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ABSTRACT

Let f be the function which maps conformally a simply-connected
domain Q onto the unit disc. This paper is concerned with the
problem of determining the dominant poles of f in comp1(QNoQ), and
of using this information in order to obtain accurate numerical

approximations to f by means of the Bergman kernel method.






1. Introduction

Let Q be a bounded simply-connected domain with boundary 0Q
in the complex z-plane and assume, without loss of generality, that

the origin 0 lies in Q. Also, let

w="~(z), (1.1)
be the function which maps conformally Q onto the unit disc
D={w:|w < I} , (1.2)

so that £ (0) = 0 and f* (0) > O.

This paper is concerned with the problem of determining the

dominant poles of the mapping function f in compl (QUOQ), i.e. the

poles of the analytic extension of f which lie close to the boundary
0Q. Our motivation for considering this problem emerges from the
study of certain expansion methods for numerical conformal mapping.

These methods lead to approximations to f of the form

n
fh(z) = Z aj uj(z) , (1.3)

=1
and the significance of knowing the poles of f concerns the choice

of the set of basis functions {u;(z)}. More specifically, the

significance of the work of the present paper emerges from the
observation that the computational efficiency of the numerical mapping
techniques improves considerably when the basis set includes terms
that reflect the singular behaviour of the dominant poles of f; see

Levin et al [5], Papamichael and Kokkinos [7] and Ellacott [1].

The dominant poles of f can be determined easily by means of the
Schwarz reflection principle in the case where the boundary 0Q consists

of straight line segments and circular arcs.  If this is so, then f



has simple poles at the finite inverse (symmetric) points of the origin
with respect to the straight line segments and the circular arcs; see
e.g. Nehari [6, p. 184] and Henrici [4, p.389]. If 0Q is more general
than a curve consisting of straight lines and circular arcs, then the
situation regarding the location and nature of the poles of f is much
more involved. However, in many cases, it is possible to determine
the dominant poles of f by using a method based on a generalization of
the reflection principle. This generalization concerns the continuation
of the mapping function across analytic arcs, and is often referred to
as the symmetry principle of analytic arcs; see e.g. Henrici [4, p.391]

and Sansone and Gerresten [9, p.102].

The details of the presentation are as follows. In Section 2
we explain how the generalized symmetry principle can be used to
determine the poles of f corresponding to an analytic arc I'.  In
Section 3 we present three specific applications, by considering in
detail the three cases where I' is respectively an arc of an ellipse,
a parabola and a hyperbola. Finally, in Section 4 we present several
examples illustrating the significance of the work of the present paper,
in connection with numerical conformal mapping techniques. In each
of these examples the approximation to f is computed by using an
expansion method based on the theory of the Bergman kernel function

of Q. This method has been studied recently in [5] and [7].

2. The poles of the mapping function with respect to an analytic arc.

With the notation of Section I, let I' be an analytic arc of 0Q

with parametric equation



z=p(s), s1 <s<sp
ie.
I'={z:z=p(s), $1 <s<s2 (2.1)
Also, let G* be a simply-connected domain in the complex (-plane,

= s + it, such that the following two conditions hold.

C2.1. The function

z=P (), (2.2)

is one-one analytic in G*.

C2.2. The domain G* has a symmetric partition with respect to

the straight line segment

L={€:{=s+1t, spj<s<spy,t=0}, (2.3)
so that

G*=G;ULUG>,, (2.4)

where the image Q) of Gy, under the transformation (2.2), is
contained within Q, i.e. Q ¢ Q. Clearly, the symmetric subdomains
Gy and Gp of G* may be given either by

Gl ={(:¢ eG*andt >0 and Gp = {{: L eG* andt < 0}, (2.5)
or by

Gy ={(: { € G* andt <0} and Gy = {{: (€ G* and t > 0}. (2.6)

If the conditions C2.1 and C2.2 hold then the function (2.2)
maps conformallyG* onto a domain
Q* = uUruQ, , (2.7)
so that the straight line L and the domains Gj;j = 1,2, are mapped

respectively onto the arc I' and the domains Qj; j = 1,2, Thus the

function

h(©) = (O , (2.8)



where f is the mapping function (1.1), is one-one analytic in

GyuL and

w=h(0), (2.9)

maps the straight line L onto an arc of the unit circle. Therefore,

by the reflection principle, the function

h(¢), ¢eG, UL,
©= __
n)  ceq, .

is meromorphic in Gy and defines the analytic continuation of h,

H (2.10)

across L, into G»j.

