10,380 research outputs found

    Micro-Algues De La Mare Et Des Bassins D’arrosage a Port-BouĂ«t (Abidjan, CĂŽte D’ivoire)

    Get PDF
    Les algues jouent un rôle important dans les chaines trophiques des écosystèmes aquatiques. L'étude a eu pour but, à la fois d'inventorier des peuplements algaux et de déterminer les paramètres physicochimiques du milieu influençant la répartition de ces algues en zone marécageuse à Port-Bouët (Abidjansud, Côte d'Ivoire). Des échantillons d'eau ont été prélevés, mensuellement au niveau de 5 stations, entre septembre 2004 et janvier 2005. L'analyse physico-chimique a montré que ces eaux ont eu des teneurs importantes en silice (SiO2), nutriments (NO3-, NO2-, NH4+, PO43-) et ont recelé d'importantes formes de microalgues. Au total, 105 espèces algales ont été identifiées. Celles-ci ont été réparties en 4 embranchements comme suit : 42, 39, 15 et 4 % Chlorophyta, Euglenophyta, Chrysophyta et de Cyanophyta, respectivement. L'analyse combinée des peuplements phytoplanctoniques, en relation avec les données physico-chimiques de chaque station, a permis d'obtenir 4 groupements phytoplanctoniques.Algae play an important role in trophic chains of aquatic systems. This survey aims to determine both algae community and the physico-chemical characteristics of the media of their distribution. Five water samples were collected monthly from stations located in the swampy areas of Port-Bouët (south of Abidjan, Côte d'Ivoire) between September 2004 and January 2005). The samples were analyzed for physico-chemical and biological characteristics. Results showed that the waters had high silicium (SiO2) and nutrient (NO3-, NO2-, NH4+, PO43-) contents, which resulted in significant algae population, with 105 individuals identified in these media. The taxa were divided into 4 groups as follows : 42, 39, 15 and 4 % of the Chlorophyta, Euglenophyta, Chrysophyta and Cyanophyta, respectively. Canonical Correspondence Analysis of the data revealed 4 main phytoplanktonic groups.Keywords: Micro algae, freshwater algae, swampy area, Port-Bouët, Côte d'Ivoir

    Neural crest migration is driven by a few trailblazer cells with a unique molecular signature narrowly confined to the invasive front

    Get PDF
    Neural crest (NC) cell migration is crucial to the formation of peripheral tissues during vertebrate development. However, how NC cells respond to different microenvironments to maintain persistence of direction and cohesion in multicellular streams remains unclear. To address this, we profiled eight subregions of a typical cranial NC cell migratory stream. Hierarchical clustering showed significant differences in the expression profiles of the lead three subregions compared with newly emerged cells. Multiplexed imaging of mRNA expression using fluorescent hybridization chain reaction (HCR) quantitatively confirmed the expression profiles of lead cells. Computational modeling predicted that a small fraction of lead cells that detect directional information is optimal for successful stream migration. Single-cell profiling then revealed a unique molecular signature that is consistent and stable over time in a subset of lead cells within the most advanced portion of the migratory front, which we term trailblazers. Model simulations that forced a lead cell behavior in the trailing subpopulation predicted cell bunching near the migratory domain entrance. Misexpression of the trailblazer molecular signature by perturbation of two upstream transcription factors agreed with the in silico prediction and showed alterations to NC cell migration distance and stream shape. These data are the first to characterize the molecular diversity within an NC cell migratory stream and offer insights into how molecular patterns are transduced into cell behaviors

    Finite temperature stability and dimensional crossover of exotic superfluidity in lattices

    Full text link
    We investigate exotic paired states of spin-imbalanced Fermi gases in anisotropic lattices, tuning the dimension between one and three. We calculate the finite temperature phase diagram of the system using real-space dynamical mean-field theory in combination with the quantum Monte Carlo method. We find that regardless of the intermediate dimensions examined, the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state survives to reach about one third of the BCS critical temperature of the spin-density balanced case. We show how the gapless nature of the state found is reflected in the local spectral function. While the FFLO state is found at a wide range of polarizations at low temperatures across the dimensional crossover, with increasing temperature we find out strongly dimensionality-dependent melting characteristics of shell structures related to harmonic confinement. Moreover, we show that intermediate dimension can help to stabilize an extremely uniform finite temperature FFLO state despite the presence of harmonic confinement.Comment: 5 pages, 3 figure

    Role of the mesoamygdaloid dopamine projection in emotional learning

    Get PDF
    Amygdala dopamine is crucially involved in the acquisition of Pavlovian associations, as measured via conditioned approach to the location of the unconditioned stimulus (US). However, learning begins before skeletomotor output, so this study assessed whether amygdala dopamine is also involved in earlier 'emotional' learning. A variant of the conditioned reinforcement (CR) procedure was validated where training was restricted to curtail the development of selective conditioned approach to the US location, and effects of amygdala dopamine manipulations before training or later CR testing assessed. Experiment 1a presented a light paired (CS+ group) or unpaired (CS- group) with a US. There were 1, 2 or 10 sessions, 4 trials per session. Then, the US was removed, and two novel levers presented. One lever (CR+) presented the light, and lever pressing was recorded. Experiment 1b also included a tone stimulus. Experiment 2 applied intra-amygdala R(+) 7-OH-DPAT (10 nmol/1.0 A mu l/side) before two training sessions (Experiment 2a) or a CR session (Experiment 2b). For Experiments 1a and 1b, the CS+ group preferred the CR+ lever across all sessions. Conditioned alcove approach during 1 or 2 training sessions or associated CR tests was low and nonspecific. In Experiment 2a, R(+) 7-OH-DPAT before training greatly diminished lever pressing during a subsequent CR test, preferentially on the CR+ lever. For Experiment 2b, R(+) 7-OH-DPAT infusions before the CR test also reduced lever pressing. Manipulations of amygdala dopamine impact the earliest stage of learning in which emotional reactions may be most prevalent

