92 research outputs found

    Limited response of NK92 cells to Plasmodium falciparum-infected erythrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mechanisms by which anti-malarial immune responses occur are still not fully clear. Natural killer (NK) cells are thought to play a pivotal role in innate responses against <it>Plasmodium falciparum</it>. In this study, the suitability of NK92 cells as models for the NK mechanisms involved in the immune response against malaria was investigated.</p> <p>Methods</p> <p>NK92 cells were assessed for several signs of activation and cytotoxicity due to contact to parasites and were as well examined by oligonucleotide microarrays for an insight on the impact <it>P. falciparum</it>-infected erythrocytes have on their transcriptome. To address the parasite side of such interaction, growth inhibition assays were performed including non-NK cells as controls.</p> <p>Results</p> <p>By performing microarrays with NK92 cells, the impact of parasites on a transcriptional level was observed. The findings show that, although not evidently activated by iRBCs, NK92 cells show transcriptional signs of priming and proliferation. In addition, decreased parasitaemia was observed due to co-incubation with NK92 cells. However, such effect might not be NK-specific since irrelevant cells also affected parasite growth <it>in vitro</it>.</p> <p>Conclusions</p> <p>Although NK92 cells are here shown to behave as poor models for the NK immune response against parasites, the results obtained in this study may be of use for future investigations regarding host-parasites interactions in malaria.</p

    Bayesian Approach to Model CD137 Signaling in Human M.tuberculosis in vitro Responses

    Get PDF
    Abstract Immune responses are qualitatively and quantitatively influenced by a complex network of receptor-ligand interactions. Among them, the CD137:CD137L pathway is known to modulate innate and adaptive human responses against Mycobacterium tuberculosis. However, the underlying mechanisms of this regulation remain unclear. In this work, we developed a Bayesian Computational Model (BCM) of in vitro CD137 signaling, devised to fit previously gathered experimental data. The BCM is fed with the data and the prior distribution of the model parameters and it returns theirposterior distribution and the model evidence, which allows comparing alternative signaling mechanisms. The BCM uses a coupled system of non-linear differential equations to describe the dynamics of Antigen Presenting Cells, Natural Killer and T Cells together with the interpheron (IFN)-c and tumor necrosis factor (TNF)-a levels in the media culture. Fast and complete mixing of the media is assumed. The prior distribution of the parameters that describe the dynamics of the immunological response was obtained from the literature and theoretical considerations Our BCM applies successively the Levenberg-Marquardt algorithm to find the maximum a posteriori likelihood (MAP); the Metropolis Markov Chain Monte Carlo method to approximate the posterior distribution of the parameters and Thermodynamic Integration to calculate the evidence of alternative hypothesis. Bayes factors provided decisive evidence favoring direct CD137 signaling on T cells. Moreover, the posterior distribution of the parameters that describe the CD137 signaling showed that the regulation of IFNc levels is based more on T cells survival than on direct induction. Furthermore, the mechanisms that account for the effect of CD137 signaling on TNF-a production were based on a decrease of TNF-a production by APC and, perhaps, on the increase in APC apoptosis. BCM proved to be a useful tool to gain insight on the mechanisms of CD137 signaling during human response against Mycobacterium tuberculosis.Fil: Darío A Fernández Do Porto. UNIV.DE BUENOS AIRES. FAC.DE CS.EXACTAS Y NATURALES. UNIV.DE BUENOS AIRES. FAC.DE CS.EXACTAS Y NATURALES. INST QUIM FISICA D/L/MATERIALES MED AMB Y ENERG.Fil: Jerónimo Auzmendi. UNIV.DE BUENOS AIRES. FAC.DE CS.EXACTAS Y NATURALES. INST QUIM FISICA D/L/MATERIALES MED AMB Y ENERG.Fil: Delfina Peña. UNIV.DE BUENOS AIRES. FAC.DE CS.EXACTAS Y NATURALES. CONSEJO NAC.DE INVEST.CIENTIF.Y TECNICAS. OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA. INSTITUTO DE QUIMICA BIOLOGICA DE LA FACULTAD DE CS. EXACTAS Y NATURALES. UNIV.DE BUENOS AIRES. FAC.DE CS.EXACTAS Y NATURALES. DTO.DE QUIMICA BIOLOGICA.Fil: Veronica E Garcia. CONSEJO NAC.DE INVEST.CIENTIF.Y TECNICAS. OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA. INSTITUTO DE QUIMICA BIOLOGICA DE LA FACULTAD DE CS. EXACTAS Y NATURALES.Fil: Luciano Moffatt. UNIV.DE BUENOS AIRES. FAC.DE CS.EXACTAS Y NATURALES. INST QUIM FISICA D/L/MATERIALES MED AMB Y ENERG

    FusionSeq: a modular framework for finding gene fusions by analyzing paired-end RNA-sequencing data