Let q be the inverse function of p, i.e.

q=rp 1,

2.11)

and let

a(2) = pla(2) - (2.12)
Then, in view of (2.8) and (2.10), the function

F(z)=H(q(2)
f(z), zeQ UL ,
- 2.13)

l/fiaizii , ze€Q),,
is analytic in Qp , meromorphic in Qy and defines the analytic

continuation of the mapping function f across I' into Qp. This

analytic extension of f is a particular case of the symmetry principle
of analytic arcs, and the points z and a (z) are called symmetric
points with respect to the arc I'.  As it is shown in [9, p.103],

symmetric points are independent of the parametrization of T.



The above analysis leads to the following results regarding the

location and nature of poles of the function F.

R2.1. If 0 € Q) then the equation
p(E =20, (2.14)

has exactly one root o, in G;. Hence, it follows easily from (2.8),
(2.10), and (2.13), that the function F has a simple pole at the

point zgp ey, where
20 = p(C0)
=a (0), (2.15)
is the inverse point of the origin with respect to T.

R2.2. If 0 €0Qq/I" then the equation (2.14) has at least one

root {, € 0 G /L and we may assume, without much loss of generality,

that p is analytic at {y and {p* However, p is not necessarily one-

one in the neighbourhood of these points. For this reason, we let

P(E) = (6-¢0)Mp (&) » pj(&)#0, m=>1, (2.16)
P(&) —=p(C0)=(5-C0)"Py (L), py(Go) %0, n>1,  (2.17)
and, in order to determine the behaviour of F at the point
20 =p(Lp) € 0Qp /T , (2.18)
we proceed as follows.
The mapping function f is of the form
f(z) = zf] (2) , (2.19)
where f] (0) # 0. Therefore, from (2.13) , when z € Q,, the function
G (z) = l/F (2), (2.20)

has the form



G(z) = a(z) G, () , (2.21)
where G, is analytic at zgandGy(zg)#0. Also, from (2.12) and
(2.16)

a(z) = (a(2)-a(z,)"2,(2) , (2.22)

and, from (2.17),

1/n

4(2)=a(z0) =(z=2,) "q,(2) , (2.23)

where ajandq; are analytic and non-zero at zo. Hence, by

combining (2.22) and (2.23),

a(z) = (z = z)"" (q, (2)"a, (2) , (2.24)
and therefore, from (2.21),
G(2)=(2-2,)""G,(2) (2.25)

where Gp is analytic and non-zero at zg. Thus, the nature of the

singularity of F at zo depends on the values of the integers m and n
in (2.16) and (2.17). The following three cases occur frequently in

applications.

(a) m=n 1. In this case F has a simple pole at zo.

(b) m=2, n=1. In this case F has a double pole at zo.

(c) m=1,n=2. In this case F has a singularity of the

1
form (z-zgp) 2.

R.2.3. If 0 ¢ QU (0Qq/I') then F has no poles in QQp U (0€21 /T).
Naturally, if I" is a straight line or a circular arc then the

above procedure for determining the poles of F leads to the well-

known results predicted by the reflection principle. That is, if

0eQ;U(6Q) /T) then F has a simple pole at the point p (ZO) ey U (0Qy/T),



where the symmetric point p(EO) coincides with the mirror image of

0 with respect to the straight line or with the geometric inverse of

0 with respect to the circular arc.

In what follows we refer to a singularity of F, of the type
described in R2.1 and R2.2, as "a pole of the mapping function f with

respect to the arc I'".

3. Particular cases

In this section we illustrate the application of the technique of
Section 2 by considering in detail the three cases where I' is respectively
an arc of an ellipse, a parabola and a hyperbola. Naturally, in each
of these cases, the poles of f can also be determined by arguments based
on the use of the known exact conformal maps of an ellipse, a parabola
and a hyperbola. The reason for preferring the use of the technique
of Section 2 is that its application is not restricted to arcs of curves

whose exact conformal maps are known.

3.1. Elliptical arc IT.

Let I' be an arc of the ellipse

E: (x—xc)z/a2+ (y—yc)z/b2 =1 a>b,
and let the parametric equation of I' be
z=p(s)
=z, + ae cos (s—in), s]<s<sy |, (3.1)

1
where z; = X¢ +1yg, € = [l—bz/az)2 , coshnm=1/e and sy —s; <2m.