    The effect of ionic composition on acoustic phonon speeds in hybrid perovskites from Brillouin spectroscopy and density functional theory

    Full text link
    © The Royal Society of Chemistry 2018. Hybrid organic-inorganic perovskites (HOIPs) have recently emerged as highly promising solution-processable materials for photovoltaic (PV) and other optoelectronic devices. HOIPs represent a broad family of materials with properties highly tuneable by the ions that make up the perovskite structure as well as their multiple combinations. Interestingly, recent high-efficiency PV devices using HOIPs with substantially improved long-term stability have used combinations of different ionic compositions. The structural dynamics of these systems are unique for semiconducting materials and are currently argued to be central to HOIPs stability and charge-transport properties. Here, we studied the impact of ionic composition on phonon speeds of HOIPs from Brillouin spectroscopy experiments and density functional theory calculations for FAPbBr3, MAPbBr3, MAPbCl3, and the mixed halide MAPbBr1.25Cl1.75. Our results show that the acoustic phonon speeds can be strongly modified by ionic composition, which we explain by analysing the lead-halide sublattice in detail. The vibrational properties of HOIPs are therefore tuneable by using targeted ionic compositions in the perovskite structure. This tuning can be rationalized by non-trivial effects, for example, considering the influence of the shape and dipole moment of organic cations. This has an important implications for further improvements in the stability and charge-transport properties of these systems

    The dynamic mosaic phenotypes of flowering plants

    Get PDF
    Ecological interaction and adaptation both depend on phenotypic characteristics. In contrast with the common conception of the ‘adult’ phenotype, plant bodies develop continuously during their lives. Furthermore, the different units (metamers) that comprise plant bodies are not identical copies, but vary extensively within individuals. These characteristics foster recognition of plant phenotypes as dynamic mosaics. We elaborate this conception based largely on a wide‐ranging review of developmental, ecological and evolutionary studies of plant reproduction, and identify its utility in the analysis of plant form, function and diversification. An expanded phenotypic conception is warranted because dynamic mosaic features affect plant performance and evolve. Evidence demonstrates that dynamic mosaic phenotypes enable functional ontogeny, division of labour, resource and mating efficiency. In addition, dynamic mosaic features differ between individuals and experience phenotypic selection. Investigation of the characteristics and roles of dynamic and mosaic features of plant phenotypes benefits from considering within‐individual variation as a function‐valued trait that can be analysed with functional data methods. Phenotypic dynamics and within‐individual variation arise despite an individual's genetic uniformity, and develop largely by heterogeneous gene expression and associated hormonal control. These characteristics can be heritable, so that dynamic mosaic phenotypes can evolve and diversify by natural selection.Fil: Harder, Lawrence. University of Calgary; CanadĂĄFil: Strelin, Marina Micaela. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Universidad Nacional AutĂłnoma de MĂ©xico. Departamento de EcologĂ­a Evolutiva. Instituto de EcologĂ­a; MĂ©xicoFil: Clocher, Ilona C.. University of Calgary; CanadĂĄFil: Kulbaba, Mason. University of Calgary; CanadĂĄFil: Aizen, Marcelo Adrian. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentin

    Terahertz underdamped vibrational motion governs protein-ligand binding in solution

    Get PDF
    Low-frequency collective vibrational modes in proteins have been proposed as being responsible for efficiently directing biochemical reactions and biological energy transport. However, evidence of the existence of delocalized vibrational modes is scarce and proof of their involvement in biological function absent. Here we apply extremely sensitive femtosecond optical Kerr-effect spectroscopy to study the depolarized Raman spectra of lysozyme and its complex with the inhibitor triacetylchitotriose in solution. Underdamped delocalized vibrational modes in the terahertz frequency domain are identified and shown to blue-shift and strengthen upon inhibitor binding. This demonstrates that the ligand-binding coordinate in proteins is underdamped and not simply solvent-controlled as previously assumed. The presence of such underdamped delocalized modes in proteins may have significant implications for the understanding of the efficiency of ligand binding and protein–molecule interactions, and has wider implications for biochemical reactivity and biological function

    Phosphorylation of the androgen receptor is associated with reduced survival in hormonerefractory prostate cancer patients

    Get PDF
    Cell line studies demonstrate that the PI3K/Akt pathway is upregulated in hormone-refractory prostate cancer (HRPC) and can result in phosphorylation of the androgen receptor (AR). The current study therefore aims to establish if this has relevance to the development of clinical HRPC. Immunohistochemistry was employed to investigate the expression and phosphorylation status of Akt and AR in matched hormone-sensitive and -refractory prostate cancer tumours from 68 patients. In the hormone-refractory tissue, only phosphorylated AR (pAR) was associated with shorter time to death from relapse (<i>P</i>=0.003). However, when an increase in expression in the transition from hormone-sensitive to -refractory prostate cancer was investigated, an increase in expression of PI3K was associated with decreased time to biochemical relapse (<i>P</i>=0.014), and an increase in expression of pAkt<sup>473</sup> and pAR<sup>210</sup> were associated with decreased disease-specific survival (<i>P</i>=0.0019 and 0.0015, respectively). Protein expression of pAkt<sup>473</sup> and pAR<sup>210</sup> also strongly correlated (<i>P</i><0.001, c.c.=0.711) in the hormone-refractory prostate tumours. These results provide evidence using clinical specimens, that upregulation of the PI3K/Akt pathway is associated with phosphorylation of the AR during development of HRPC, suggesting that this pathway could be a potential therapeutic target
    • 

    corecore