248 research outputs found

    Nonlinear trend removal should be carefully performed in heart rate variability analysis

    Get PDF
    \bullet Background : In Heart rate variability analysis, the rate-rate time series suffer often from aperiodic non-stationarity, presence of ectopic beats etc. It would be hard to extract helpful information from the original signals. 10 \bullet Problem : Trend removal methods are commonly practiced to reduce the influence of the low frequency and aperiodic non-stationary in RR data. This can unfortunately affect the signal and make the analysis on detrended data less appropriate. \bullet Objective : Investigate the detrending effect (linear \& nonlinear) in temporal / nonliear analysis of heart rate variability of long-term RR data (in normal sinus rhythm, atrial fibrillation, 15 congestive heart failure and ventricular premature arrhythmia conditions). \bullet Methods : Temporal method : standard measure SDNN; Nonlinear methods : multi-scale Fractal Dimension (FD), Detrended Fluctuation Analysis (DFA) \& Sample Entropy (Sam-pEn) analysis. \bullet Results : The linear detrending affects little the global characteristics of the RR data, either 20 in temporal analysis or in nonlinear complexity analysis. After linear detrending, the SDNNs are just slightly shifted and all distributions are well preserved. The cross-scale complexity remained almost the same as the ones for original RR data or correlated. Nonlinear detrending changed not only the SDNNs distribution, but also the order among different types of RR data. After this processing, the SDNN became indistinguishable be-25 tween SDNN for normal sinus rhythm and ventricular premature beats. Different RR data has different complexity signature. Nonlinear detrending made the all RR data to be similar , in terms of complexity. It is thus impossible to distinguish them. The FD showed that nonlinearly detrended RR data has a dimension close to 2, the exponent from DFA is close to zero and SampEn is larger than 1.5 -- these complexity values are very close to those for 30 random signal. \bullet Conclusions : Pre-processing by linear detrending can be performed on RR data, which has little influence on the corresponding analysis. Nonlinear detrending could be harmful and it is not advisable to use this type of pre-processing. Exceptions do exist, but only combined with other appropriate techniques to avoid complete change of the signal's intrinsic dynamics. 35 Keywords \bullet heart rate variability \bullet linear / nonlinear detrending \bullet complexity analysis \bullet mul-tiscale analysis \bullet detrended fluctuation analysis \bullet fractal dimension \bullet sample entropy

    A DTN routing scheme for quasi-deterministic networks with application to LEO satellites topology

    Get PDF
    We propose a novel DTN routing algorithm, called DQN, specifically designed for quasi-deterministic networks with an application to satellite constellations. We demonstrate that our proposal efficiently forwards the information over a satellite network derived from the Orbcomm topology while keeping a low replication overhead. We compare our algorithm against other well-known DTN routing schemes and show that we obtain the lowest replication ratio without the knowledge of the topology and with a delivery ratio of the same order of magnitude than a reference theoretical optimal routing

    Classification of Cardiac Arrhythmia in vitro based on Multivariate Complexity Analysis

    Get PDF
    International audienceBackground: The animal models (in vitro or in vivo) provide an excel-lent tool to study heart diseases, among them the arrhythmia remains one of the most active research subjects. It can be induced or treated by drugs, electrical stimulation, hypothermia etc.Problems: However, the inducing or treating effects in cardiac culture often happened long after the initial applications or in some relatively short time windows. So, it is necessary to capture and classify rapidly the signal change. Human-assisted monitoring is time-consuming and less efficient. An automatic classification method for real-time use would be useful and necessary. Methods: Since electrocardiological signals are features by repetitive or similar patterns reflecting the intrinsic information about the pa-tient (or culture), analyzing these patterns could help not only to monitor the status's change but also to evaluate/explore the physiol-ogic control mechanisms. Methods based on complexity analysis are of considerable interest in this case. Aims: Compare different complexity analysis methods in order to find the most appropriate ones to discriminate the normal cardiac signals from arrhythmic ones acquired from a cardiac cell culture in vitro. The selected features are then used by a SVM classifier.Results: Among the six complexity analysis methods, Time Lagging (TLag) method allowed obtaining the best discrimination index (nor-mal vs. arrhythmic, p-value, 9e-23). The proposed Modified Hurst Exponent (HExM) showed better performance than original Hurst Exponent with well-improved p-value (from 0.019 to 2e-9). The Ap-proximate Entropy (ApEn), Sample Entropy (SampEn) and Detrended Fluctuation Analysis gave good discrimination ratio but with larger p-values (at order 10^{-3}). Combination of TLag, HExM and ApEn can provide a more robust classifier and allow monitoring and classifying in an automatic way the electrical activities' changes in the cardiac cultures

