371 research outputs found
Recommended from our members
Exact formulae for certain integrals arising in potential theory
Exact formulae are derived for certain integrals arising in the solution of potential problems by integral equation methods
Recommended from our members
The use of spline and singular functions in an integral equation method for conformal mapping
We consider the integral equation method of Symm for the conformal mapping of simply-connected domains. For the numerical solution, we examine the use of spline functions of various degrees for the approximation of the source density o. In particular, we consider ways for overcoming the difficulties associated with corner singularities. For this we modify the spline approximation and in the neighbourhood of each corner, where a boundary singularity occurs, we approximate σ by a function which reflects the main singular behaviour of the source density. The singular functions are then blended with the splines, which approximate σ on the remainder of the boundary, so that the global approximating function has continuity of appropriate order at the transition points between the two types of approximation. We show, by means of numerical examples, that such approximations overcome the difficulties associated with corner singularities and lead to numerical results of high accuracy
Recommended from our members
The treatment of corner and pole-type singularities in numerical conformal mapping techniques
This paper is a report of recent developments concerning the nature and the treatment of singularities that affect certain numerical conformal mapping techniques. The paper also includes some new results on the nature of singularities that the mapping function may have in the complement of the closure of the domain under consideration
The determination of the poles of the mapping function and their use in numerical conformal mapping
Let f be the function which maps conformally a simply-connected domain Ω onto the unit disc. This paper is concerned with the problem of determining the dominant poles of f in comp1(Ω∩∂Ω), and of using this information in order to obtain accurate numerical approximations to f by means of the Bergman kernel method
Antipsychotics and Torsadogenic Risk: Signals Emerging from the US FDA Adverse Event Reporting System Database
Background: Drug-induced torsades de pointes (TdP) and related clinical entities represent a current regulatory and clinical burden. Objective: As part of the FP7 ARITMO (Arrhythmogenic Potential of Drugs) project, we explored the publicly available US FDA Adverse Event Reporting System (FAERS) database to detect signals of torsadogenicity for antipsychotics (APs). Methods: Four groups of events in decreasing order of drug-attributable risk were identified: (1) TdP, (2) QT-interval abnormalities, (3) ventricular fibrillation/tachycardia, and (4) sudden cardiac death. The reporting odds ratio (ROR) with 95 % confidence interval (CI) was calculated through a cumulative analysis from group 1 to 4. For groups 1+2, ROR was adjusted for age, gender, and concomitant drugs (e.g., antiarrhythmics) and stratified for AZCERT drugs, lists I and II (http://www.azcert.org, as of June 2011). A potential signal of torsadogenicity was defined if a drug met all the following criteria: (a) four or more cases in group 1+2; (b) significant ROR in group 1+2 that persists through the cumulative approach; (c) significant adjusted ROR for group 1+2 in the stratum without AZCERT drugs; (d) not included in AZCERT lists (as of June 2011). Results: Over the 7-year period, 37 APs were reported in 4,794 cases of arrhythmia: 140 (group 1), 883 (group 2), 1,651 (group 3), and 2,120 (group 4). Based on our criteria, the following potential signals of torsadogenicity were found: amisulpride (25 cases; adjusted ROR in the stratum without AZCERT drugs = 43.94, 95 % CI 22.82-84.60), cyamemazine (11; 15.48, 6.87-34.91), and olanzapine (189; 7.74, 6.45-9.30). Conclusions: This pharmacovigilance analysis on the FAERS found 3 potential signals of torsadogenicity for drugs previously unknown for this risk
Recommended from our members
Bioavailability in soils
The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr
A mouse model with a frameshift mutation in the nuclear factor I/X (NFIX) gene has phenotypic features of Marshall-Smith syndrome
