 1.00 0.93 0.10 1.00 1.00 

c,max 42 0.81 0.81 0.81 0.76 0.74 0.69 1.00 0.95 0.12 1.00 0.95 

max 42 0.81 0.62 0.79 0.79 0.79 0.67 1.00 0.95 0.24 1.00 0.98 

j,tens,max 12 1.00 0.52 1.00 1.00 0.81 0.71 1.00 0.95 0.19 1.00 1.00 

j,compr,max 12 0.75 0.33 0.75 0.83 0.83 0.67 1.00 0.83 0.33 1.00 0.92 

Vmax 21 1.00 0.92 1.00 0.58 0.75 0.67 0.92 1.00 0.08 1.00 1.00 

Mmax 42 0.76 0.64 0.76 0.74 0.76 0.67 1.00 0.95 0.14 1.00 1.00 

Global and Intermediate EDPs 

Vb,max 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 

 i,max 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.33 1.00 1.00 

St.Vel 3 1.00 0.67 1.00 0.33 0.67 0.67 0.67 1.00 0.00 1.00 1.00 

St.Acc 3 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 

Average 223 0.83 0.70 0.83 0.75 0.76 0.68 0.99 0.93 0.15 1.00 0.97 

Note: Bold value indicates insufficient IM. 

4.3. Hazard computability 

Among the IMs considered, hazard information is readily available across the United 

States for PGA, PGV, PGD, and specific spectral quantities corresponding to 0.2 sec and 1.0 

sec (Sa-02s and Sa-1s), from such entities as the US Geological Survey 

(http://earthquake.usgs.gov/). For the structure dependent IMs considered in this paper, 

hazard curves can be approximated with a reasonable level of effort except for the inelastic 

spectral displacement for which attenuation relationships are usually not available. 

5. Assessment of demand variation 

This section investigates two simplifying assumptions usually made while employing 

probabilistic seismic demand models. In particular, the variation of the dispersion of the 

demand with increasing ground motion intensity and its probability distribution often adopted 

as lognormal are explored. 

5.1. Homoscedasticity Assumption 

Homoscedasticity of the demand (i.e. EDPIMEDP
  ) is often assumed as a simplification 

of the probabilistic seismic demand model. In order to verify the validity of this assumption 

for the EDPs and IMs considered in this study, logarithmic standard deviation EDP  is 

calculated for different intervals of the IM value. The full range of each IM is divided in 8 

equal intervals and estimates of EDP  are defined for the 3rd through the 7th intervals. These 

intervals contain a statistically significant sample size for estimating dispersions with the 

number of records ranging from a minimum of 21 to a maximum of 69. Other intervals 

contain a number of samples less than 20, and by a convergence analysis has been observed 

that this number is not appropriate to have a confident estimate of the dispersion. 

Fig. 8 and 9 show the dispersion for each interval of the IM value for four demand 

parameters. They report the results for the structure dependent IMs only. Fig. 8 (a) shows the 

http://earthquake.usgs.gov/
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results corresponding to the 1st level interstory drift. In this case the use of Sa(T1), Sd(T1) and 

Sv(T1) lead to a higher variation of dispersion compared with SaCM(T1) and SaC(T1). This 

result can be attributed to the fact that for low values of the IM the structural behavior is 

controlled by the elastic modal period, while, for events with higher intensity, the IMs that are 

able to account for the period elongation caused by post-elastic behavior are more efficient. 

Sdi(T1) presents an intermediate situation. For Sa(T1), Sd(T1), Sv(T1) and Sdi(T1) the maximum 

values of dispersion are respectively 4.59, 4.17, 4.54 and 3.31 times the minimum value. 

Differently, for SaC(T1) and SaCM(T1) the maximum values of dispersion are respectively 1.65 

and 2.03 times the minimum value. Hence, with SaC(T1) and SaCM(T1) the homoscedasticity 

assumption is better satisfied. Moreover, it is possible to observe that in this case the 

dispersion increases with increasing seismic intensity. Fig. 8 (b) shows the variability of 

dispersion for the top story acceleration. It is observed that the homoscedasticity condition is 

better satisfied for this EDP. In this case, the ratio between the maximum and minimum 

dispersion values ranges from 1.15 to 1.48. Fig. 9 shows the variability of dispersion for 

curvature and shear force for column C1-1. From Fig. 9 (a) it is possible to observe that the 

dispersion of the shear force is decreasing with the IM value. This result is a consequence of 

the post-elastic behavior of the structural section that provides an upper limit on the shear 

demand, yielding a concentration of the demand values for larger IMs.  

