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ABSTRACT

This  paper   is   a  report  of  recent  developments  concerning 

the  nature  and  the   treatment  of   singularities   that  affect 

certain  numerical   conformal  mapping   techniques.        The  paper 

also   includes  some   new  results  on  the  nature  of 

singularities   that   the  mapping  function  may  have  in  the 

complement  of  the   closure  of   the  domain  under  consideration. 
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1.     Introduction

This  paper  is  a  report  of  recent  developments  concerning  the  treatment 

of  singularities   in  certain  numerical  methods  for  approximating  the 

functions  fI ,   fE  and  fD,  which  accomplish  respectively  the  following 
 

three  conformal  maps. 

CM1:   The  mapping  of  a  domain  interior  to  a  closed  Jordan  curve 

onto   the   interior  of  the  unit  disc. 

CM2:   The  mapping  of  a  domain  exterior  to  a  closed  Jordan  curve  onto 

the   exterior  of   the  unit  disc. 

CM3:  The  mapping  of   a  doubly—connected   domain,   bounded  by   two   closed 

Jordan  curves,   onto   a  circular   annulus. 

The   main  objectives  of   the  paper  are  as   follows: 

(i)         To  present  detailed   information  about   the  location  and 

nature  of  the   singularities  that  the   three  mappings  may  have   in  the 

complement  of   the  domain  under  consideration. 

(ii)      To   indicate  how  the   singularities  of   the  conformal  maps 

affect   two   different   classes   of  numerical  methods,   viz.    expansion  and 

integral   equation  methods.       (We  do  this  by  considering  certain  expansion 

methods   which  have  been   studied   in   [22,   26-30],    and   an   integral   equation 

method  which  has   received  considerable   attention   recently;      [8-10,    12-18, 

31,   33-35,   39,   40].) 

(i i i)       To   present  numerical   examples   i l lustrating  certain   important 

aspects  concerning  the  treatment  of   singularities. 

The  paper   is   essentially   a   detailed   survey   of   developments   reported 

in   [14,   15,   22,   26-30].     However,   in  Section  5  we  also  present  certain 

new  results   that   provide   additional   information   about   the   singular  beha- 

viour  of   the   interior  and   exterior  mapping   functions   f I      and   fE   .  
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2.     The  Conformal  Mapping  Problems. 

Let  ∂ Ω  be  a  closed  piecewise  analytic  Jordan  curve  in  the  complex 

z-plane,  and  assume   that  the  origin  0   lies  in  Int(∂ Ω).      Then,   the   two 

problems  associated with  the  conformal maps CM1and CM2 can be  stated 

as  follows. 

Problem  P1 .     To  determine  the  function 

w  =  f I(z)     t (2.1) 

which maps  ΩI     =  Int (∂ Ω)   one-one  conformally  onto   the  unit   disc 

DI  = {w :    |w|   <   1}   , (2.2) 

so   that 

f(0)   =  0     and     f'(0)   >  0 (2.3) 

Problem  P2.     To   determine   the   function 

w   =  fE(z) (2.4) 

which  maps  ΩE     =  Ext (∂ Ω)   one-one  conformally  onto   the   exterior  of   the 
unit   disc 

DE  =  {w:      |w|   >   1} (2.5) 

so  that 
( ) ( ) 0z'

Ef
z
limandEf >

∞+
∞=∞                                                 (2.6) 

The  above   two  problems   can  be  related  to   each  other  by  means  of 

the   transformation 

z  →  z-1 (2.7) 

This   simple   inversion  transforms   ∂ Ω  onto  a  piecewise  analytic   Jordan 

curve   ∂ Ω      and  maps   conformally  Ωˆ I  onto  Ω̂ E =  Ext(∂ )   and  ΩΩ̂ E   onto 

Ω̂ I =   Int(∂ ).      Therefore,   if   Ω̂ f̂ I  and  f̂ E  are   respectively  the   interior 

and  exterior  mapping  functions  associated  with  ∂   then Ω̂

( ) ( ){ } ( ) ( ){ } ,
11zEf̂zIfand

11zIf̂zEf
−−=

−−=                                    (2.8) 

Thus,   in  theory  at   least,   there   is  no  need   to  consider   the   interior  and 

exterior  mapping   problems   as   separate   problems.      Indeed,   in   the   case   of 
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expansion  methods   it   is   generally  computationally  convenient  to  determine 

fE  by  using   (2.8)   and  the  corresponding  approximation  to   the   interior 

mapping  function  f̂ I  ;   see  e-g   [27].     In  the  case  of   integral  equation 

methods  however,   no  numerical  advantage  can  be  gained  by  using  the  inter- 

mediate   transformation   (2.7)   and  it   is,   in  general,   preferable   to  treat 

the  two  mapping  problems   separately. 

Let  the  parametric   equation  of   ∂ Ω  be 

z  = τ (S ) ,      0  ≤  s  ≤  L   , (2,9) 

where     s     is  an  appropriate  real  parameter,   and  assume  that   (2.9)   defines 

a  positive  orientation  of   ∂ Ω  with  respect   to  Ω I  .     Then,   the  interior  and 

exterior  boundary  correspondence  functions   θ I  and   θ E   ,   associated  with  the 

problems  P1   and  P2,   are  defined  respectively  by 

f I {τ ( s )}    =  exp{i θ I (s)}     and    f E {τ ( s )}    =  exp{i θ E (s)}   , (2.10a) 

i.e. 

 θ I( s)   =  Arg{fI (τ(s)}     and     θ E(s)   =  Arg{fE(τ(s)}   , (2.10b) 

where  Arg(.)   is  a  continuous   argument  as  defined,   for  example,   in 

[11,   §4.6]   and   [18,   §11.7].     As   it   is  shown  in  [8],   the  functions   θ I     and 

 θ E  play  a  very   important  role   in  both  the  theory  and  application  of   the 

integral  method  considered   in  the  present  paper. 

Let  now   ∂Ω1   and    ∂Ω2 be  two   closed  piecewise  analytic  Jordan  curves 

such   that    ∂ Ω1 ⊂  Int( ∂Ω2)   and  0  ∈  Int ( ∂Ω1),     and  denote  by  ΩD  the  finite 

doubly—connected   domain 

ΩD      =   Ext ( ∂Ω1)   ∩   Int( ∂Ω2)   . (2.11) 

Then,   the  problem  associated  with  the  conformal  map  CM3  can  be   stated 

as  follows. 

Problem  P3.       To  determine  the  function 

w  -  fD(z)   , (2.12) 
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which  maps   ΩD     one-one  conformally  onto  a  circular  annulus 

A(r1,r2)   =  {w:     r1  <   |w|   <  r2}                                (2.13) 

so that

      fD (ξ1) = ri ,   (2.14) 

where     ξ 1   is   some  fixed  point   on   ∂Ω1   and  r i    is  a  prescribed  number. 
  

The   condition   (2.14)   determines  uniquely   the   radius   r2   of   the   outer 

circle  and  ensures   that  ∂Ω1  and  ∂Ω2   are  mapped  respectively  onto   the 

two  circles   | w |   =  r1  and   |w|   =  r2   .     The  ratio 

M  ==  r2 /r1   ,                                                   (2.15) 

of  the  two  radii  of  A(r1,r2),   is   an  important  domain  functional  known  as 

the   conformal   modules  of  ΩD   . 

Let  the  parametric  equation  of   ∂Ω     =  ∂Ω  U  ∂Ω2  be 

z   -   τ( S ) ,  0  ≤  s  ≤ L   ,                                                      (2. 16a) 

so  that 

∂Ω1   =   { τ(s)  :      0  ≤  s  ≤  L1} 

and                                                                                                                                          (2.16b) 

∂Ω2   =  { τ(S):      L1   <   s  ≤  L} 

where,   for  notational   simplicity,   we   take 

 τ(L1)   =   τ(L1-)   =  T (0 )  

and                                                                                                                                           (2.16c) 

 τ(L)   =    τ(L1+) 

Then,   by  analogy  with  the   definitions   (2.10)   of   6,  and   8   ,   we   define 

the  boundary  correspondence  function  θD   ,   associated  with  the  function 

fD,   by 

f D  { τ(S)}   =  r(s)exp{iθD   (S)}   ,                                                  (2 .17a)  

where 

( )
⎪⎩

⎪
⎨
⎧

≤<

≤≤
=

L,s1L,2r

,1Ls0,1r
sr                                                           (2.17b)
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i.e. 

θD(s)   =  Arg{fD( τ (s)} (2.17c) 

3.     Numerical  Conformal  Mapping. 

3. 1       Expansion  methods

By  an  expansion  method  we  mean  a  numerical  method  where  the  mapping 

function  is  approximated  by  an  explicit  formula,   involving  a  linear 

combination  of  a  set  of  basis  functions.     The  class  of  such  methods   in- 

cludes  the  well-known  kernel   function  methods  described  in   [6,   Chap.III], 

the  variational  method  of   [6,   p.249]   and  the  numerical  methods  described 

in   [4,   5].     In  the  application  of  any  of   these  methods,   the   information 

about  the  dominant   singularities  of   the  mappings   is  needed  for  con- 

structing   the  set  of  basis   functions.     This   emerges  from  the  observation 

that   the  computational  efficiency  of  an  expansion  method   improves  con- 

siderably  when  the  basis   set  contains  functions   that  reflect   the  main 

singular  behaviour   of   the  mapping   in   the   complement   of   the   domain  under 

consideration.      In  the  present  paper  we   illustrate   the  construction  of 

such  basis   sets   by   considering   the   following   typical   expansion  methods: 

(i)      The  well-known  Bergman  kernel  method   (BKM)   and  the  closely 

related  Ritz  variational  method   (RM) ,   for  determining  approximations  to 

the  mapping   functions   fI and   fE   .      The   theory   of  both   these  methods   is 

treated   extensively   in  the   literature;   see   e.g.[1,   6,   7,   25,   37], 

  (ii)   The  variational  method   (VM)   of   Gaier   [6,   p.249]   and   the 

associated  orthonormalization  method   (ONM),   which  emerges   from  the   theory 

contained   in   [6,   p.249;   1,   p.102;   25,   p.373] ;   see  also   [28].     Both  the 

VM  and   ONM  are  methods   for   approximating   the  mapping  function  fD     of 

problem  P3. 

In  both   the  BKM  and   RM  the   approximation   to   the   interior  mapping 

function  fI   is   determined   after   first   approximating   the   derivative   f '  L
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by  an  expansion  of   the  form 

                                                                                       (3.1) ( ) ( )∑
=

=
n

1j
zjnjaz'

I,nf

where  the  basis   set   {hj}   is   a  complete  set  of  the   space  L2 (ΩI).      (Here, 

L2(ΩI)   denotes   the  Hilbert   space  of  all   square  integrable  analytic 

functions   in ΩI  .)     The  choice  of  the  basis   set  plays  a  very  critical 

role   in  the  application  of  the  methods.     That   is,   for  the   reasons   ex- 

plained   in   [22,   Sect .2]   and   [26,   Sect .4],   the  set   {n j}  must  be  chosen  so 

that  the  resulting  approximating  series   (3.1)   converges  rapidly.     This 

can  be   achieved,   as  proposed   in   [22,   26,   29],   by  using  an   "augmented 

basis"   formed  by   introducing   into   the   "monomial   set" 

z j -1  ,   j   =   1,2,3,...,                                             (3.2) 

functions   that   reflect   the  dominant   singularities   of  f '    on   ∂Ω  and   in I

Ext (∂Ω) 

The   same  procedure  for  constructing  the  basis   set   is  used   in   [27], 

where  the  BKM  and  RM  are  applied  to   the  exterior  mapping  problem  P2. 