    Get PDF
    We have developed FusionSeq to identify fusion transcripts from paired-end RNA-sequencing. FusionSeq includes filters to remove spurious candidate fusions with artifacts, such as misalignment or random pairing of transcript fragments, and it ranks candidates according to several statistics. It also has a module to identify exact sequences at breakpoint junctions. FusionSeq detected known and novel fusions in a specially sequenced calibration data set, including eight cancers with and without known rearrangements

    Attenuation of Toll-Like Receptor Expression and Function in Latent Tuberculosis by Coexistent Filarial Infection with Restoration Following Antifilarial Chemotherapy

    Get PDF
    Mycobacterium tuberculosis (Mtb) and filarial coinfection is highly prevalent, and the presence of filarial infections may regulate the Toll-like receptor (TLR)-dependent immune response needed to control Mtb infection. By analyzing the baseline and mycobacterial antigen–stimulated expression of TLR1, 2, 4, and 9 (in individuals with latent tuberculosis [TB] with or without filarial infection), we were able to demonstrate that filarial infection, coincident with Mtb, significantly diminishes both baseline and Mtb antigen-specific TLR2 and TLR9 expression. In addition, pro-inflammatory cytokine responses to TLR2 and 9 ligands are significantly diminished in filaria/TB-coinfected individuals. Definitive treatment of lymphatic filariasis significantly restores the pro-inflammatory cytokine responses in individuals with latent TB. Coincident filarial infection exerted a profound inhibitory effect on protective mycobacteria-specific TLR-mediated immune responses in latent tuberculosis and suggests a novel mechanism by which concomitant filarial infections predispose to the development of active tuberculosis in humans

    Plasmodium falciparum-Infected Erythrocytes Induce Granzyme B by NK Cells through Expression of Host-Hsp70

    Get PDF
    In the early immune response to Plasmodium falciparum-infected erythrocytes (iRBC), Natural Killer (NK) cells are activated, which suggests an important role in innate anti-parasitic immunity. However, it is not well understood whether NK cells directly recognize iRBC or whether stimulation of NK cells depends mainly on activating signals from accessory cells through cell-to-cell contact or soluble factors. In the present study, we investigated the influence of membrane-bound host Heat shock protein (Hsp) 70 in triggering cytotoxicity of NK cells from malaria-naïve donors or the cell line NK92 against iRBC. Hsp70 and HLA-E membrane expression on iRBC and potential activatory NK cell receptors (NKG2C, CD94) were assessed by flow cytometry and immunoblot. Upon contact with iRBC, Granzyme B (GzmB) production and release was initiated by unstimulated and Hsp70-peptide (TKD) pre-stimulated NK cells, as determined by Western blot, RT-PCR and ELISPOT analysis. Eryptosis of iRBC was determined by Annexin V-staining. Our results suggest that presence of Hsp70 and absence of HLA-E on the membrane of iRBC prompt the infected host cells to become targets for NK cell-mediated cytotoxicity, as evidenced by impaired parasite development. Contact of iRBC with NK cells induced release of GzmB. We propose that following GzmB uptake, iRBC undergo eryptosis via a perforin-independent, GzmB-mediated mechanism. Since NK activity toward iRBC could be specifically enhanced by TKD peptide and abrogated to baseline levels by blocking Hsp70 exposure, we propose TKD as an innovative immunostimulatory agent to be tested as an adjunct to anti-parasitic treatments in vivo

    A −436C>A Polymorphism in the Human FAS Gene Promoter Associated with Severe Childhood Malaria

    Get PDF
    Human genetics and immune responses are considered to critically influence the outcome of malaria infections including life-threatening syndromes caused by Plasmodium falciparum. An important role in immune regulation is assigned to the apoptosis-signaling cell surface receptor CD95 (Fas, APO-1), encoded by the gene FAS. Here, a candidate-gene association study including variant discovery at the FAS gene locus was carried out in a case-control group comprising 1,195 pediatric cases of severe falciparum malaria and 769 unaffected controls from a region highly endemic for malaria in Ghana, West Africa. We found the A allele of c.−436C>A (rs9658676) located in the promoter region of FAS to be significantly associated with protection from severe childhood malaria (odds ratio 0.71, 95% confidence interval 0.58–0.88, pempirical = 0.02) and confirmed this finding in a replication group of 1,412 additional severe malaria cases and 2,659 community controls from the same geographic area. The combined analysis resulted in an odds ratio of 0.71 (95% confidence interval 0.62–0.80, p = 1.8×10−7, n = 6035). The association applied to c.−436AA homozygotes (odds ratio 0.47, 95% confidence interval 0.36–0.60) and to a lesser extent to c.−436AC heterozygotes (odds ratio 0.73, 95% confidence interval 0.63–0.84), and also to all phenotypic subgroups studied, including severe malaria anemia, cerebral malaria, and other malaria complications. Quantitative FACS analyses assessing CD95 surface expression of peripheral blood mononuclear cells of naïve donors showed a significantly higher proportion of CD69+CD95+ cells among persons homozygous for the protective A allele compared to AC heterozygotes and CC homozygotes, indicating a functional role of the associated CD95 variant, possibly in supporting lymphocyte apoptosis