    Bayesian ECG reconstruction using denoising diffusion generative models

    Full text link
    In this work, we propose a denoising diffusion generative model (DDGM) trained with healthy electrocardiogram (ECG) data that focuses on ECG morphology and inter-lead dependence. Our results show that this innovative generative model can successfully generate realistic ECG signals. Furthermore, we explore the application of recent breakthroughs in solving linear inverse Bayesian problems using DDGM. This approach enables the development of several important clinical tools. These include the calculation of corrected QT intervals (QTc), effective noise suppression of ECG signals, recovery of missing ECG leads, and identification of anomalous readings, enabling significant advances in cardiac health monitoring and diagnosis

    Considering New Regularization Parameter-Choice Techniques for the Tikhonov Method to Improve the Accuracy of Electrocardiographic Imaging

    Get PDF
    The electrocardiographic imaging (ECGI) inverse problem highly relies on adding constraints, a process called regularization, as the problem is ill-posed. When there are no prior information provided about the unknown epicardial potentials, the Tikhonov regularization method seems to be the most commonly used technique. In the Tikhonov approach the weight of the constraints is determined by the regularization parameter. However, the regularization parameter is problem and data dependent, meaning that different numerical models or different clinical data may require different regularization parameters. Then, we need to have as many regularization parameter-choice methods as techniques to validate them. In this work, we addressed this issue by showing that the Discrete Picard Condition (DPC) can guide a good regularization parameter choice for the two-norm Tikhonov method. We also studied the feasibility of two techniques: The U-curve method (not yet used in the cardiac field) and a novel automatic method, called ADPC due its basis on the DPC. Both techniques were tested with simulated and experimental data when using the method of fundamental solutions as a numerical model. Their efficacy was compared with the efficacy of two widely used techniques in the literature, the L-curve and the CRESO methods. These solutions showed the feasibility of the new techniques in the cardiac setting, an improvement of the morphology of the reconstructed epicardial potentials, and in most of the cases of their amplitude

    Impact of the Endocardium in a Parameter Optimization to Solve the Inverse Problem of Electrocardiography

    Get PDF
    Electrocardiographic imaging aims at reconstructing cardiac electrical events from electrical signals measured on the body surface. The most common approach relies on the inverse solution of the Laplace equation in the torso to reconstruct epicardial potential maps from body surface potential maps. Here we apply a method based on a parameter identification problem to reconstruct both activation and repolarization times. From an ansatz of action potential, based on the Mitchell-Schaeffer ionic model, we compute body surface potential signals. The inverse problem is reduced to the identification of the parameters of the Mitchell-Schaeffer model. We investigate whether solving the inverse problem with the endocardium improves the results or not. We solved the parameter identification problem on two different meshes: one with only the epicardium, and one with both the epicardium and the endocardium. We compared the results on both the heart (activation and repolarization times) and the torso. The comparison was done on validation data of sinus rhythm and ventricular pacing. We found similar results with both meshes in 6 cases out of 7: the presence of the endocardium slightly improved the activation times. This was the most visible on a sinus beat, leading to the conclusion that inclusion of the endocardium would be useful in situations where endo-epicardial gradients in activation or repolarization times play an important role

    DTN routing for quasi-deterministic networks with application to LEO constellations

    Get PDF
    We propose a novel DTN routing algorithm, called DQN, specifically designed for quasi-deterministic networks with an application to satellite constellations. We demonstrate that our proposal efficiently forwards the information over a satellite network derived from the Orbcomm topology while keeping a low replication overhead. We compare our algorithm against other well-known DTN routing schemes and show that we obtain the lowest replication ratio with a delivery ratio of the same order of magnitude than a reference theoretical optimal routing. We also analyze the impact of terrestrial gateways density and analyze DQN performances in heterogeneous cases

    A Singularity-analysis Approach to characterize Epicardial Electric Potential

    Get PDF
    International audienceThe cardiac electrical activity conforms a complex sys- tem, for which nonlinear signal-processing is required to characterize it properly. In this context, an analysis in terms of singularity exponents is shown to provide compact and meaningful descriptors of the structure and dynam- ics. In particular, singularity components reconstruct the epicardial electric potential maps of human atria, inverse- mapped from surface potentials; such approach describe sinus-rhythm dynamics as well as atrial flutter and atrial fibrillation. We present several example cases in which the key descriptors in the form of fast-slow dynamics point at the arrhythmogenic areas in the atria
    corecore