  
Fig. 8 Variation in dispersion of a) 1st level interstory drift and b) Top story acceleration for the 

structure dependent IMs 

  
Fig. 9 Variation in dispersion of a) Curvature upper section of column C1-1 and b) Shear force of 

column C1-1 for the structure dependent IMs 
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ground motion intensity. Table 6 shows that overall, structure independent IMs conform 

better with the homoscedasticity assumption. The comparison of Tables 3 and 6 suggest that 

the homoscedasticity assumption is better satisfied while using IMs that are less efficient. 

This result is consequence of the fact that more efficient IMs are also more sensitive to the 

variation of the structural properties of the system (i.e. when the structure undergoes 

nonlinear behavior and its effective natural period becomes significantly different from the 

elastic period). For intermediate and global deformational EDPs, the use of SaC(T1) and 

SaCM(T1) improves the homoscedasticity assumption of an approximately constant value of 

dispersion. This result is consistent with what has been already observed in past studies on 

global EDPs. However, the homoscedasticity assumption is never satisfied for local EDPs, 

regardless of IM adopted. Thus, the use of heteroscedastic models is necessary when 

assessing the dispersion in probabilistic seismic demand modeling with these IMs. Aslani and 

Miranda (2005) provide some recommendations on the derivation of heteroscedastic models 

of the demand for global EDPs.  
 

Table 6 Ratio max min/EDP EDP   between maximum and minimum values of the dispersion (A value 

closer to 1.0 offers a proxy to indicate the validity of the homoscedasticity assumption) 

  Structure dependent IMs Structure independent IMs 

 n.comp. Sa Sv Sd Sdi SaC SaCM PGA PGV PGD Sa-02s Sa-1s 

Local EDPs 

s,max 42 5.71 5.77 5.66 5.74 2.95 3.18 2.20 2.77 2.82 1.82 2.72 

c,max 42 6.33 6.09 6.29 6.54 2.83 3.59 2.07 2.53 2.75 1.72 2.46 

max 42 4.20 4.52 4.19 4.20 4.66 4.16 2.65 3.64 3.01 2.61 4.30 

j,tens,max 12 3.29 2.72 3.31 3.32 5.52 4.41 3.19 4.27 3.64 3.71 5.90 

j,compr,max 12 3.19 2.94 3.21 3.03 5.93 4.31 3.17 4.78 4.10 3.77 6.42 

Vmax 21 4.41 6.24 4.38 5.54 4.41 4.25 2.42 3.72 3.51 2.05 2.78 

Mmax 42 4.09 3.85 4.09 4.04 4.78 4.31 3.14 3.37 3.21 2.77 4.91 

Global and Intermediate EDPs 

Vb,max 1 3.01 2.75 3.05 3.35 7.98 6.10 4.31 9.06 6.03 4.46 7.39 

 i,max 3 2.78 2.83 2.76 2.13 1.15 1.36 1.25 1.20 1.50 1.21 1.33 

St.Vel 3 1.40 1.32 1.40 1.38 1.52 1.70 1.32 1.13 1.13 1.39 1.74 

St.Acc 3 1.45 1.34 1.45 1.19 1.23 1.39 1.34 1.23 1.09 1.35 1.31 

Average 223 4.68 4.79 4.66 4.78 3.99 3.83 2.54 3.25 3.05 2.35 3.73 

5.2. Lognormal demand distribution assumption 

The validity of the typical lognormal probability distribution assumption regarding the 

variation of the demand is investigated through a Kolmogorov-Smirnov goodness-of-fit test. 

This test is commonly used in order to evaluate if a sample set comes from a population with 

a specific distribution and it is based on the comparison between the empirical distribution 

function and the cumulative distribution function of the reference distribution at a particular 

confidence level. Further details can be found in common statistical analysis texts (e.g. Hines 

et al. 2003). 