Here  however,   the  approximation  to   fI   is   determined,   by  means   of   (2.8), 

from  the  corresponding  approximation  to   the   interior  mapping  function 

f̂ I.     For   this   reason,   in  the   case  of  problem  P2,   the  augumented  basis   is 

formed  by   introducing   into   the  monomial   set   functions   that   reflect   the 

singularities  of      on   ∂   and   in  Ext(∂'
I

f̂ Ω̂ Ω̂ ). 

In  the  case   of  problem  P3,   both  the  VM  and  ONM  approximation  to   the 

mapping  function  fD     are  determined  after  first   approximating  the  function 

H(z)   =  f'D(z)/fD(z)   -   1/z                                        (3.3) 

by  an  expansion  of   the  form 

                                                                  (3.4) ( ) ( )∑
=

=
n

1j
zjnjaznH

Here,   the   set   {nj}   is  a  basis   of   the  Hilbert   space  of   all   functions   in 

L2(ΩD )   which  also  possess   a   single valued   indefinite   integral   in  ΩD   . 



In  this   case  the  augmented  basis   is   formed  by   introducing   into   the 

"monomial   set" 

z j -1 ,   1 / z  J  + l ;     j   =-  1 ,2 , , . . ,                                                    (3.5) 

functions   that  reflect   the   singularities  of     H    on   ∂ ΩD    and   in  compl(Ω D)   = 

Int(∂Ω1)   U  Ext (∂Ω2);     see   [28,   30]   and   [3]. 

3.2       An  integral  equation  method

The   integral  equation  method   (IEM)   considered   in  this   section  is 

based  on  certain  formulations   proposed  originally  by  Symm  [33-35]   and, 

for  this  reason,   the  method   is  frequently  referred  to  as   "the   integral 

equation  method  of   Symm". 

In  the   IEM,   the  approximate  conformal  map   is  determined  after  first 

solving  a  weakly   singular  Fredholm  integral   equation  of   the  first  kind 

for  an  unknown  density  function    v     .     The  three  equations  associated 

with  the  mapping  problems  P1,   P2  and  P3  can  be  expressed   in  a  unified 

manner,  by  taking    G     to  be  the  domain  under  consideration,   letting 

z   =  Τ(S) 0  ≤  S  ≤  L,                                    (3.6) 

be  the  parametric  equation  of   the  boundary   ∂G,   and  denoting  by 

w  =  F(z),                                                     (3.7) 

the  corresponding  mapping  function.      (That   is,     F    denotes  one  of  the 

functions   fI ,fE    or  fD,   depending  on  whether  the  domain    G     is   interior, 

exterior  or  doubly—connected,   i.e.   depending   on  whether     G     is     ΩI   ,Ω E  or 

ΩD   .)       With  this  notation,   the  integral  equations   for  determining  the 

density  function    v     can  be  expressed  as 

( ) ( ) ( ) ( )∫ ≤≤=−
L

o
L,σ0,σδds|sτστ|logsv                                      (3.8a)

where 

( )
( )

( )⎪
⎩

⎪
⎨

⎧

≡+−

≡
≡−

=

DΩG,0σIL
EΩG1,
IΩG|,στ|log

σδ    (3.8b) 
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and  where,   with   the  usual  notation, 

⎪⎩

⎪
⎨
⎧

<

≥
=+

0.x0,

0,x1,
0x

 

The  theory  of  the  IEM  is   treated  fully  in  [8,9]   where,   in  particular,  

the  question  of   solvability  of   (3.8)   is   studied.     It    turns  out   that,    in 

the   two   cases   G= ΩI  and  G= ΩE ,  (3.8)   has   a  unique   solution  provided 

that 

cap ∂Ω   ≠    1                                                    (3.9) 

where,  with  the  notation  of  problem  P2, 

( ){ } 1
z'

Ef
z
limΩcap

−
∞→

=∂                                                                        (3.10) 

is   the  capacity  of   the  curve   ∂Ω.     Similarly,   when  G  =  ΩD,   (3.8)   has  a 

unique   solution  provided   that 

cap ∂Ω2   ≠   1. (3.11) 

(In  other  words,   a  unique   solution  always   exists   subject   only   to   a  possible 

rescaling  of     G     .)      It   is  also   shown  in   [8,   9]   that   the  density   functions 

corresponding  to  the   three  mapping  problems  are  related  to  the  derivatives 

of   the  associated  boundary  correspondence   functions   as   follows: 

     Problem  PI: 

2π v(s)   =  -  θI   (s)    . (3. 12) 

Problem  P2: Let   γ   -   log{cap∂Ω}.      Then 

2 π γ V (S)   =   θE(s)    . (3.13) 

Problem  P3: Assume,   without   loss   of   generality,   that   the 

mapping   is  normalized   so   that  ΩD    →   A(r1,1),   and  let   γ  =  logM  where 

M  =   1/r1   is   the   modulus   of  Ω D   .      Then 

2 π γ V (S)   =  θD(s)    . (3.14) 

In  the  two   cases  G ≡   ΩE     and  G  =  ΩD,   the   integral   equations  contained 

in   (3.8)   are   due   to   Gaier   [8,   9]   and   differ   somewhat   from  those   used 

originally  by   Symm   [34,   35].     For   the  problems   P2   and  P3,   the   formulations 

of   [34]   and   [35]   involve   the   determination  of   two   density   functions   vE
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and  v̂ D    which  are   related   to   the  boundary   correspondence   functions 

θ I  ,   θ E  and  θ  D as   follows: 

Problem  P2.

2π  (S)   =  θv̂ & E  -  θ  & I

Problem  P3. Let  θ I  1    be  the   interior  boundary  correspondence 

function,   associated  with  the   inner  component    ∂Ω1    of    ∂ΩD     Then 

( )
⎪⎩

⎪
⎨
⎧

≤<

≤≤−
=

L;s1L,Dθ

1Ls0,DθI1θ
sDv̂2 π

&

                            (3.16) 

(3.15) 

see   [9]   and   [15]    . 

As  will  become  apparent   in  Section  4,   if   the  domains  under  consider- 

ation   involve  corners  then  the  original  formulations  of   Symm  [34,   35] 

are  not   as   suitable  as   those  based  on   the   integral   equation   (3.8). 

Regarding   the   treatment   of   singularities,   in   the   IEM  we   are 

interested  mainly   in  the   singular  behaviour  of   the  unknown  density 

function,   rather  than  of     F .For  example,   the  asymptotic  expansion 

of     v    near  a  corner   is  used  in  the  collocation  method  of   [14,   15],   for 

approximating   the   solution  of   (3.8)   by  splines  and   singular  functions. 

(A  similar  approach  can  of  course  be  used   in  connection  with  the 

Galerkin  method  of  Wendland   [40];   see  also   [17]   and   [20].)     Also,   the 

so-called   re-parametization  method  of   Hoidn   [13]   requires   knowledge  of 

the   singular  behaviour   of     v     at   a  corner.      In   this   method,   the   corner 

singularities   associated  with   the   solution  of   problem  P1   are   treated  by 

re-defining  the  parametric  equation  of  the  boundary  curve    ∂Ω .        Finally, 

information  about   the   location  of   the   singularities   of   the  mapping 

function     F     in  compl(GU∂G)   can  be  used,   in  collocation  and  Galerkin 

methods,   for   defining   appropriate  non—uniform  distributions   of   the 

nodal  points;   see   [14,   Ex.1,   p.142]   and  also   Exs   1   -   4  of   the  present 

paper. 
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4.     Corner  Singularities. 

Any  boundary   singularities  of  the  mapping  functions   are  corner 

singularities,   similar  to  those  that  arise   in  the   study  of   elliptic 

boundary  value  problems.     The  asymptotic  form  of  these  singularities  can 

be  determined  from  the  results  of  Lehman   [21],  which  generalize  earlier 

work  of  Lichtenstein  [24],   Kellog   [19],  Warschawski   [38]   and  Lewy   [23]. 

With  the  unified  notation  introduced  in  Section  3.2,     assume  that 

part  of  the  boundary  ∂G  consists  of  two  analytic  ares  Γ1    and   Γ2  which 

meet  at  a  point   zo   and  from  there  a  corner  of   interior  angle  απ ,  where 

0  < α  < 2.    (By   interior  angle,   we  mean  interior  to  the  domain    G    under 

consideration.)      Then,   depending  on  whether     α      is   rat ional  or  irrational,  

the  results  of   [21]   lead   to  the  following  two  asympototic  expansions.  

( i)         If   α   =  p/q ,   with     p  and   q   relatively  prime,   then 

as  z  →z0 , 

( ) ( ) ( ) ( )( ) ,
,mk.

m
0zzLog/αk

0zz,mk,BzFzF ∑ −
+

−=−
l

l
l                                    (4.1a)

where k, ℓ and m run over all integers k ≥  0, 1 ≤  ℓ ≤  p, 0 ≤  m ≤  k/q 

and  whe re  B 0 , 1 , 0  0 .  A l s o ,  t h e  t e r ms  i n  ( 4 . 1 a )  a r e  o r d e r e d  s o  t h a t  t h e  

term  corresponding  to  Bk,  ℓ  ,m    precedes   the  term  corresponding  to 

B k;  ℓ  ,  m       if  either k  +  ℓ/α   <  k1   +  ℓ '  /α   or k  + ℓ/α    = k'   +  ℓ ' /α   and 

m >m '. 

(ii)     If     α      is   irrational   then,   as   z  →  z0 , 

( ) ( ) ( )∑
+

−=−
l

l
lk,

,/αk
0zzk,B0zFzF                                    (4.1b)

where  now    k     and     ℓ     run  over  all   integers  k  ≥   0,   ℓ  ≥   1   and  where 

B0 ,1 ǂ  0 

In   the   two   cases  G   ≡    ΩI     and  G  ≡ ΩE  ,   the   expansions   (4.1a)   and 

and   (4.1b)   simplify  considerably  when  the  two  arms   Γ1 ,Γ2    of   the  corner 

z0   are  both   straight   lines.      Then,   as   z   →  z0    , 
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( ) ( ) ( )∑
∞

=
≠−=−

1
0;1B,/α

0zzB0zFzF
l

l
l                                        (4.1c)

see  e.g   [25,   p.p. 189-194]   and   [2,   p. 170].   Also,  when  G  =  ΩD and  both 

Γ 1  ,  Γ 2    are    s t ra ight    l ines   the   expansion   (4-1b)    holds   for   both  ra t ional    and 

irrational     α   ,   and  the   same  applies,   in  all   three  cases,   G  ≡  Ω I, ΩE , ΩD, 

when  both   Γ 1, Γ 2   are  circular  arcs. 