Then the function
z=pl), C=s+it (3.2)
is one-one analytic in the strip
{C:¢=s+it, sy <s<sp, —o<t<n}

and, with the notation of Section 2, we may take as domain G* a

symmetric subdomain of the rectangle
{C:C=s+it, sy <s<sp, —-n<t<nk (3.3)

To simplify the presentation we assume that the condition C2.2
holds when G* is the whole rectangle (3.3). Then the domain
Q*=O1UT'UQy can be deduced easily by determining the images under
the transformation (3.2) of the four sides of the rectangle (3.3).
To illustrate this we assume, that the orientation of I' with respect
to Q is such that G; and G, are given by (2.5), and in Figures 3.1-
3.4 we present four typical domains Q*. These domains correspond to
the four cases where s;=0 and the parameter s, is such that

O<sp<n/2,n/2<sp <m,m<sp <3n/2,3n/2,3n/2<sy<2m,

respectively.
~
In each diagram I' = arc PQ and the parametric equations of
N\

I'" = arc P'Q"' and y = are Q'R are respectively

z=7p(s-1in), 0<s<so, (3.4)
and

z=p(s; +it), -m<t<nm. (3.5)

That is I'' and y are respectively arcs of an ellipse E' and a hyperbola
H, where E' and H have common foci with the ellipse E. Naturally, the
hyperbola H cuts the ellipses E and E' orthogonally. We observe that
vy is an arc of the right-hand branch of H if coss, >0, and of the left-

hand branch if coss, < 0. We also observe that if s, = n/2, ® or 3w/2



then the hyperbola H degenerates into a straight line. More precisely,

if s = n/2 or 3n/2 then the point R coincides with the centre C of E

and y becomes a segment of the minor axis of E'. Similarly, if s, ==«

then the point R coincides with the focus F, = (x. - ae, y) and y

becomes a segment of the major axis of E'.
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In each diagram Q; is the shaded region,and Q2 is the region

bounded by the arcs I' and I'' and the subarc Q'Q of y. It is important

to observe that if s; > m then the domain (), involves a cut along the
straight line joining the focus F, to the point R. This is due to the
fact that under the mapping (3.2) the points (x £ s) + in, s > 0, have

the common image z; — ae cos s.

The nature of the domain Q* corresponding to any arc I' with

0 <sy <sp <2m can be deduced easily from the domains illustrated
in Figures 3.1 - 3.4. For example, the domain corresponding to an arc
I' with 0<sy<n/2 and mw<s)y <3n/2, is obtained by deleting the domain
of Figure 3.1 from that of Figure 3.3. The domain Q* corresponding to
an arc I' which includes the two vertices z; + a of E can also be deduced
from the domains of Figures 3.1 - 3.4. For example, if -1/2<s1 <0
and m<sy <3mn/2, then QO* is given by the union of the domain of Figure

3.3 with that obtained by reflecting the domain of Figure 3.1 about the

major axis.

Corresponding to the general results R2.1 - R2.3 of Section 2,

the situation regarding the nature of poles of the mapping function f

with respect to an elliptical arc I', orientated so that GyandG) are

given by (2.5), is as follows.

R.3.1.1. If 0 then the equation

pC)=0, (3.6)

has exactly one root in G; given by

Co =in + cos ) (~z¢ /ae). (3.7)
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This means that f has a simple pole at the point z € Q,, where

zg =p(Cp)

1
= 7 —1(a% +b2)Ze —2iab(aZ -b% -22)2 | /(a2 -b?). (3.8)

(In (3.8), the branch cut of the square root is taken to be along the
1
positive real axis and (-1)2 =i.)

R.3.1.2. If 0€0Q, /T then the situation regarding the poles of f

may be different from that described in R3.1.1 only if 0 lies on the
major axis of E between the foci F; and F,. More precisely, if

—ae<xc <aeandy. =0 then the following three cases arise,

(a) The region Q) involves a cut and 0 lies on the cut but

does not coincide with a focus of E.