The hypothesis test with a confidence level of 85% is conducted for all of the considered 

IM-EDP pairs for the intervals that contain a statistically significant number of samples. Fig. 

10 shows the comparison between the numerical and theoretical cumulative distribution 

functions for the 4th interval of the demand model (mean IM value of 0.054g) for the 1st 
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interstory drift vs Sa(T1). The comparison is made by using the normal distribution in the 

logarithmic space. Table 7 shows the fraction of cases where the hypothesis tests is satisfied.  

 
Fig. 10 Example test of lognormal distribution assumption. Comparison between the numerical and 

theoretical cumulative distribution functions of the demand for the 1st interstory drift in the 4th interval 

of the demand model. Sa(T1) is the IM employed in this example. 

Table 7 Check of the demand lognormal distribution hypothesis: Fraction of components where it is 

satisfied (confidence level equal to 85 %) 

  Structure dependent IMs Structure independent IMs 

 n.comp. Sa Sv Sd Sdi SaC SaCM PGA PGV PGD Sa-02s Sa-1s 

Local EDPs 

s,max 42 0.82 0.82 0.84 0.81 0.79 0.80 0.70 0.78 0.74 0.66 0.74 

c,max 42 0.82 0.85 0.84 0.84 0.82 0.81 0.71 0.77 0.77 0.66 0.75 

max 42 0.82 0.83 0.83 0.82 0.79 0.81 0.61 0.73 0.70 0.59 0.75 

j,tens,max 12 0.84 0.84 0.83 0.81 0.76 0.83 0.62 0.70 0.65 0.61 0.81 

j,compr,max 12 0.78 0.80 0.82 0.78 0.72 0.82 0.55 0.65 0.62 0.55 0.75 

Vmax 21 0.80 0.77 0.83 0.73 0.80 0.68 0.85 0.83 0.80 0.80 0.82 

Mmax 42 0.78 0.80 0.79 0.78 0.75 0.80 0.61 0.70 0.67 0.62 0.76 

Global and Intermediate EDPs 

Vb,max 1 0.80 0.80 0.80 0.80 0.80 1.00 0.60 0.60 0.60 0.60 0.80 

 i,max 3 0.93 0.93 0.93 1.00 0.87 0.93 0.93 0.87 0.93 0.87 0.93 

St.Vel 3 1.00 1.00 1.00 1.00 0.73 0.93 0.87 0.87 0.80 0.80 1.00 

St.Acc 3 0.93 0.93 0.93 0.93 0.93 1.00 0.87 0.93 0.93 0.93 1.00 

Average 223 0.82 0.82 0.83 0.81 0.79 0.80 0.68 0.75 0.72 0.65 0.77 

The structure dependent IMs tend to produce demand variations that conform to the 

traditionally assumed lognormal distribution. Among all, the fraction of components where 

the hypothesis test is satisfied for structure dependent IMs is higher than that of structure 

independent IMs. In addition to the IM considered, the validity of the assumed distribution 

also depends upon the EDP of interest. Although exceptions exist, the variation in global and 

intermediate responses tends more often to follow a lognormal distribution than in local level 

parameters. However, the combination of a local level parameter with a structure dependent 

IM conforms reasonably well to the traditional assumption of a lognormal distribution at the 

85% confidence level. 

6. Conclusions 

This paper investigates the effectiveness of probabilistic seismic demand models in the 
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description of local EDP responses for the assessment of low-ductility RC frames. Several 

EDPs have been considered in order to monitor the most relevant failure modes, and demand 

models of structural components are developed for these EDPs, providing insight into the 

appropriate form of regression model. Hypothesis tests on the typical lognormal distribution 

of demand and variation of the demand uncertainty with the IM are performed. Additionally, 

several IMs are analyzed and compared to identify which is the most appropriate to be used 

for each local EDP on the basis of IM properties such as: practicality, efficiency, sufficiency 

and hazard computability. A typical gravity load designed low-ductility RC frame is chosen 

as case study and validation of the finite element model is performed using published 

experimental data. Among the traditional and scalar IMs relatively easy to use, 11 IMs are 

considered in this study. Moreover, 11 EDPs indicative of damage potential to RC buildings 

are considered among local, intermediate and global response quantities. To construct the 

demand models for all IM-EDP pairs and structural components, non-linear dynamic analyses 

are conducted on the validated model by using a set of 240 ground motions.  