It   follows   from  the   above   that   the  dominant   term   in  the   asymptotic   ex- 

pansion  of     F     is  always   (z  -  z 0) 1 /  α    .     This   reflects  the  geometric  property 

that,  under  the  mapping     F     ,   the  angle  air  at   z0   ∈  ∂G  is  transformed  onto 

an  angle     π     at   the   point  F(z0) .      Therefore,   when   1 /α   is  not   an   integer, 

a  branch  point   singularity  always  occurs  at   the  corner  z0.         Furthermore, 

because  of   the  logarithmic   terms   in   (4.1a),    a  branch  point   singularity 

might  occur   even  when   1/α    is   an   integer.    This  means   in  particular,    that 

the  use   of  preliminary   transformations,   which   is   frequently  proposed  as 

a  method  for   rectifying   corners,   does  not   necessarily   remove   corner   singu- 

larities . 

4.1      Singularities   of   the   functions   f I    and     H

As   we   indicated   in   Section  3.1,   this   information   is   needed   for  con- 

structing   appropriate   "augmented"  basis   sets,   for  use  with   the   four   ex- 

pansion  methods   which  we   denoted  by  BKM,   RM,   ONM  and  VM. The form of  the 

"singular"   functions  needed   for   augmenting   the  monomial   sets   (3.2)   and 

(3.5)   emerges   from  the  asymptotic   expansions   (4.1).      The  details,   for 

each  of   the   three  mapping  problems,   are   as   follows: 

Problem  P1.   The   BKM  or   RM  basis   set   is   constructed  by  introducing 

into   the  monomial   set   (3.2)   the   derivatives   of   the   first   few   singular 

terms   of   the   appropriate   asymptotic   series   (4.1a),    (4.1b)   or   (4.1c). 

That   is,   the   singular  basis   functions   for  dealing  with  corner   singularities 

are   of   the   form 

( ) α/rorα/kr};r)0zz{(
dz
dzη ll =+=−=                    (4.2a)
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and 

( ) ;}m))
0

zLog(z(/αk)
0

zz{(
dz
dzη −+−= l  (4.2b) 

see   [22]   and   [26] 

Problem  P2.     In  this  case,   a  corner  of  exterior  angle  απ  at   z0   ∈ ∂Ω 

is   transformed,   under  the   inversion   (2.7),    into  a  corner  of   interior  angle 

απ   at   the  point   1/z0 ∈ ∂ . Therefore,   since   the  BKM  or  RM  approximation Ω&

to  the  mapping  function  fE    is   determined  by  means  of   (2.8)   from  the 

corresponding  approximation  to   the   interior  mapping  function  f̂ I ,      the 

details  for  constructing  the  augmented  basis   are  the  same  as   for  problem 

P1.     However,   it   is   important   to  observe  that   the  inversion   (2.7)   trans- 

forms  a  straight   line     Γ     into  a  straight   line         only   if    Γ    passes Γ̂

through  the  origin  of  the  z-plane.     This  means  that,    in  the  case  of   the 

function  f  ˆ I  ,   the   simple  asymptotic  expansion   (4.1c)   cannot  be  assumed, 

even  when  both  the  arms  of   the  corner  are   straight   lines;   see   [27]. 

Problem  P3.        The  question  regarding  the  choice  of  basis   functions   for 

dealing  with  the  corner  singularities  at  z0     of   the  function    H     ,   defined 

by   (3.3),   can  again  be  answered  by  using  the  asymptotic   expansions   (4.1). 

However,  as  was   indicated   in  Section  3.1,  the  ONM  and VM  basis   functions 

must  possess   single-valued   integrals   in ΩD   .        For  this  reason,   the  form 

of  the   singular  functions  used  for  augmenting   the   set   (3.5)   depends   on 

whether  the  corner  z0   lies   on  the  inner  or  outer  components  of   ∂ΩD . 

That   is,   the   singular  functions   are  of   the  form   (4.2)   when   z0   is  on   the 

outer  boundary  ∂ Ω2,   and  of   the  form 

( ) α,/rorα/kr;

r

0z
1

z
1

dz
dzη ll =+=−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
                         (4.3a)

and 

( )
⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+

−=

m

0z
1

z
1Log

α/k

0z
1

z
1

dz
dzη

l

                               (4.3b)

when  z0   is  on  the  inner  boundary   ∂Ω1;   see   [28]   and   [3]. 
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4.2     Singularities  of  the  source  density  function  v   .

As  before,  we  use  the  unified  notation  of  Section  3.2  and  assume   that 

part  of   the  boundary   ∂G,   of  the  domain    G    under  consideration,   consists 

of  two  analytic  arcs  which  meet   at   a  point  z0  and  form  there  a  corner  of 

interior  angle  απ,   0   <  α   <  2.     We  also   take   the  parametric   equation  of 

∂G  to  be 

z   = τ(s)   , 0  ≤  s  ≤  L   , (4.4) 

and   let  

z0   -  τ(s 0 ). (4.5) 

Then,   in  the  neighbourhood  of   s0,   Τ(S)   has  a   series  expansion  of  the  form 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )⎪

⎩

⎪
⎨

⎧

>−∑
∞

=
−

>+∑
∞

=
−

+=
,0ss,/n!0s

1n
nτn

0ss

,0ss,/n!0s
1n

nτn
0ss

0sτsτ                (4.6a)

where 

( ) ( ) { }.n/dsτnd
0ss

lim0snτ
±→

=±                                          (4.6b) 

Let 
θ (s)   =  Arg {F ( τ (s)} (4.7) 

denote   the  boundary  correspondence   function   associated  with   the   mapping 

F     ,   i.e     θ   is   θI  ,   θE   or  θD    depending  on  whether     G   is  ΩI , ΩE  or ΩD   . 
 

Then, 

θ&  (s)   =  -   i (x (s)).  F& ) (s)  F(τ  / |F(  τ (s)) |2 (4.8) 

and   thus,   from   (3.12)   -   (3.14),   the   density   function     v     of   (3.8)   is 

related   to     F     by  means   of 

v(s)   -  Im{  ( τ(s)). F& ) (s)  F(τ }/ 2πη  , (4.9) 

where   η   =  -1   when  G ≡  ΩI   ,   h  -   log{cap∂Ω}  when  G  =  ΩE   and 
  

⎪⎩

⎪
⎨
⎧

≤<

≤≤
=

L,s1LlogM,

,1Ls0logM,2
1r

η  
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when  G  ≡ ΩD   and  the  mapping  is  ΩD →  A(r1, 1).     Hence,  by  using   (4.1),   (4.6) 

and   (4.9),   we  find  that  as   s  → s0

( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

∑
∞

=
>⎟

⎠
⎞⎜

⎝
⎛ −−

∑
∞

=
>⎟

⎠
⎞⎜

⎝
⎛ −+

=

1j
,

0
ss,

0
ss

jj
a

1j
,

0
ss,

0
ss

jj
a

sν
φ

φ
                                      (4.10)

where     ǂ  0   and  where   the   functions  f±
1a j   depend  on  the  value  of    α   and  can 

be  determined   from  the  expansions   (4.1).     For  example,   when    α     is  rational 

then,   according  to  the  ordering  of   (4.1a), the  first   four  functions   in   (4.10) 

are  defined  respectively  by 

φ(σ)   =  σ  -1  + 1  /σ    , 0  < α <  2   , (4.11a) 

( ) ( )

( ) ( )

( )

( )

( )d

c

b

11.4

2.α1,31σ
1,α,2log σ2σ

1,α
2
1,1/ α1σ

                                   ,
2
1α

3
1,2/ α1σ

,
3
1αlog σo5σ

,
3
1α0   ,1/ α2σ

σ
4

11.4

2,α1  ,1/ ασ

1,α
2
1   log σo3σ

,
2
1α,2/ α1σ

,
2
1α0    ,1/ α1σ

σ3

11.4
2,α1,2/ α1σ

1,ασlogσ,
1,α0,1/ ασ

σ2

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

<<+−
=

<≤+

≤<+−

=

<<+

=

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

<≤

<<

=+−

<<+

=

⎪
⎩

⎪
⎨

⎧

<<+−
=

<<
=

φ

φ

φ

Regarding  the  coefficients   a   in   (4.10),   it  can  be   shown  that,   for  certain ±
j

values   of   j   and     α ,   a    and   a+
j

−
j    are   related.    In   particular,   the   following 

three  relations  hold 
( )

( )

( )4.12c1α
2
1,3a2/ αλ3a

4.12b2,α1,2a2/ αλ2a

4.12a2,α0,1a1/ αλ1a

<≤+−=−

<≤+−=−

<<+=−
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where 

 λ  =   | τ(  l  )(s0-) /τ (  l  )(s0+) |                               (4.12d) 

see   [15]   and   [16]. 

Let  v (k)   =  d k v/d sk   .   Then,   the  following  conclusions  can  be  drawn  from 

the  above: 

C1 :      If   1   <   α   <   2,   i.e   the   corner   is   re—entrant,   then   the   density 

function     v     becomes  unbounded   at   s   —  s0. 

C2:     If   1/(1+q)   <  α <   1/q,   where  q  ≥  1   is  an  integer,   then  v(q) 

becomes  unbounded  at   s   - s0 . 

C3 :      If   α =1/q,   where  q ≥ 1   is   an   integer,   then   (4.10)   does   not 

involve  fractional  powers  of   s   -  s0.        In  general  however    and, −≠+
1a1a

because   of   this,   v(q-1) has   a  jump   discontinuity   at   s = s0.      Also,   for 

some   j   >   1,   one   of   the   functions   φ j  in   (4.10)  is a  logarithmic   function 

of  the  form 

σ 2q-1logσ 

This  means   that,    in   general,    the   left   and   right   (2q-1)th  derivatives   of 

v     at    s   =   s0    become   unbounded. 