In this case there are two distinct values of cos_l(—x/ae)
in the interval (sf, sp) and, corresponding to these, the equation
(3.6) has two distinct roots on the side t = nn of Gj. For this

reason, f has two simple poles at the two points of I'' given by
1
20 ={—2b2xci2iab(a2—bz—xg)Z}/(az—bz). (3.9)

(b) 0 does not lie on a cut of €3, and does not coincide with

a focus of E.

In this case there is exactly one value of cos_l(—xc/ae) in
the interval (sy, sp) and, because of this, (3.6) has one root on the
side t=mn of G;. For this reason, f has a simple pole at the point

zo given by (3.9), where the sign in the square brackets is chosen so

that z lies on I'".
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(c) 0 coincides with one of the foci, i.e. x- = £+ ae, yo = 0.

This case corresponds to the situation described in R2.2(b) of

Section 2. That is, the equation (3.6) has a double root at {p = in
or {p =mn+in, depending on whether 0 coincides with F; or F». For

this reason, f has a double pole at one of the vertices of the ellipse
E', i.e. at one of the points
_1
20 =12b%(a% —b2) 2 (3.10)

where the + signs correspond respectively to the cases where 0 is at

F; and 0 is at Fy.

R3.1.3. If0e2QuU(@Q/T) then f has no poles in Q) ur.

If the orientation of the arc I' with respect to Q is such that
Gpand Gy are given by (2.6) then, in Figures 3.1 - 3.4, the roles of
Qpand Q) are reversed, i.e. in each figure the shaded region denotes
the domain Q9. The conclusions contained in R3.1.1 and R3.1.3 remain
unaltered but, in this case, R3.1.2 must be replaced by the following.

R3.1.2". If Oe€0Qq/I' then f has a simple pole at the point
zo given by (3.8), except when 0 coincides with one of the vertices

of the ellipse E, i.e. when
_1
Xe =% (a2 +b2) (a2 -b2)"2 and y. = 0 (3.11).

The values (3.11) give rise to the situation described in R2.2(¢c) and,

because of this, f has a singularity of the form
1
(z-29) 2, (3.12).
at one of the foci of E, i.e. at one of the points

_1
z0=+2b2 (a2 -b%) 2. (3.13).
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3.2. Parabolic arc I'.

Let I' be part of the parabola

Tc:(y—yV)2 =4a(x—-xy), a>0,
and let the parametric equation of I' be
z = p(s)
—zy +al(s+i)Z+1},  sp<s<sy, (3.14)

where zy =xy +iyy. Then, the function

z=p(0), € =s+it, (3.15)

is one-one analytic in the strip

{C:C=s+it, s8] <s<s), —l<t<oo},

and we may take as domain G* a symmetric subdomain of the rectangle

{£:0=s+it, s]1<s<s), —-I<t<1}. (3.16)
Two typical domains Q* are illustrated in Figures 3.5 and 3.6.
These are obtained under the assumptions that the condition C2.2 holds
when G* is the whole rectangle (3.16), and the orientation of I' with
respect to Q is such that G; and G, are given by (2.6). The domains

illustrated correspond respectively to the two cases 0 <sy <sp and

s] < 0 <sp with |s1| < |sz| .

In each diagram I' = arc PQ, and the parametric equations of

—— —— ———

'=arc P’Q', y; = arc R|P’ and y, = arc R,Q" are respectively

z=p(s+1) , s] <s < sy, (3.17)

z=p(s] +1) , -l<t< 1, (3.18)
and

z=p(s; +it), -1 <t<1. (3.19)

That is T', Y, and Y, are respectively arcs of three parabolas, each

having the same focus as II.
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Figure 3.5 Figure 3.6

In each diagram, Q) is the shaded region and Q; is the region

bounded by T, [ and the subarcs/P_P and @' of y; and yp. The domain
Q) of Figure 3.6 involves a cut along the straight line joining the

point Ry to the focus F of II. This is due to the fact that under the
mapping (3.15) the points + s-i have the common image z\,+a(s2 +1).

If G| and Gy are given by (2.6) then the following results can
be established easily, by using arguments similar to those used for
establishing the corresponding results R3.1.1 - R3.1.3 of Section 3.1.

R3.2.1. If 0€Qq then f has a simple pole at the point

zo € Q9 where

0=

zog = 2iyy — 4a {1 —i (zy/a-1) } (3.20)

(In (3.20) the branch cut of the square root is taken to be along the

1
positive real axis and (-1)2 =1.)
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R3.2.2. 1If0 e 0Q;/ then the situation regarding the poles
of f may be different from that of R3.2.1 only if 0 lies on the axis
of the parabola, i.e. only if xy < -a and y, = 0. The following

three cases arise.