The study confirms that linear regression models (in the log-log space) provide a good fit 

of the demand for conventionally used global EDPs and for intermediate EDPs. Differently, 

for local EDPs, such as curvature, bending moments, shear force, joint stresses, or material 

strains, bilinear regression models are required. Deformation-based EDPs (i.e. max, s,max, 

c,max) are characterized by a higher slope of the second segment of the bilinear regression 

and by a dispersion that increases with the IM value. With force-based EDPs (i.e. Mmax, Vmax, 

j,tens,max, j,comp,max), there is the opposite situation. These results are regularly observed 

regardless of the considered IM. Consistent with global and intermediate EDPs, assessment 

of the demand dispersions indicates that structure dependent IMs are more efficient for all 

considered EDPs relative to the structure independent IMs, with approximately 50%-75% 

lower dispersion ( EDP ). Among the structure independent IMs, PGV and Sa-1s are the most 

efficient while Sa-02s and PGA produce the largest values of dispersion. Among the structure 

dependent IMs, Sa(T1), Sd(T1) and Sdi(T1) have the lowest EDP , while Sv(T1), SaCM(T1) and 

SaC(T1) are all moderately efficient. Overall, it is possible to observe that force-based EDPs 

are characterized by a lower dispersion. The sufficiency test of each IM with respect to 

magnitude and source to site distance indicates that among all considered IM-EDP pairs, 

PGA and Sa-02s are insufficient with respect to magnitude, while PGD, is found to be 

insufficient with respect to distance for most of the EDPs. PGV best satisfies the sufficiency 

hypothesis with respect to both distance and magnitude, while all other IMs were found to be 

equally sufficient. 

The homoscedasticity assumption is evaluated for all of the demand models showing that 

for local EDPs this condition is not satisfied, regardless of IM. Thus, the variability of the 

dispersion should be taken into account when defining fragility curves of the RC building 

components. While structure independent IMs show improved conformance in terms of 

homoscedasticity for global and intermediate EDPs, this outcome is an artifact of the poor 

efficiency and overall high dispersion in the models, which is not ideal.  

Kolmogorov-Smirnov goodness-of-fit tests are conducted to investigate the validity of the 

commonly used assumption of the lognormal probability distribution of the demand, 

revealing the superiority of the structure dependent IMs to satisfy this assumption. The 

variation in global and intermediate responses tends more often to follow a lognormal 

distribution than in local level parameters; however, the combination of a local parameter 

with a structure dependent IM conforms reasonably well to the traditional assumption of 
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lognormal distribution of the demand. 

The IM properties do not show dependence upon the EDP of interest and similar results 

can be observed looking at each EDP independently. Overall, Sdi(T1), Sd(T1) and Sa(T1) are 

found to best satisfy all the requirements. This finding is consistent with other studies 

performed considering global EDPs only. However, it is important to consider also that while 

for Sd(T1) and Sa(T1) hazard curves are available, attenuation relationships for Sdi(T1) are 

usually not available and hence, the use of this IM may be limited due to problems in the 

hazard definition. Regardless of the IM adopted, the use of bilinear regression models and 

heteroscedastic models of the demand is suggested for such local EDPs in order to reduce 

uncertainties and to improve the predictive capabilities of the demand model and confidence 

in the risk assessment. 

The present paper provides insights for the application of a probabilistic components-

based approach, which provides a more comprehensive understanding of the structural 

behavior important for seismic risk assessment, seismic retrofit prioritization and life cycle 

cost assessment. In particular, results from the study can influence the definition of 

probabilistic seismic demand models able to describe local failure mechanisms and the choice 

of adequate IMs. The findings support the derivation of local fragility curves of damage to 

structural components or elements for probabilistic assessment of low-ductility RC frames. 

However, further investigation is needed for the definition of the models to account for the 

variation of the dispersion and the system logic for the definition of the system fragility, 

depending on the prospective (e.g. downtime, economic losses) and/or consequence modeling 

which is strongly linked to the structural behavior at component level. Finally, the results of 

this study are derived from extensive analysis (e.g. evaluation of 121 IM-EDP pairs) using a 

case study structure with validated numerical model. Exploration of alternative systems is 

warranted before generalizing these results. This paper, however, suggests a systematic 

approach for such an extended analysis.  