Consider  now  the   two   cases   G≡ ΩI     and  G ≡  ΩE  and  assume   that   the 

arms  Γ1  ,Γ2   of  the  corner  z0  are  both  straight   l ines.     Then,   the  asymptotic 

expansion  of     F     at   z0   is   given  by   (4.1c),   and  we  may   take,   without  any 

loss   of   generality, 

( ) ( )
( ) ( )⎪⎩

⎪
⎨
⎧

≤−

≥−
=−

0ss,δπiαexps0s

,0ss,0ss

0sτsτ                              (4.13a)

where     s     denotes  arc   length  and 

⎪⎩

⎪
⎨
⎧

≡−

≡
=

.EΩG1,

,IΩG1,
δ                                              (4.13b) 

The  above   two   simplifications   imply  the  following.      If  Γ  1,Γ2   are  both 

straight   lines   then   the   asymptotic   expansions   of   the  density   function 
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corresponding  to  the   interior  and  exterior  mapping  problems  are  given  by 

(4.10),   where  the  functions   φ j   are  defined,   for  any  α,  by 

( ) .,1,2,3,j;j/ α1σσ
j

K=+−=φ                                      (4.14a)

and   the  coefficients   a± j   satisfy 

( ) ;1,2,3,j;ja1j1ja K=−+
−=+                                    (4.14b) 

see   [14,   16].     Regarding  the  nature  of  the   singularity  at   z0,    the  con- 

clusions  that   emerge  from  the  simpler  expansion   (4.10),(4.14)   are  similar 

to  those  stated  above  for  the  general  case.     More  precisely,   the  conclusions 

C1  and C2   remain  unaltered.   However, when  the  simpler  expansion  holds then 

the  conclusion  C3  s implif ies    to   the   fol lowing,    ra ther   surpr is ing,    resul t :  

C3’ :       If  α  = 1/q,   where   q ≥  1   is  an  integer,  then  the  functions 

(4.14a)   do  not   involve  any  fractional  powers  and, because  of   (4.14b): 

(a) if      q     is  odd  then  there  are  no   singularities   in     v     at  

s =  s0   ,  

(b) if      q     is   even  then,   in  general,    v( q - 1 )  has  a  finite   jump 

discontinuity  at   s0=  s   .  

We  end   this   section  by   re—stating  certain   important   observations 

made   in   [15],   in  connection  with  the  density  functions  v̂ E    and v̂ D 

corresponding  to  the  original   formulations  of   Symm  [34,   35],   for  the 

exterior  and  doubly-connected  problems.      In  the   case   of   the   exterior 

problem,   because  of   (3.15),   the  asymptotic   expansion  of  v̂ E at  z0   will 

involve  terms  of  the  form 

(s-s 0 )-1 +1 /  α  and     (s-s0)-1 + 1/(2-α) (4.15) 

Similarly,   for   the   doubly-connected  problem  if   z0   ∈  ∂Ω1     then,   because  of 

(3.16),   the  asymptotic  expansion  of       will   involve  terms   of  the  form 
D

v̂

(4.15).   This   means   that   for  G ≡  ΩE  and  G ≡  ΩD      with   z0 ∈ ∂Ω1,  the  densities 

E   and  v̂ D    will  become   unbounded  for   any  α ǂ  1 .   That   is, if  the  original v̂

formulations   of   Symm   [34,   35]   are  used,   a   serious   singularity  might  occur 

at  z   =  z0 ,   even  when  the  corner  at  z0   is  not  re-entrant. 
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5.     Pole  and  Pole-type  Singularities.

Apart  from  corner  singularities,   the  three  mapping  functions 

fI ,f E ,fD     and   the  function     H     of   (3.2)   may  also  have  serious   

singularities 

off   the  boundary,   in  the  complement   of   the  closure  of   the  domain  under 

consideration.     The  following   two   sections   are  concerned with   the  problem 

of  determining  the  location  and  nature  of  such  singularities. 

5.1     Singularities   associated  with  problems   P1   and  P2.

The  main  purpose  of  this   section  is   to  outline  a  procedure,  which 

has  been  used  recently   in   [29],   for  determining   the  dominant   singularities 

of  the  function  f I     in  Ext (∂Ω),    i .e.    the   singularities  of   the  analytic 

continuation  of  f I    which  are  "closest"  to   ∂Ω .    Here  however,  we  extend 

somewhat   the   results   of   [29],   by  providing   some  additional   information 

about   the  singularities  of   f I    ,    and  by  considering  the  singular  behaviour 

of   the  exterior  mapping  function  fE   in   Int(∂Ω).  

With  the  notation  of  problem  P1,  we   let     Γ    be  an  analytic   arc  of   ∂Ω  

with  analytic   parametric  equation 

z   =  τ(s)   , s1  ≤   s ≤   s2      ,  (5.1) 

and  assume   that   the   function 

z   -  τ  (ζ)   , (5.2) 

of   the   complex  variable   ζ    =  s + it,   is   one-one   analytic   in   some   simply- 

connected   domain  Ω*  containing   the   straight   line 

L  =   (ζ    :   ζ    =  s +  it,     s1   <   s  <   s2   ,   t   =  0}   . (5.3) 

We  also  assume  that   Ω*  has  a   symmetric  partition  with  respect   to     L     , 

so   that 
*
2ΩL*

1Ω*Ω UU=                                              (5.4) 

where Ω  is   the  mirror   image   of   Ω    in  the  straight   line   L   ,   and  where *
2

*
1

the   image  of  Ω    under  the   transformation   (5.2)   is  contained  within Ω*
1 I  

More  precisely,   we  assume   that   (5.2)   maps  conformally  Ω*  onto   a  domain 
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Ω  1  ⋃   Γ  ⋃  Ω2   so  that   the  straight   lime   L    and  the  domains  Ω ;   i  = 1,2   are *
i

mapped  respectively  onto   the  arc  r  and   the  domains  Ω1, ⊆    Ω I   and  Ω2  .   Then, 

the  function 

( )
( )

(⎪⎩

⎪
⎨
⎧

∈

∈
=

2Ωz,I(z)If1/

r,1Ωz,zIf
zΦ

U

                         (5.5a)

where 

( ) [ ]( )
⎭
⎬
⎫

⎩
⎨
⎧ −= z1ττzI                                            (5.5b) 

is  analytic   in Ω I    ,    meromorphic   in  ft      and  defines   the  analytic  continuation 

of   f I    across   Γ    into  Ω2 .    This  analytic   extension  of  f  I    is   a  particular 

case  of   the   symmetry  principle  of   analytic   arcs,   and   the   points   z,l(z)   are 

called   symmetric  points  with  respect   to  the  arc    Γ     ;    see   e.g   [32,   p.102]. 

It   follows   from  the  above  that   the  singularities     of   f  I     in  Ω 2 ,    i .e 

the  singularities   of   the  analytic  extension     φ      ,    can  be  determined  by 

examining   the  behaviour  of   the   function   (5.5).       For   example,   the   results 

of   the   following   two   theorems   can  be  established   easily,   by   considering 

the  behaviour   of         f      at   the   symmetric  points   of   the   origin     0     with 

respect   to      Γ     ;     see   [29,   pp.156-57]. 

Theorem  5.1      If  0  ∈   Ω1   then  the  equation 

τ (ζ)   =  0 (5.6) 

has   exactly  one   root   ζ0   in  Ω ,   and  the  function    φ     has   a   simple  pole *
1

at  the  symmetric  point 

z0  =  ( ζ 0  ) 

=  I(0)    , (5.7) 

of     0     with  respect   to    Γ  

Theorem  5.2     If   0    ∈ ∂Ω1/Γ    then   the   equation   (5.6)   has   at   least   one 

root   on  ∂Ω /L.      Let   ζ*
1 0   be   such  a  root   and  assume  that    τ     is   analytic 
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at  the  points    ζ0   and   ζ 0  ∈  ∂Ω*
2 /L.  so  that,   for   some   integers  m ≥ 1 and  n ≥  

1, 

τ ( ζ)   =  ( ζ- ζ 0 )m τ1(ζ ) (5.8a) 

and 

τ( ζ )    -  τ( ζ  0)    -   ( ζ- ζ  0 ) nτ2( ζ )   , (5,8b) 

where  τ1   and  τ2   are  analytic  and  non-zero  at   ζ0  and  ξ 0   respectively.  Then, 

as   z   →  z0   =  τ( ζ  0) , 

φ (z)   ~  (z-z0)-m / n   . (5.9) 

The  following  three  special  cases  of   Theor.   5.2  occur  frequently  in 

applications: 

(a) m  =  n  =   1 .     In  this  case     φ     has   a   simple  pole  at   z0 . 

(b) m  =  2,   n  =   1.     In  this  case      φ       has  a  double  pole  at  z0. 

(c) m  =   1,   n  =  2.     In  this  case      φ      has  a  branch  point  singularity 

of   the   form 

(z-z0) 2
1− . (5.10) 

The  theorem  stated  below  extends  the  results  of   [29],   and  provides 

additional   information  about   the   singular  behaviour  of      φ .  The   theorem 

emerges  easily  from  the  analysis  contained  in  [29,   p.157]     and,   for  this 

reason,   its   proof   is  not   presented  here. 

Theorem  5.3     Let   ζ0   ∈    ∂Ω*
1 /L  be   such  that 

τ(ζ 0)    ǂ   0    and     τ '( ζ 0)  = 0   . (5.11) 

and  assume   that   τ  is   analytic   at   ζ 0  ,  ζ 0    so   that,  for   some  integers  m  ≥  1 

and  n  ≥  2, 

τ(ζ )   -  τ(ζ0)    -   (ζ-ζ0)m τ1(ζ ) (5.12a) 
and  

τ(ζ )   -  τ ( ζ 0)   =   (ζ   ζ 0) n τ2(ζ )  , (5.12b) 

where   τ1 , τ2   are   analytic   and  non-zero   at   ζ 0   and ζ  0  respectively.    Then, 

as   z  →  z0   =   τ( ζ  0), 

φ (z)   -  φ (z0)  ~  (z-z0)m / n. (5.13) 
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The   theorem  shows   that   if   the  values   of     m  and    n  ,   in   (5.12),   are 

such  that  m/n   is  not   an  integer  then  the  function     φ     has  a  branch  point 

singularity  at   z0  .     In  particular,   the  case  m  =   1,   n  =  2  which  leads   to  a 

singularity  of   the  form 

φ (z)   -  φ(z0)  ~  (z-z0) 2
1

  , (5.14) 

occurs   frequently  in  applications. 

B e f o r e   c o n s i d e r i n g   t h e    s i n g u l a r i t i e s   a s s o c i a t e d   w i t h   t h e   e x t e r i o r  

mapping   p rob lem  P2 ,   we   make  a   number  o f   genera l   r emarks   where ,  fo r  

s impl ic i ty ,    we    r e fe r    to    the    s ingu la r i t i e s    o f    the    ana ly t i c   ex tens ion      φ  

a s   "po le—type   s ingu la r i t i e s   o f    the   mapping   func t ion   f I  wi th   r e spec t   to   the  

arc     Γ    " 

Remark   1.   If   0 ∉   Ω1    U   (∂Ω1/Γ)   then  f I      has  no  poles   in  Ω2   and  is  finite 

in  Ω2  U (∂Ω2    /Γ).    However,   i t    is   important   to  observe   that   f  I     may  have  a 

branch  point   singularity  of   the   type  predicted  by  Theor.   5.3.     More 

precisely,   if  τ  ( ζ 0)   =  0,   where  ζ0   ∈ ∂Ω *
1    /L,   and  if   in   (5.12)     m  and   n 

a r e   s u c h   t h a t   m/ n   i s   n o t   a n   i n t e g e r   t h e n   f I   h a s   a   s i n g u l a r i t y   o f   t h e   f o r m 

(5.13)   at   the  point  z0   =  τ  ( ζ 0). 