    Dissection of the Role of PfEMP1 and ICAM-1 in the Sensing of Plasmodium falciparum-Infected Erythrocytes by Natural Killer Cells

    Get PDF
    BACKGROUND: Host innate immunity contributes to malaria clinical outcome by providing protective inflammatory cytokines such as interferon-γ, and by shaping the adaptive immune response. Plasmodium falciparum (Pf) is the etiologic agent of the most severe forms of human malaria. Natural Killer (NK) cells are lymphocytes of the innate immune system that are the first effectors to produce interferon-γ in response to Pf. However, the molecular bases of Pf-NK cell recognition events are unknown. Our study focuses on the role of Pf erythrocyte membrane protein 1 (PfEMP1), a major Pf virulence factor. PfEMP1 is expressed on parasitized-erythrocytes and participates to vascular obstruction through the binding to several host receptors. PfEMP1 is also a pivotal target for host antibody response to Pf infection. METHODOLOGY/PRINCIPAL FINDINGS: Using genetically-engineered parasite mutant strains, a human genetic deficiency, and blocking antibodies, we identified two receptor-ligand pairs involved in two uncoupled events occurring during the sensing of Pf infection by NK cells. First, PfEMP1 interaction with one of its host receptor, chondroitin sulfate A, mediates the cytoadhesion of Pf-infected erythrocytes to human NK cell lines, but is not required for primary NK cell activation. Second, intercellular adhesion molecule-1 (ICAM-1), another host receptor for PfEMP1, is mandatory for NK cell interferon-γ response. In this case, ICAM-1 acts via its engagement with its host ligand, LFA-1, and not with PfEMP1, consistent with the obligatory cross-talk of NK cells with macrophages for their production of interferon-γ. CONCLUSION/SIGNIFICANCE: PfEMP1-independent but ICAM-1/LFA-1-dependent events occurring during NK cell activation by Pf highlight the fundamental role of cellular cooperation during innate immune response to malaria

    Lipoglycans Contribute to Innate Immune Detection of Mycobacteria

    Get PDF
    Innate immune recognition is based on the detection, by pattern recognition receptors (PRRs), of molecular structures that are unique to microorganisms. Lipoglycans are macromolecules specific to the cell envelope of mycobacteria and related genera. They have been described to be ligands, as purified molecules, of several PRRs, including the C-type lectins Mannose Receptor and DC-SIGN, as well as TLR2. However, whether they are really sensed by these receptors in the context of a bacterium infection remains unclear. To address this question, we used the model organism Mycobacterium smegmatis to generate mutants altered for the production of lipoglycans. Since their biosynthesis cannot be fully abrogated, we manipulated the biosynthesis pathway of GDP-Mannose to obtain some strains with either augmented (∼1.7 fold) or reduced (∼2 fold) production of lipoglycans. Interestingly, infection experiments demonstrated a direct correlation between the amount of lipoglycans in the bacterial cell envelope on one hand and the magnitude of innate immune signaling in TLR2 reporter cells, monocyte/macrophage THP-1 cell line and human dendritic cells, as revealed by NF-κB activation and IL-8 production, on the other hand. These data establish that lipoglycans are bona fide Microbe-Associated Molecular Patterns contributing to innate immune detection of mycobacteria, via TLR2 among other PRRs

    Building Disease-Specific Drug-Protein Connectivity Maps from Molecular Interaction Networks and PubMed Abstracts

    Get PDF
    The recently proposed concept of molecular connectivity maps enables researchers to integrate experimental measurements of genes, proteins, metabolites, and drug compounds under similar biological conditions. The study of these maps provides opportunities for future toxicogenomics and drug discovery applications. We developed a computational framework to build disease-specific drug-protein connectivity maps. We integrated gene/protein and drug connectivity information based on protein interaction networks and literature mining, without requiring gene expression profile information derived from drug perturbation experiments on disease samples. We described the development and application of this computational framework using Alzheimer's Disease (AD) as a primary example in three steps. First, molecular interaction networks were incorporated to reduce bias and improve relevance of AD seed proteins. Second, PubMed abstracts were used to retrieve enriched drug terms that are indirectly associated with AD through molecular mechanistic studies. Third and lastly, a comprehensive AD connectivity map was created by relating enriched drugs and related proteins in literature. We showed that this molecular connectivity map development approach outperformed both curated drug target databases and conventional information retrieval systems. Our initial explorations of the AD connectivity map yielded a new hypothesis that diltiazem and quinidine may be investigated as candidate drugs for AD treatment. Molecular connectivity maps derived computationally can help study molecular signature differences between different classes of drugs in specific disease contexts. To achieve overall good data coverage and quality, a series of statistical methods have been developed to overcome high levels of data noise in biological networks and literature mining results. Further development of computational molecular connectivity maps to cover major disease areas will likely set up a new model for drug development, in which therapeutic/toxicological profiles of candidate drugs can be checked computationally before costly clinical trials begin
    corecore