Appendix 

Case Study: Description and validation of the numerical model 

The selected case study is a three-story gravity load designed RC moment resisting frame 

and it was largely experimentally tested by Bracci et al. (1992a,b) and Aycardi et al. (1992). 

Earthquake loads are neglected and no lateral load is considered for the design. Fig. 2 

contains the general layout of the structure. Columns have a 300×300 mm2 square section 

while beams are 230×460 mm2 at each floor. The provision of ACI 318-89 code, Grade 40 

steel (fy=276 MPa) and concrete with compression resistance fc‘=24 MPa, were employed in 

the design.  

A two dimensional model of the structure is developed by using OpenSees (McKenna et 

al. 2006) and employs ‘Beam with Hinges’ elements (Scott and Fenves 2006) to model the 

non-linear behavior of beams and columns. The beams are modeled by using a T-section 

where the effective width of the slab is assumed to be four times the beam width based on the 

ACI 318. In the plastic hinge zone, the behavior of concrete and steel reinforcement is 

described respectively by the Concrete02 and the Hysteretic material model. The plastic 

hinge length for both beams and columns is evaluated based on Panagiotakos and Fardis 

(2001). The elastic part of each element is modeled with an effective flexural stiffness, 

evaluated through moment-curvature analysis, for the axial force level induced by the dead 

loads. The effective flexural stiffness is evaluated by the ratio of the moment and the 
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curvature corresponding to the yielding of the first rebar of the section. Beam-column joints 

are modeled as rigid, while the rigid-floor diaphragm is modeled by assigning a high value to 

the axial stiffness of the beams. Masses are concentrated at the beam-column connections. 

The modal period of the full scale model is equal to 1.323 sec.  

The developed finite element model is validated by comparing the numerical with the 

available experimental results at the global as well as local level. Aycardi et al. (1992) report 

the results concerning four 1:3 scale column specimens. Fig. 11 shows the comparisons 

between the experimental and the simulated results concerning one column specimen. Fig. 11 

(a) contains the comparison of the lateral load-drift behavior while Fig. 11 (b) shows the 

comparison of the external work limited to the 6 displacement cycles with drift amplitude 

from 2% up to 4%. The simulated test results show a satisfactory agreement with the 

experimental results. 
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Fig. 11 Experimental and numerical comparison for Column specimen 1, a) Lateral Load-Drift 

Behavior, b) External work 

Bracci et al. (1992a,b) report the results of the experimental tests carried on the 1:3 scale 

frame. The first three natural periods measured in the experimental test results (0.538, 0.177 

and 0.119 sec) are in close agreement with the periods provided by the 1:3 scale numerical 

model with uncracked gross stiffness properties (0.561, 0.180, and 0.110 sec). Shaking table 

tests were also performed by applying the Kern County 1952, Taft Lincoln School Station, 

N021E component record scaled for different levels of the seismic intensity (PGA equal to 

0.05g, 0.20g and 0.30g). Fig. 12 shows the comparison between the 1st, 2nd and 3rd story 

displacements of the 1:3 scale experimental and numerical model with the three ground 

motion intensities. Due to space constrains the comparison is shown only for the first 10 

seconds.  

Damping sources other than the hysteretic dissipation of energy are modeled through the 

Rayleigh damping matrix. Mass and stiffness related coefficients are calibrated such that the 

values of the damping factor of 3% are obtained for the first two vibration modes. The 

agreement between the numerical and experimental response history is quite satisfactory for 

values of the PGA equal to 0.05g and 0.20g, while for PGA equal to 0.30g the agreement is 

not as good. However, it should be stressed that only the peak values of the response are of 

interest for the development of fragility curves and that the simulated peak values are very 

close to the experimental peak values for all the seismic intensity levels considered. 

Additional information regarding the modeling and the validation are reported in Freddi et al. 

(2013). 

a) b) 
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Fig. 12 Comparison of dynamic analysis for model validation. Numerical and Experimental Story 

displacement history subjected to the Taft record with PGA equal to 0.05g, 0.20g and 0.30g 
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