Remark  2.        If     Γ    is  a   straight   line  segment  or  a  circular  arc  then  we 

may  take  respectively 

τ  (C)   =  a  +  bζ (5.15) 
and 

τ  (C)   =  c   +  r exp  (i ζ ), (5.16) 

where   a, b  ǂ   0  and  c   are   complex   constants   and   r  ǂ  0   is   real.     Since   the 

derivatives  of   (5.15)   and   (5.16)   are  never  zero  and   since,   in  each  case, 

we  may   take  Ω   =   τ  *
1

 [ -1 ]  (Ω),   it   follows   that  only  the  conclusion  of  Theor.5.1 

applies.      This   conclusion   leads   to   the   results   predicted  by  the  well-known 

Schwarz   reflection  principle,   i.e.   if  0  ∈   Ω1   U   ∂Ω1 /Γ    then  fI  has  a   simple 

pole   at   the   symmetric   point   z0   =   1(0),   where  now  zQ   coincides  with   the 

mirror   image  of     0     in   the   straight   line   or  with   the   geometric   inverse  of 

0     with  respect   to   the   circular  arc.      Therefore,   the   determination  of   the 
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dominant pole-type singularities of fI is particularly simple in the case 

where ∂Ω  consists of straight lines and circular arcs. In fact, this is 

the only geometry for which Levin et al [22] and Papamichael and Kokkinos 

[26] were able to determine the precise location and nature of the singu- 

larities of fI in Ext (∂Ω). Examples dealing with singularities corresp- 

onding to more general geometries can be found in [29] and also in 

Section  6  of   the  present  paper. 

Remark  3.     In  the  case  of   the  BKM  or  RM,   the  procedure   for  treating  pole- 

type   singularities   is   exactly   the   same   as   that  used   in   the  case   of   singular 

corners.     That   is,   the  BKM  or  RM  basis   set   is  formed  by  introducing  into 

the  monomial   set   (3.2)   singular  functions   that  reflect   the  dominant 

singularities   of   f I     in  Ext   (∂Ω).     For   example,   the   singular   functions   for 

treating  a   simple  pole  and  a  branch  point  of   the   form   (5-9),   at 

z0   ∈   Ext   (∂Ω),   are  respectively, 

( ) ,
0zz

z
dz
dzη

⎭
⎬
⎫

⎩
⎨
⎧

−
=                                           (5.17)

and 

( ) ( ){ }.m/n
0zz

dz
dzη −

−=                                         (5.18) 

Remark  4.       Pole-type   singularities   can  also  affect   the  accuracy  of   the 

IEM,   but   their   damaging  effect   is   not   as   serious   as   in  expansion  methods. 

Here,   the   cause   of   the   difficulty   is   that   if   a  boundary   segment 

Γ     :   z   =   τ  (s),   S1   <   s   <   s2,   lies   close   to   a  pole-type   singularity   then, 

for   s   ∈    (s1,s2),      the  density   function     v     and   its   derivatives   assume 

large  magnitudes;   see  Eq.    (4.8).       In  collocation   and  Galerkin  methods   this 

difficulty  can  be  overcome,   quite   simply,   by  using  an  appropriate  non- 

uniform  distribution  of  boundary  nodal   points,    involving   a  higher  concen- 

tration   of   points   on     Γ  .     This  means  that,   in  the case  of  the  IEM,  we 

are   interested  mainly  on  the  approximate  location  of  the  pole—type   singu- 

larities   of   f I   ,    and  not  very  much  on   their  precise  nature;   see   [14,   Ex.1],  

[16,   §5.3,   Ex.3]   and  the  examples   in  Section  6  of   the  present  paper. 
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Remark  5.     The   form  of  a  pole   type  singularity  depends   on  the  position 

of   0   in  Ω I   ,    and  the  type  of   singularity  changes  when   0    coincides  with 

certain  "cri t ical"  points,       (For  example,    when    Γ      is   an  arc  of  a  conic 

then  the  type  of  singularity  changes  when    0     coincides  with  a  foci  of 

the  conic,    see   [29,   Sect,3].)      Because  of  this,    a  difficulty  arises,    in 

connection  with  the  construction  of   the  BKM  and  RM  basis   sets,  when  0 

lies   "close"   to  but  does  not  coincide  with  a  critical   point.     However,   as 

Ex.   1      of   Section  6   illustrates,   this   difficulty  can  be  overcome  by   intro- 

ducing   into  the  basis  set   a  function  that   reflects  the  combined  effect   of 

the   two   types  of   singularities. 

Remark  6.     Another  difficulty  occurs,   in  connection  with  the  BKM  and  RM, 

when   the  region  Ω2   corresponding   to  two  different  analytic   arcs   overlap. 

Let   Γ1     and  Γ2     be  two   such  arcs   and  denote  by  Ω ( )1
2    and  Ω   corres- ( )2

2

ponding  Ω2   regions.     Then,   in   general,   the  function  fI     has   two  different 

 

continuations   in Ω   ∩  Ω    ,   which  may  be  regarded  as   the  extensions   of ( )1
2

( )2
2

fI     on  two   different   sheets  of   a  Riemann  surface  due   to  a  branch  point  on 

38  or   in   Ext    (∂Ω ) .      This   s i tuat ion  ar ises   frequent ly   when Γ 1   and  Γ 2   are  

the  arms  of   a   corner ,      where  a   ser ious  branch  point    s ingular i ty   occurs .  

In   such  cases ,    i t    i s    in   general    suff ic ient   to   ref lect   only  the  corner  

singularity,   by   introducing   into   the   BKM  or   RM  basis   set   functions   of   the 

form   (4.2). 

We  consider  next   the   exterior  mapping  problem  P2   and  recall  that,   for 

the  application  of   the  BKM  or   RM,   we   are   interested   in   the   singular  be- 

haviour  of   the   function  f̂ I   associated  with  the  interior   domain  Ω̂ I    . 

As  before,   we   let     Γ      be   an  analytic  arc  of   ∂Ω   with  analytic  para- 

metric   equation   (5.1).      Then,   under   the   inversion 

ẑ   =  z-1   , (5.19) 

Γ     is   transformed   into  an  analytic   arc     Γ̂      with  parametric  equation 
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ẑ   =  τ̂  ( S )    , s1  <  s  <  s2 (5.20a) 

where 

τ̂  (s)   =   1/ τ  (S)   . (5.20b) 

Therefore,   the  pole-type  singularities   of   f̂ I  with  respect  to          can  be Γ̂

determined  by  the  procedure  outlined  above,   with      τ̂        replacing  the 

function    τ     .     Now  however,   for  many  curves   ∂Ω  that  occur   in  practice, 

the  intermediate  transformation   (5.19)   makes   it   less   likely   for   Theorems 

5.1   and  5.2   to  predict   singularities  of  the  mapping  function  f̂ I .     This 

can  be  explained  as  follows. 

With  reference  to   (5.4)   let 

Ω̂ *  =    ∪  L  ∪  (5.21) *
1Ω̂ *

2Ω̂

by  the  symmetric  partit ion  associated  with  the  function 

ẑ    =  τ̂ (ζ)   ,  (5.22) 

and   observe   tha t   the   s ingular i t i es   p red ic ted   by   Theorems  5 .1    and   5 .2  

occur  at  points   given  by 

ẑ 0    =  τ̂ ( ζ 0)   ,  (5.23) 

where     ζ0  ∈    ∪   ∂ /L   is  a  root  of   the  equation *
1Ω̂ *

1Ω̂

τ̂ (  ζ)    =  0   . (5.24)  
Also,   observe   that   (5.24)   can  only  have  a  root  at  a  point  where     τ  

becomes  unbounded.     This  means   that   if,   as   is  frequently  the  case,     τ      is 

an  entire  function  and,   in  addition,   the   largest  admissible  region    is *
1Ω̂

finite  then  f̂ I     does  not  have   simple  poles   or   singularities  of   the  form 

(5-9)   in     Ω̂ 2   ∪   (∂ Ω̂ 2/Γ),   Ω̂ 2   =  τ̂ ( ).     However,   since *
2Ω̂

τ̂ '( ζ)   =  - τ  '( ζ )/{ τ  (  ζ )}2, (5.25) 

singularities  of   the  type  predicted  by  Theor.   5.3  can  still  occur.     The 

above  remarks   are   illustrated  by  the  following   three  examples. 

(i)        If  the   original  boundary   ∂Ω   is  a  polygon  then  f̂ I     has  no  pole- 

type  singularities. 
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(ii)     If   ∂Ω  consists  of  straight  line  segments  and  circular  arcs 

then  the  only  pole-type  singularities  of  f̂ I     are  due   to  the  circular  arcs. 

More  precisely,   a  singularity  occurs   only   if   the  centre  of  a  circular  arc 

is   in   Int(∂Ω)      and  does  not   coincide  with   the  origin  of   the   z-plane.      If 

z0   ∈  Int(∂Ω)   is   such  a  centre  then  f̂ I  has   a  simple  pole  at  the  point 

ẑ Ω̂0   =   1/z0   ∈  Ext(∂ ). 

(iii)   If   Ω  is  the  ellipse 

x2/a2   +  y2/b2   =   1   , 0  <  b  <  a   , [5.26) 

i.e.   if 

τ(S)   =  ae cos  (s-in)   ,   -π   ≤  s  ≤  π     , (5.27a) 

where 

e   =  {1-b2/a2} 2
1

    and     coshn   =   1/e   , (5.27b) 

then  the  only  two  pole-type   singularities  of   f̂ I     are  of   the  form  ( )2
1

0ẑẑ−  

and  occur  at   the  points   ẑ 0   =  ±   1/ae. 

The  results   (i)   and   (ii)   can  be  established,   as   in   [27,   p.193], 

directly  from  the   Schwarz  reflection  principle.     The  result   (iii)   can  be 

concluded  at  once  from  the  known  form  of   fE,   which  in  the  case  of   the 

ellipse   (5.26)   is 

fE(z)   =  {z   +   (z2-a2e2) 2
1

}/(a+b)    . (5.28) 

It   is   however   instructive   to   also   establish   the   result   (iii)   by  considering 

the   form  of   the   function   (5.27).      This   can  be  done  as   follows. 

