18 research outputs found

    Survey on the Prevalence of Measurement in Undergraduate Psychology Curricula across the United States

    Get PDF
    For several years, especially with the increasing use of high-stakes assessments, the high demand for qualified testing specialists has far exceeded the low supply, naturally resulting in a severe shortage of quantitative psychologists. One possible solution for combatting this imbalance is to increase the exposure of psychometric methods within national curricula for educating undergraduate students of psychology. Therefore, the current study seeks to assess the prevalence of psychological measurement across national undergraduate psychology curricula, since it has not been evaluated for roughly 15 years. Six hundred fifty psychology department chairpersons across the United States were emailed invitations to complete a 22-item survey pertaining to the prevalence of measurement within their own undergraduate psychology curriculum. Results indicated that psychometrics is becoming slightly more prevalent as compared to 15 years ago; however, measurement coverage is still failing to reach the recommended guidelines set by national conventions for the undergraduate education of psychology students. Adviser: Kurt F. Geisinge

    Alkane-modified short polyethyleneimine for siRNA delivery

    Get PDF
    RNA interference (RNAi) is a highly specific gene-silencing mechanism triggered by small interfering RNA (siRNA). Effective intracellular delivery requires the development of potent siRNA carriers. Here, we describe the synthesis and screening of a series of siRNA delivery materials. Short polyethyleneimine (PEI, Mw 600) was selected as a cationic backbone to which lipid tails were conjugated at various levels of saturation. In solution these polymer–lipid hybrids self-assemble to form nanoparticles capable of complexing siRNA. The complexes silence genes specifically and with low cytotoxicity. The efficiency of gene knockdown increased as the number of lipid tails conjugated to the PEI backbone increased. This is explained by reducing the binding affinity between the siRNA strands to the complex, thereby enabling siRNA release after cellular internalization. These results highlight the importance of complexation strength when designing siRNA delivery materials.Misrock FoundationAmerican Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipNational Institutes of Health (U.S) (Grant EB000244)National Cancer Institute (U.S.) (MIT-Harvard Center of Cancer Nanotechnology Excellence. Grant CA151884)National Science Foundation (U.S.)Massachusetts Institute of Technology (Presidential Fellowships

    RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction

    No full text
    Myocardial infarction (MI) leads to a systemic surge of vascular inflammation in mice and humans, resulting in secondary ischemic complications and high mortality. We show that, in ApoE−/− mice with coronary ligation, increased sympathetic tone up-regulates not only hematopoietic leukocyte production but also plaque endothelial expression of adhesion molecules. To counteract the resulting arterial leukocyte recruitment, we developed nanoparticle-based RNA interference (RNAi) that effectively silences five key adhesion molecules. Simultaneously encapsulating small interfering RNA (siRNA)–targeting intercellular cell adhesion molecules 1 and 2 (Icam1 and Icam2), vascular cell adhesion molecule 1 (Vcam1), and E- and P-selectins (Sele and Selp) into polymeric endothelial-avid nanoparticles reduced post-MI neutrophil and monocyte recruitment into atherosclerotic lesions and decreased matrix-degrading plaque protease activity. Five-gene combination RNAi also curtailed leukocyte recruitment to ischemic myocardium. Therefore, targeted multigene silencing may prevent complications after acute MI.National Institutes of Health (U.S.) (Grants HL114477, HL117829, HL096576, and K99- HL121076)Massachusetts General Hospital (Research Scholar Award)Harvard CatalystHarvard Clinical and Translational Science Cente

    Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis

    No full text
    Atherosclerosis is a progressive vascular disease triggered by interplay between abnormal shear stress and endothelial lipid retention. A combination of these and, potentially, other factors leads to a chronic inflammatory response in the vessel wall, which is thought to be responsible for disease progression characterized by a buildup of atherosclerotic plaques. Yet molecular events responsible for maintenance of plaque inflammation and plaque growth have not been fully defined. Here we show that endothelial transforming growh factor β (TGF-β) signalling is one of the primary drivers of atherosclerosis-associated vascular inflammation. Inhibition of endothelial TGF-β signalling in hyperlipidemic mice reduces vessel wall inflammation and vascular permeability and leads to arrest of disease progression and regression of established lesions. These proinflammatory effects of endothelial TGF-β signalling are in stark contrast with its effects in other cell types and identify it as an important driver of atherosclerotic plaque growth and show the potential of cell-type-specific therapeutic intervention aimed at control of this disease

    Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis

    No full text
    © 2019, The Author(s), under exclusive licence to Springer Nature Limited. Atherosclerosis is a progressive vascular disease triggered by interplay between abnormal shear stress and endothelial lipid retention. A combination of these and, potentially, other factors leads to a chronic inflammatory response in the vessel wall, which is thought to be responsible for disease progression characterized by a buildup of atherosclerotic plaques. Yet molecular events responsible for maintenance of plaque inflammation and plaque growth have not been fully defined. Here we show that endothelial transforming growh factor β (TGF-β) signalling is one of the primary drivers of atherosclerosis-associated vascular inflammation. Inhibition of endothelial TGF-β signalling in hyperlipidemic mice reduces vessel wall inflammation and vascular permeability and leads to arrest of disease progression and regression of established lesions. These proinflammatory effects of endothelial TGF-β signalling are in stark contrast with its effects in other cell types and identify it as an important driver of atherosclerotic plaque growth and show the potential of cell-type-specific therapeutic intervention aimed at control of this disease

    Genetic and hypoxic alterations of the microRNA-210-ISCU1/2 axis promote iron–sulfur deficiency and pulmonary hypertension

    Get PDF
    Iron–sulfur (Fe-S) clusters are essential for mitochondrial metabolism, but their regulation in pulmonary hypertension (PH) remains enigmatic. We demonstrate that alterations of the miR-210-ISCU1/2 axis cause Fe-S deficiencies in vivo and promote PH. In pulmonary vascular cells and particularly endothelium, hypoxic induction of miR-210 and repression of the miR-210 targets ISCU1/2 down-regulated Fe-S levels. In mouse and human vascular and endothelial tissue affected by PH, miR-210 was elevated accompanied by decreased ISCU1/2 and Fe-S integrity. In mice, miR-210 repressed ISCU1/2 and promoted PH. Mice deficient in miR-210, via genetic/pharmacologic means or via an endothelial-specific manner, displayed increased ISCU1/2 and were resistant to Fe-S-dependent pathophenotypes and PH. Similar to hypoxia or miR-210 overexpression, ISCU1/2 knockdown also promoted PH. Finally, cardiopulmonary exercise testing of a woman with homozygous ISCU mutations revealed exercise-induced pulmonary vascular dysfunction. Thus, driven by acquired (hypoxia) or genetic causes, the miR-210-ISCU1/2 regulatory axis is a pathogenic lynchpin causing Fe-S deficiency and PH. These findings carry broad translational implications for defining the metabolic origins of PH and potentially other metabolic diseases sharing similar underpinnings
    corecore