The nuclear factor I/X (NFIX) gene encodes a ubiquitously expressed transcription factor whose mutations lead to two allelic disorders characterized by developmental, skeletal, and neural abnormalities, namely, Malan syndrome (MAL) and Marshall–Smith syndrome (MSS). NFIX mutations associated with MAL mainly cluster in exon 2 and are cleared by nonsense-mediated decay (NMD) leading to NFIX haploinsufficiency, whereas NFIX mutations associated with MSS are clustered in exons 6–10 and escape NMD and result in the production of dominant-negative mutant NFIX proteins. Thus, different NFIX mutations have distinct consequences on NFIX expression. To elucidate the in vivo effects of MSS-associated NFIX exon 7 mutations, we used CRISPR-Cas9 to generate mouse models with exon 7 deletions that comprised: a frameshift deletion of two nucleotides (Nfix Del2); in-frame deletion of 24 nucleotides (Nfix Del24); and deletion of 140 nucleotides (Nfix Del140). Nfix+/Del2, Nfix+/Del24, Nfix+/Del140, NfixDel24/Del24, and NfixDel140/Del140 mice were viable, normal, and fertile, with no skeletal abnormalities, but NfixDel2/Del2 mice had significantly reduced viability (p Nfix Del2 was not cleared by NMD, and NfixDel2/Del2 mice, when compared to Nfix+/+ and Nfix+/Del2 mice, had: growth retardation; short stature with kyphosis; reduced skull length; marked porosity of the vertebrae with decreased vertebral and femoral bone mineral content; and reduced caudal vertebrae height and femur length. Plasma biochemistry analysis revealed NfixDel2/Del2 mice to have increased total alkaline phosphatase activity but decreased C-terminal telopeptide and procollagen-type-1-N-terminal propeptide concentrations compared to Nfix+/+ and Nfix+/Del2 mice. NfixDel2/Del2 mice were also found to have enlarged cerebral cortices and ventricular areas but smaller dentate gyrus compared to Nfix+/+ mice. Thus, NfixDel2/Del2 mice provide a model for studying the in vivo effects of NFIX mutants that escape NMD and result in developmental abnormalities of the skeletal and neural tissues that are associated with MSS
Practice patterns of naturopathic physicians: results from a random survey of licensed practitioners in two US States
BACKGROUND: Despite the growing use of complementary and alternative medicine (CAM) by consumers in the U.S., little is known about the practice of CAM providers. The objective of this study was to describe and compare the practice patterns of naturopathic physicians in Washington State and Connecticut. METHODS: Telephone interviews were conducted with state-wide random samples of licensed naturopathic physicians and data were collected on consecutive patient visits in 1998 and 1999. The main outcome measures were: Sociodemographic, training and practice characteristics of naturopathic physicians; and demographics, reasons for visit, types of treatments, payment source and visit duration for patients. RESULT: One hundred and seventy practitioners were interviewed and 99 recorded data on a total of 1817 patient visits. Naturopathic physicians in Washington and Connecticut had similar demographic and practice characteristics. Both the practitioners and their patients were primarily White and female. Almost 75% of all naturopathic visits were for chronic complaints, most frequently fatigue, headache, and back symptoms. Complete blood counts, serum chemistries, lipids panels and stool analyses were ordered for 4% to 10% of visits. All other diagnostic tests were ordered less frequently. The most commonly prescribed naturopathic therapeutics were: botanical medicines (51% of visits in Connecticut, 43% in Washington), vitamins (41% and 43%), minerals (35% and 39%), homeopathy (29% and 19%) and allergy treatments (11% and 13%). The mean visit length was about 40 minutes. Approximately half the visits were paid directly by the patient. CONCLUSION: This study provides information that will help other health care providers, patients and policy makers better understand the nature of naturopathic care
siRNA-Based Targeting of Cyclin E Overexpression Inhibits Breast Cancer Cell Growth and Suppresses Tumor Development in Breast Cancer Mouse Model
Cyclin E is aberrantly expressed in many types of cancer including breast cancer. High levels of the full length as well as the low molecular weight isoforms of cyclin E are associated with poor prognosis of breast cancer patients. Notably, cyclin E overexpression is also correlated with triple-negative basal-like breast cancers, which lack specific therapeutic targets. In this study, we used siRNA to target cyclin E overexpression and assessed its ability to suppress breast cancer growth in nude mice. Our results revealed that cyclin E siRNA could effectively inhibit overexpression of both full length and low molecular weight isoforms of cyclin E. We found that depletion of cyclin E promoted apoptosis of cyclin E-overexpressing cells and blocked their proliferation and transformation phenotypes. Significantly, we further demonstrated that administration of cyclin E siRNA could inhibit breast tumor growth in nude mice. In addition, we found that cyclin E siRNA synergistically enhanced the cell killing effects of doxorubicin in cell culture and this combination greatly suppressed the tumor growth in mice. In conclusion, our results indicate that cyclin E, which is overexpressed in 30% of breast cancer, may serve as a novel and effective therapeutic target. More importantly, our study clearly demonstrates a very promising therapeutic potential of cyclin E siRNA for treating the cyclin E-overexpressing breast cancers, including the very malignant triple-negative breast cancers
- …