Since 

τ(  ζ  )   =  aecos(ζ -in) (5.29) 

is   an  entire  function,   and  since  the   largest  admissible  symmetric  domain 

Ω̂ *     is   the  rectangle 

Ω̂ *  =  {z = s + it:  -π<s<π ,-n<t<n}   , (5.30) 

it   follows   that   the   function   f̂ I    ,    associated  with   the  ellipse   (5.26),   does 

not  have   singularities   of   the   form  predicted  by   Theorems   5.1   and   5.2. 
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However, 

τ̂ (ζ)   -  {sec(  ζ-in)}/ae (5.31) 

and  therefore,   for  any 

   ζ0   =  kπ   -  in   ;          k  =  0,   ±   1,   ±  2,..., (5.32) 

τ̂ '( ζ 0)   =  0,    τ̂  "( ζ 0)   ǂ   0     and       τ̂ (  ζ0)   ǂ   0   . (5.33) 

The  result   (iii)   then  follows  from  Theor.5.3  with  m  =   1   and  n  =  2, because 

τ̂ (kπ  +in)  =  ±1/ae   ;       k  =  0,±1,±2,...     . (5.34) 

Finally,  we  note  that   the  situation  regarding   the  effect   and  treatment 

of   singularities,   in  connection   with  the   IEM  solution  of  problem  P2,   is 

exactly  as  described  in  Remark  5.     To   see  this,   let  ẑ 0  ∈    Ω̂ E   be  a  point 

where  f̂ I    has  a  pole-type   singularity,   assume  that  z0   =   1/ ẑ 0   ∈   Ω I      lies 

close  to  an  arc  Γ   :   z  =  τ  (s),   s1   <  s  <   s2  of   ∂Ω ,    and  recall   that   fE  is 

related   to f̂ I    by  means   of   Eq.  (2.8).   Thus,   as   in  the   case  of   problem  P1, 

Eq.    (4.8)    implies   that   the   density   function     v     and   its   derivatives 

assume  large  magnitudes  for  s    ∈    (s1 ,s2). 

5.2     Singularities  associated  with  problem  P3. 

In  the  case  of   problem  P3,   the  situation  regarding  the   singularities 

in  compl( Ω D )   of   the  mapping   function  fD    and  of   the  function  H  ,  defined 

by   (3.3),   is  much  more   involved.    In  fact,   Papamichael   and  Kokkinos   [28], 

who studied   the   application  of  the ONM  and  the  VM, were  unable  to  provide  any 

information  about   the   singularities   of   the  analytic   extensions   of   these 

two   functions.     However,   the  problem  has   also  been   studied  recently   in 

[30],   where   it   is   shown  that,   in  many  cases,   f D    and    H    have   singularities 

in  compl( Ω D ),   at   the  so-called  "common  symmetric  points"  with  respect  to 

the  boundary  components   ∂Ω1   and   ∂Ω2  . 

Let   Γ j  ;   j   =   1,2  be  analytic  arcs   of   ∂Ω j   ,   j   =   1,2   respectively. 

Also,   let   Ij  (z);   j   =   1,2  be   the   two   functions   corresponding  to   (5.5b), 

which  define  respectively  pairs  of  symmetric  points   (z,I. j  (z));    j    =   1,2 

with  respect   to   the   arcs   Γ j  ;   j   =   1,2.     Then,   two  points 
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  ζ2  ∈  Int(∂Ω)     and       ζ2   ∈  Ext( ∂Ω2) (5.35) 

are  said  to  be  common  symmetric  points  with  respect  to  Γ1  and  Γ2   if 

  ζ1  =   Ij  (  ζ2)     and       ζ 2  -  I.j ( ζ )  ;   j   =   1,2, (5.36) 

i.e.   if     ζ1    and   ζ2   are  both  fixed  points  of   the   two  composite   functions 

S1  =  I1  o   I2     and     S2   =  I2   o   I1   . (5.37) 

Although  there  are  geometries   for  which  no  common  symmetric   points   exist, 

in  many  cases   the  points    ζ1     and    ζ2     can  be  determined  easily   from  the 

functions   (5.37).     In  such  cases,   an  analysis  based  essentially  on  the 

repeated  application  of  the  Schwarz  reflection  principle  shows  that, 

under  certain  conditions,   the  points     ζ1     and    ζ2    are  singular  points  of   the 

functions  fD   and     H     .     Full  details   of   this  analysis  can  be  found   in 

[30],   where  it   is  also   shown   that,   for  the  purposes  of   the  ONM  and  VM, 

the   singular  behaviour  of     H    may  be   reflected  approximately  by   intro- 

ducing  into   the  monomial   set   (3.5)   the   two   singular  functions 

η1(z)   -   1/(z-  ζ1)   -   1/z (5.38a) 
and 

η2(z)   -   1/(z-  ζ2)   . (5.38b) 

In  the  case  of  the  IEM,   the  effect  and  treatment  of   the  singularities  of 

fD     at   the  points    ζ1  and    ζ2   is  exactly  the  same  as   in  the  cases  of  problems 

P1   and  P2.      In  what  follows  we   illustrate   the  above  remarks   by  considering 

the  case  where ΩD     is  a  regular  polygon  with  a  circular  hole.     This   special 

case  is   studied   fully   in   [30,   Sect.2]. 

Let 

ΩD   = Ext ( ∂Ω1)  ∩  Int(Ω2) (5.39a) 

where   the   inner  boundary   ∂Ω1   is   the  circle 

 ∂Ω1  =  {z:|z|   =  a,   a  <   1} (5.39b) 

and  the  outer  boundary    ∂Ω2   is  a  concentric  N-sided  regular  polygon  with 

ℓ  =  {z   :   z  =   1   +  iy,   [y|   ≤  tan   (Π/N)} (5.39C) 

as  one  of   its   sides.     That   is 

U
N

1j
,jY2Ω

=
=∂                                                   (5.39d) 



27. 

where 

{ } N,1,2,j;N/i2 πexpNω,1j
Nω

j
γ Kl ==−=  (5.39e) 

Then,  with 
        Γ1  ={ z : z = a e i  θ  | θ  |  ≤  π/ N}   and   Γ2   =   ℓ  , (5.40) 

 
we  have   that 

I1(z)   =  a2/ z      ,        I 2 (z)   = 2- z  (5.41) 
 
and  hence 

I1(z)   =  a2 /(2-z)   ,   S2(z)   =  2   -  a2 / z   . (5.42) 

Therefore,   in   this   particular   case,   the  common   symmetric   points   with 

respect   to   Γ1   and  Γ2   are 

ζ  1  =   1   -   (1-a2) 2
1

     and     ζ2   =   1   +   (1-a2) 2
1

   . (5.43) 

More  precisely,   in  this  case,   there  are     N     pairs  of  common  symmetric 

points  associated  with  the  circle   ∂Ω1     and  each  of   the     N     sides  of   the 

polygon   ∂Ω2 ,     These  points  are   respectively 

N,,1,2,j;1j
Nω

2
j

2
and1j

Nω
1

j
1

K=−=−=
⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

ζζζζ              (5.44) 

where  wN,  is   as   in   (5.39e). 
 

Let     G     denote   the   subdomain  of  ΩD   ,  which   is  bounded  by  Γ1   ,   Γ2 

and  the   two  rays   θ   =  ± π/N.     Also,   let   Sj ,   j  =   1,2   be   the  functions   (5.42), 

and   define   recursively  the   point   sequences   {z k,1  }  and   {z k ,2  }  by  means   of 

( ) ,0,1,2,k;jk,zjSj1,kz K==+  

with   j   —   1   and  j   -  2   respectively.     Then,   the   following  results  are 

established   in   [30,   p.p.95-97]. 

(5.45) 

(i)     For   any   z 0,  j  ∈   G  

1,2,j,jξjk,z
k

lim ==
∞→

                                             (5.46)

and,   in  each  case,   the  convergence  is   linear. 

(ii)      The  mapping  function   fD     can  be   continued   analytically   across 

Γ1   and  T2     into   two  regions  which  contain  respectively   the  real   intervals 
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ζ1  <  x  <  a  and   1   <  x  <  ζ2. 

(iii)   Let 

α1  =  -α2  -  logM/log(ζ2/a)   , (5.47) 

where    M    is  the  conformal  modulus  of  ΩD.     Then,   for  any  z 0,  j  ∈  G  

                             (5.48)1,2,j;
j

μ)}
jk,

z(Dfjα
)

j
ξ

jk,
z{(

k
lim ==

−
−

∞→

where  µ1   and  µ2   are  finite  and  non-zero  numbers  which  depend  respectively 

on  the  points   z 0 ,1    and  z 0 ,2   . 

(iv)     For  any  z 0 ,j  ∈  G  

( ) ( ) 1,2,j;jλ}jk,zHjξjk,z
k

lim ==−
∞→

                                  (5.49)

where  λ1 and    λ2   are  finite  and,   in  general,   non—zero  numbers  which  depend 

respectively  on  the  points  z 0 ,1       and  z 0 ,2

 

The  above  results   show  that,   in  the  case  of  the  domain   (5.39),   the 

common  symmetric  points   (5.43)   are  singular  points  of  both  the  functions 

fD     and    H   .     The  results  also  justify  the  use  of  functions  of   the  form 

(5.38),   for  approximately  reflecting   the   singular  behaviour  of   the 

function    H   .     Similar  results  can  be  established  for  other  more  general 

geometries,   and   such  examples  can  be  found   in   [30,   Sect.3]. 

6.     Numerical  Examples

Many  numerical   examples,   illustrating  the  very  considerable   improve- 

ment   in  accuracy  which  is  achieved  by  treating  the  singularities  of   the 

conformal  maps   in  the  manner  described  in  earlier  sections,   can  be  found 

in  references   [3,14-16,   22,26-30].      (Of   these   [22,26,29]   and   [27]   concern 

the use of  the  BKM  and  RM  for  the  solution  of  problems  P1   and  P2  respectively, 

[3,28,30]  the use  of  the  ONM  and  VM  for   the  solution  of   problem  P3,  and 

[14-16]   the  use  of   the   IEM).      In  this   section,  we  present   five  numerical 

examples  whose  purpose  is  to   i l lustrate  certain  important  aspects  of  the 

treatment  of  singularities  which  are  not  widely    understood.     More  spe- 
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cifically,   the  purpose  of   the  examples  given  below  is   to   illustrate   the 

following; 

(i)        In  the  application  of  expansion  methods,   the  effect  of  pole- 

type  singularities   that  l ie  close  to  the  boundary  can,   in  practice,  be 

as  damaging  as   that  of   serious   corner  singularities.  

(ii)     In  expansion  methods,   the  use  of   singular  basis  functions  that 

reflect  only  approximately  the   pole-type  singularities   of   the  mapping  often 

leads   to   some   improvement   in  accuracy.      However,   much  better   improvement 

is  achieved  when  the  exact  location  and  nature  of   the   dominant  pole—type 

singularities  are  known,   and  the  corresponding   "exact"   singular  basis 

functions  are  used. 

(ii i)    Pole—type   singularities  that   l ie  close   to   the  boundary  may 

also  affect   the   IEM.     As  was  previously   remarked,   in  collocation   and 

Galerkin  methods   this  difficulty  can  be   overcome,   quite   simply,   by  using 

an  appropriate  non-uniform  distribution  of   the  boundary  nodal  points.  

(iv)     The  use  of  preliminary  transformations  does  not  necessarily 

remove  completely   the  effect   of   corner   singularities.  

The  expansion  methods  used   in  our  examples  are   respectively   the 

BKM  for  the  three   interior  and  one  exterior  domains  of   Exs   1,2,3,5,   and 

the  ONM  for  the  doubly—connected  domain  of  Ex-4.    The  computational details 

of  the  BKM  and  ONM  procedures  used  are  exactly  as   described   in  references 

[22,26-28].      Regarding   the   IEM,   the  method  used   in  all    examples   is   the 

collocation  method  of   [15].     This  method  is  based  on  approximating  the 

density  function     v     by  cubic   splines  and   "corner   singular"   functions, 

and   i t    is   described   fully   in   [15,16]. 

In  each   example   and  for  each  method  used,   we   give   an  estimate  of 

the  maximum  error   in   the  modulus   of   the   corresponding  approximate  con- 

formal  map.      In   the  cases   of  problems  P1   and   P2,   this  error   estimate   is 
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given  respectively  by 
||,)

j
z(I,nf|1|

j
maxnE −=                                                 (6.1a)

and 
||,)

j
(zE,nf|1|

j
maxnE −=  

(6.1b) 

where  f I ,  n  and  fE  , n  denote  the  BKM  or  IEM  approximations   to  f I    and  fE  

and  where;,    in  each  case,   {z j}   is  a  set  of  "boundary  test  points"  on  ∂Ω .  

Similarly,   in  the  case  of   problem  P3   the   error  estimate   is   given  by 

( )6.1c||},)
j2,

z(D,nf|nM
1

r|
j

max||,)
j1,

z(D,nf|
1

r|
j

maxmax{nE −−=  

where  f D,n      and  Mn    denote  respectively   the  ONM  or  IEM  approximation  to 

f D  and  M   and  {z 
1 ,  j  .},   {z 2 ,  j }   are   two   sets  of  boundary  test  points   on 

∂Ω1   and   ∂Ω2   respectively.     In  the  cases  of   the  BKM  and  ONM,   the  subscript 

n     in   (6-1)   refers   to   the   "optimum"  number  n   =  Nopt   of   basis   functions, 

which  gives  maximum  accuracy   in  the   sense  described  in   [22,   p.178],      In 

the  case of   the  IEM  the   n   refers   to   the   size  of   the   linear   system  whose 

solution  gives   the  collocation  approximation  to     v      ;   see   [15,   p. 303]. 

In  presenting   the  results,   we  use   the  abbreviations  BKM/MB  and  BKM/AB 

to  denote  respectively  the  BKM  with  monomial  basis   (3.2)   and  with  aug- 

mented  basis.   Similarly,   we  use  ONM/MB  and  ONM/AB  to  denote  the  ONM  with 

monomial  basis   (3.5)   and  with  augmented  basis. 

The  BKM  and   ONM  results  were  computed  on  a  CRAY   I   computer, using 

programs  wri t ten  in    s ingle   precis ion  Fortran.       Single   length  working  on 

the  CRAY  I  is  between   14  and   15   significant  figures.     The   IEM  results 

were  computed  on  a  DEC   10  computer,    using  programs  written   in  double 

precision  DEC  Algol.      Single   length  working   on  the  DEC   10   is   between  8 

and  9   significant  figures. 
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Example   1.     Let  Ω I     be   the  bean  shaped   interior  domain   illustrated   in 

Fig.1.      Its   boundary   ∂Ω    is   the   analytic   curve 

                          z  =  τ(S) 

=  x(s)   +  iy(s), -  π   ≤   s   ≤  π    , (6.2a) 
where 

( ) ( ) ( ){ }0.12s0.1coss0.2cos
4
9sx −+=  

and 
(6.2b) 

( ) ( ) ( ) ( ){ }4s0.02sin2s0.1sins0.35sin
4
9sy −+=  

 

The   conformal   mapping   of   the   above  domain   is   considered   in   Reichel 

[31,   Ex.2.3],    where  also   the  problem  of  determining  and   treating   the 

singularities   of   the   function   fI      is   discussed  briefly.      For   the   domain 

of   Fig.1,   Reichel   predicts,   by   arguments   based   on   intuitive   geometric 

considerations,    that   fI     has   an   "approximate"   simple   pole   at   the   point 

z~ 1   =  -0.61   . (6.3) 

In  what   follows   we   show  that   fI     does   in  fact   have   a   simple   pole   at   a 

point   reasonably   close   to   z~ 1.      However,   we   also   show  that   this   pole   is 

no t    t h e    "dominan t "    s i ngu l a r i t y   o f    f I  ,    i . e .    t h e r e    a r e   o t h e r    s i n g u l a r i t i e s  

at   points   that   lie  closer   to   ∂Ω   than   z~ 1.     We   do   this,   as   outlined   in 

Sect.   5.1,   by   determining  the   zeros   of   the   two  functions  τ  (ζ  )   and 

τ (ζ)   in  a  neighbourhood  of   the   straight   line 

L  =  {ζ :   ζ   =  s   +   it,      -  Π  ≤  S  ≤  Π ,    t =  0}. 
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The  details  are  as   follows. 

The   function  τ (ζ)   has   a   simple   zero   at   each  of   the   points 

ζ1   =  i  0.660   656  454  578 

and 

ζ2     =  -Π     +   i  0.532   733   445   375. 
Therefore,   fI     has   a   simple  pole   at  each  of   the   two  points 

                            z1   =  τ (ξ 1)   =  -0.650   225   813   375 
and 

z2   =  τ  (ξ  2)   -   1-311   282  520  094   ; 

see   Fig.1. 

The   function   τ’ (ζ)   has   a   simple   zero   at   each   of   the  points 

ζ3   =  0.376   736   147   099   -   i   0.492   754   434   660 

and 

            ζ3=-ξ 3

Therefore,   since  Τ  (ξ  j  )   ≠   0;   j   =  3,4,   fI  has   singularities   of   the  form 

(z-z j.) 2
1

;   j   =3,4,   at   the  points 

z3   =  τ(ζ  3)   =  -0.565   672   547   402   +   i  0.068   412   683   544 

and 

z4   =  τ  (ζ  4)   =  z 3    ; 

see   Theor.   5.3   . 

BKM/AB:      The  points   z1 ,  z3   and   z4   lie   close   to   each  other-      For   this 

reason  we   construct   the   function 
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and,   because   of   the   reflected   symmetry  of     Ω       ,   we   take   the   augmented 

basis   to  be 

η1(z)    =   {z/(z-z1)}',   η2(z)   =   µ(z)   +   µ ( z ) ,  η3(z)   -   i (µ (z)-µ ( z )) , 
η4(z)    =   {z/(z-z2)}',  η4+ i .(z)    =   z J -  1  ;    j   =   1,2,3, .........  

 

I  E M:     we use  a   uniform  mesh  with  respect   to   the   parameter  of     s     of   (6.2). 

This   gives   rise   to   a  non-uniform  distribution   of   the  nodal   points  with 

respect   to   arc   length  and,   because   τ  '(ζ)   has   zeros   at   the   points   ζ3 , ζ4 ,   

this   distribution   involves   a  higher   concentration   of  nodes   in   the  neigh- 
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bourhood  of   the   point  A ≡  τ  (0) .   That   is,   in   this   example,   a  uniform  mesh 

with  respect   to      s     defines   a   suitable  non—uniform  distribution  of  nodes, 

for  dealing  with   the  dominant  pole—type  singularities  at   the  points 

z1 , z3 ,  z 4  ;   see   Fig. 1    . 

Numerical  results . 

BKM/MB:     Nopt   =  30, E30 =  3.6 x   10 - 2. 

BKM/AB:     Nopt   =  20, E20 =   1.4 x   10 - 5,      R20   =  0.570  943   922. 
IEM:          E67 =  3.2 x   10 - 6 ,         R 6 7   =  0.570   943   972. 

(In the above, the Rn denote approximations to the so—called conformal 

radius  R  =   1/f '  (0)   of  ΩI I     at  0.) 

The  use  of   an  augmented  basis   involving  only   the  singular   function 

z /(z— z~ 1)}',   corresponding   to   the   approximate   simple  pole   (6.3)   of   Reichel 

[31],   leads   to   the  inferior  BKM/AB  results:   Nopt   =   10,   E10   =  3.3   ×   10-3   . 

Example  2.     Let   ΩI    be   the   S-shaped  interior  domain  illustrated   in  Fig.2, 

whose  boundary   is  the  analytic  curve 

             z  = τ  (S) 

=   2   cos(s)   +   i{sin(s)   +  2   cos3(s)},     0   ≤  s   ≤  2 Π  . (6.4) 
The mapping of this domain has been considered by Reichel [31, Ex.1.1] 

and also by Ellacott [4, Ex.3]. However, neither Reichel nor Ellacott 

provide   any   information   about   the  pole   singularities  of   the   function  f I  

.  
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The  following  can  be   deduced  by  considering,   as   in  Ex.1,   the   zeros 

of  the   two  functions  τ( ζ  )   and  τ '(ζ  ). 

(i)        The   function  f I has  a  simple  pole  at  each  of   the  four  points 

± z1 , ± z2,   where 

z1   =  0.454   688   019   275   +   i   1.902   477   887   249 
and 

z2   =  -2.884  939   136   035   +  i   1.584  060  902   263. 

(ii)      The   function   f I    has   singularities   of   the  form   (z ± z3 ) 2
1

     at 

the  points   ±   z3   respectively,   where 

z3   =0.731    151    125  904   +   i  546   446   051   506. 

BKM/AB:   Because   of   the   two—fold   rotational   symmetry  about   the   origin   the 

monomial  basis   set   is   taken  to  be 

z 2 j      ;   j    =  0,1,2, .........  (6.5) 

For   the   same   reason,   the  augmented  basis   is   constructed  by   introducing 

into   the  set   (6.5)   the   three   singular  functions 

.'}2
1

)z
3

z(2
1

)z
3

z{(and1,2,j;})2
j

z2z/(z{ +−−=−

 

IEM:     We  use  a  uniform  mesh  with  respect   to   the  parameter     s     of   (6.4). 

As   in  Ex.1,   because   of   the   zeros   of  τ '(ζ),   the  resulting   distribution 

of  boundary  nodal   points   involves  higher  concentrations   of   nodes  near   the 

points   A  =  τ  (1)   and   B   =  τ(1+Π),   which   lie   close   to   the   singular   points 

z1 ,  z3   and   -z1,    -z3   respectively;    see   Fig.2    . 

Numerical  results. 

BKM/MB:      Nopt   =   17,   E17   =   1.2  ×  10 - 3   . 

BKM/AB:      Nopt   =   17,   E17   =   1.1  ×  10 - 5,      R17   -   1.169   09 1    766. 

IEM:        E67   =   6.0   ×   10-6,      R67   =   1.169  092  036. 

(As   in  Ex.1   the   R n    denote  approximations   to   the  conformal   radius  of 

ΩI     at   0.) 

Example   3. Let   ΩE  be   the   domain   exterior   to   the   S-shaped   curve   of 

Fig.2,    and   recall   the  notation   of   Sect.5.1.      That   is   let   ΩI     be   the   image 

of   ΩE   under   the   inversion      =   zẑ - 1 ,   denote     by   f̂ I    the  mapping   function
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associated  with  Ω̂ I     and  let   τ(ζ)   =   1/τ( ζ  ),   ζ  =  s   +   it,  where     τ     is 

defined  by   (6.4).      Then,   the   following  can  be   deduced  by   considering   the 

zeros   of  the  function  τ '(ζ  ). 

The  function  τ̂  ' (ζ)   has  a  simple   zero  at   each  of  the  points 

ζ1   =  0-150   192   355  327   +  i  0.052   562   788   315 
and 

ζ 2     =    π     +   ζ1 . 

Also,   τ̂  ( ζ j)   ≠  0;  j  =   1,2,   and  τ̂  ( ζ  2)   =  - τ̂  ( ζ  1).   Therefore,   by  Theor.5.3, 

the  mapping  function  f̂ I   has  singularities   of   the   form   (  ± ẑ ẑ 1) 2
1

   at   the  points 

±   ẑ 1  ∈  Ext(∂ ),   where Ω̂

ẑ 1  =  τ̂  ( ζ  1)   =  0.240  671   315   273  -  i  0.252  916   790  376. 

Of  course,   this   also  means   that   the  function  fE     has   singularities  of   the 

form   (z ± z j) 2
1

 at   the  points   +  z1   ∈  Int(∂Ω),     where   z1  =   1/ ẑ 1 ;   see  Fig.3. 

 

BKM/AB.      Because   of   the   two-fold   rotational   symmetry  of   the   domain  ΩI   , 

the  monomial  basis   set  for  determining   the  BKM/MB  approximation  to   f̂ I 

is   taken   to  be 

ẑ 2 j    ;   j   =  0,1,2,... . (6.6) 

In   this   example   we   consider   the  use   of   the   following   two   augmented  basis 

sets : 

(i)     AB1 :      This   set   is   formed  by   introducing   into   (6.6)   the   singular 
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function 
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which,   because   of   the  notational   symmetry,   corresponds   to   two   singular 

functions  of   the  form  (  ±  ẑ ẑ j  ) 2
1

   . 

(ii)      AB2:      This   is   the   set   {n j (z)}   defined  by 
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(That   is,   AB2   is   constructed  by  assuming   that   at   each   of   the  point 

±   ẑ 1   f̂ I      has   an   asymptotic   expansion  of   the   form   (4.1b),   with   α   = 2 .) 

IEM:      We  use   the   same  uniform  mesh  as   in   Ex.2.   (Because  of   the  zeros  of 

τ '(ζ)   at   the   points   ζ1 ,   ζ  2,   this   mesh   also   involves  higher   concentrations 

of' nodes  near   the   points   C   ≡    τ(0)   and   D   = τ(Π),   which   lie   close   to   the 

singular  points   ±   z1 ;   see   Fig.3). 

Numerical results. 

BKM/MB: Nopt   = 3 0 ,  E30 = 4.3   ×   10 -1

BKM/AB1: Nopt   =   30, E3 0 = 2.6   ×    10-2 . 

BKM/AB2: Nopt   =   13, E 1 3  = 1.6   ×   10 - 5,      C1 3    =   1.772   414   144. 

XEM: E 6 7  = 6.0   ×    10-8,       c 6 7    =    1 .772   414    138. 

(In   the  above   the   cn     denote   approximations   to   the   capacity   of   the 

curve   ∂Ω. ) . 

The  numerical   results   confirm  our   remark  that,   in   expansion  methods 

the   effect  of  pole—type  singularities   can,   in  practice,   be  as   damaging 

as   that   of   serious   corner   singularities. 

Example   4.      Let   ΩD     be  a   square  with  a   "large"  circular  hole.      More 

specifically,   let 

ΩD   =   Ext (∂Ω 1)   ∪   Int(∂Ω2) (6 .7a)  

where 

∂Ω1   =   {z:| z |    =   0.99}      and      ∂Ω2   =   {z:z   =   1    +   i y , | y |     ≤   1}    , (6 .7b)  
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i.e.    (6.7)   is   the   special   case  N  =  4,   a  =  0.99   of   the   doubly-connected 

domain  considered  at   the  end  of   Sect.5.2.     Then,   in  this  particular  case, 

the   four  pairs   of   common  symmetric  points,  where the  functions   fD     and     H 

have  singularities  of   the  form  described  by   (5.48)   and   (5.49),   are 

respectively 

ζ i ,  j   =  (0.858   932  640)(i) j  -  1 ,    ζ 2 ,  j      =   (1.141   067   360)(i)j -  1    ;   j   =   1,2,3,4. 

The  mapping   of   the  above   domain  has  been   considered  recently   in   [30] 

and   [16],   and  the  ONM,   IEM  details  given  below  are  taken  respectively   from 

these   two  references. 

ONM/AB:       Because  of   the  four—fold  rotational   symmetry  the  monomial  basis 

set   is   taken  to  be 

z4 j  -  1   ;   j   =  ±1,   ±2,    ...    . (6.8) 

For  the   same  reason,   the  augmented  based  is  constructed  by   introducing 

into   the   set   (6.8)   the   two   singular   functions 

)4
2,1

4/(z34zand4/z)4
1,1

4/(z34z ζζ −−−  

see   [30,   p. 102]. 

IEM:      In  this   example  we  perform  the  computations  by  using  the 

following   two   distributions   of   nodes: 

(i)      IEM1 :     A  uniform  mesh,   involving  equally   spaced  nodes   on 

each   side   of   the   square  and  on   the  circular   inner  boundary. 

(ii)   IEK2:      A  non-uniform  mesh,   such   that   the   interval   lengths 

between  consecutive  nodes  decrease  in  arithmetic  progression  towards 

the   points   ±   0.99,   ±   0,99i   on   ∂Ω,   and  +   1,   ±   i  on  ∂Ω2 ;    [16,   p.116] 

and   [36,   p.119]. 

Numerical  results. 

0NM/MB:   Nopt   =25, E25   =   1.9   ×   10-3      . 

ONM/AB:   Nopt   =  23, E2 3   =   1.8   ×   10- 9, M23   =   1.040  412   14. 

IEM1:   E71   =   1.9   ×   10- 6. 

IEM2:   E71   =  5.8   ×   10 - 8,   M71   =   1.040   412   13. 

(In   the  above,   the Mn     denote  approximations   to   the  conformal   modulus     M 
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(i)        Let  Ω I      be   the   interior   domain,   whose  boundary  consists  of   the 

straight  line 

Γ1   :   z  =   1   -  2s   ,     -   1  ≤   s ≤   0, (6.9a) 

and   the  two  half   ellipses 

Γ2    :   z   =  -1   +  2   cos(s)   +   isin(s),      0  ≤   s  ≤   π  (6.9b) 
and 

Γ3    :   z   =  3   cos(s)   +   i   1.5   sin(s),      π   ≤   s  ≤   2 Π,  (6,9c) 

see   Fig.4(i). 

 

The   above   domain  has   a   re-entrant  corner  of   interior   angle  3π/2 

at   the  point   A  ≡   (1,0),   and  corners   of  angles     π      and  π/2   at   the   points 

B  ≡    (-3,0)    and   C   ≡    (3,0)   respectively.      Therefore,   the   mapping   function 

fI    has   a   serious  branch  point   singularity  at     A     ,   a   less   serious   one 

at    B   and   a   "weak"   singularity   at   C      ;    see   Eq.    (4.7a).      The   function 

fI    also  has   simple  poles   at   the   symmetric  points 

z1   =  2/3   +   i   1.885   618  083   164   and   z2   =  -i   3.464   101   615   318   (6.10) 

of     0     with  respect   to   the  arcs   Γ2   and  Γ3   respectively:   see  Theor.5.1 

and   [29,   Sec.   3.1]. 

BKK/AB;   The   augmented   basis   is   formed  by   introducing   into   the monomial 

set   (3.2)   the   singular   functions 

{Z /(z-z  j  )} '     ;    j    =   1,2,    (z-1) ( j  -  3 )  /  3 ;    j    =   2,4,5,7,8, 

and 

{(z+3)2 log(z+3)}'    ,   {(z+3)3 (log(z+3)) z }'   , 
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which  correspond   respectively   to  the  pole   singularities   at   the  points 

(6.10) and   the  corner   singularities  at   the  points  A  and  B. 

IEM:   The  procedure  of   [16]   is   designed  to   treat  all   corner   singularities,  

i,e,   the  IEM  uses   singular  functions   for  dealing  with  the   singularities 

at   each  of   the  points  A,   B  and  C.      In  this   example  the  pole   singularities 

at   the  points   (6.10)   are  not  close  to   ∂Ω ,   and  we  use  a  uniform  mesh 

with  respect   to  the  parameter     s     of   (6.9). 

Numerical   results : 

BKM/MB:     Nopt   =  30   ,       E30   = 1.4   ×   l0-1. 

BKM/AB:      Nopt   =  29   ,      E29   =  2.3   ×  10-6,      R29 =  1.219   403   701. 

IEM:         E79   =   4.5  ×  10- 4       R79 =  1.219  413  687. 

(As  before   the   Rn     denote  approximations   to   the  conformal   radius   of 

ΩI  at  0.) 

(ii)     We  now  consider  the  possibility  of   treating  the  corner 

singularlity  at     A     ,   by  using  the  preliminary  transformation 

z  →   (z-1)2/3   -   (-1)2 /  3 (6.11) 

This   transformation     maps   Ω      onto   the   domain  Ω*   illustrated   in  Fig,4(ii), *
I

and   transforms   the   corners   A,   B   and   C   into   the  corners  A*,   B*  and   C* 

whose   interior  angles   are   respectively  π ,   Π    and  π/2.      That   is,   the 

singularities  at  B*  and  C*  are  as  at     B     and     C   ,   but   the   transformation 

(6.11) reduces   the   severity   of   the   singularity  at     A   . 

The   results   obtained  by  applying   the   BKM/MB   to   the   domain   Ω  are *
I

as  follows: 

BKM/MB:     Nopt   =   22,   E22   =  3.8   x   10- 4   R22   =   1.219   404   136. 

Let   z *   and   z   be   the   images   of   the   points   (6.10),   under   the   trans- I
*
2

formation   (6.11).      Also,   let   z *
3    =   A*  and   z *    =   B*.  Then,   the   use   of   an 4

augmented  basis,   including   the   singular   functions 

{z/(z-z * }'    ;      j   =   1,2, j
and 
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3,4,j};2)*
j

zz(log3)*
j
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zlog(z2)*
j

zz{( =−−−−

 

leads   to   the   following   results:  

BKM/AB:     Nopt   =  27,      E2 7  =1.3 × 10-  5 ,     R2 7   =  1.219   403   703. 

The   results   of   this   example  confirm  our  remark,  that   the  use  of 

p r e l i m i n a r y    t r a n s f o r m a t i o n s    d o e s    n o t   n e c e s s a r i l y   r e m o v e   c o m p l e t e l y    t h e  

effect   of   corner   singularities.  
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