(a) The region Q; involves a cut and 0 lies on the cut

but does not coincide with the focus of II.

In this case f has two simple poles at the two points of T’

given by
1
Zo :—4a{1ii(—xv/a— 1)2}. (3.21)

(b) 0 does not lie on a cut of Q; and does not coincide with

the focus of II.

In this case f has a simple pole at the point z, given by

(3.21), where the sign in the square brackets is chosen so that zg,

lies on I''.

(¢) O coincides with the focus of II, i.e. xy = -a, yy = 0.

In this case f has a double pole at the point
zo=—4a, (3.22)

1.e. at the vertex of the arc I'' .

R3.2.3. If 0 ¢Q U(0€Q/I') then f has no poles in Qpy UT".

If the orientation I' with respect to Q is such that Gy and
Gy are given by (2.5) then, in Figures 3.5 - 3.6, the roles of Qp and
Q9 are reversed. The only other change concerns the result R3.2.2

which, in this case, must be replaced by the following.
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R3.2.2". If 0€0Q/I" then f has a simple pole at the point
zy given by (3.20), except when the origin coincides with the vertex

of the parabolic arc I' , i.e. when
Xy =3a and yy =0. (3.23)
In this case f has a singularity of the form
1
(z—2z¢p) 2 (3.24)
at the point
zo =4a , (3.25)

1.e. at the focus of II.

3.3. Hyperbolic arc I.

Let I be an arc of the right hand branch of the hyperbola
H: (x=xy)2/a2—(y—yy)2/b2 =1, (3.26)
and let the parametric equation of I be
z=7p(s)
=zy + aecosh(s+in), s1<s<sp , (3.27)

2
where zy=xy + iyy. e = (1 + b /a)” and cosn = 1/e. Then, the

function

z = p(0), {=s + it, (3.28)

is one-one analytic in the strip
{g: C:S+ita51<5<s2,'n<t<°°}a
and we may take as domain G a symmetric subdomain of the rectangle

{C:{=s+1it, 51 <s<s) -n<t<n}. (3.29)
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Two typical domains Q* are illustrated in Figures 3.7 and 3.8.

These are obtained under the assumptions that the condition C2,2 holds

when G* is the whole rectangle (3.29), and the orientation of I,
with respect to Q, is such that G and G are given by (2.5). The
domains illustrated correspond respectively to the cases 0<s| <s»p

and s; <0<spy with [s]| < |s2].

SR SR .

1 5\
| F Ry R,

Figure 3.7 Figure 3.8

In each diagram I' = arc PQ and the parametric equations of

I' = arc ﬁ_d', Y1, = arc 1{1_13 and vy, = R/za are respectively
z =p(s +in), s]1<s<sp , (3.30)
z = p(s] + it), -n <t <n, (3.31)
and
z = p(sp + 1it), -m<t<n. (3.32)

That is I, y, and y, are respectively arcs of a hyperbola H and

two ellipses E; and E,, where H ', E; and E, have common foci with H.
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In the diagrams we assumed that 0 < b < a and, for this reason, I' '
is an arc of the right hand branch of H . Ifa <b then I is an
arc of the left hand branch of H , and if a = b then I'' degenerates
into a segment of the straight line x = x,. Also, if one of the
values sij; 1 = 1,2 is zero then respectively one of the arcs vy;;
i=1,2 degenerates into a segment of the axis H .

In each diagram ft is the shaded region and Q, is the region

, N\ P

bounded by I' and the subarcs PP' and QQ' of y; and y,. The domain
Q, of Figure 3.8 involves a cut along the straight line joining the
point R; to the focus F of H. This is due to the fact that under
the mapping (3.28) the points + s - in have the common image

zy+ aecoshs.

If G; and G, are given by (2.5) then the results regarding the

nature of poles of f are as follows.

R3.3.1. If 0 € Q, then f has a simple pole at the point

zo € Q,, where

Zo =27y —{(a2 —b%)Zy +2iab(z2 a2 —t>2)5}/(a2 +b2) (3.33)
(In (3.33) the branch cut of the square root is taken to be along the
positive real axis and (—1)% =1.)

R3.3.2. If 0 € 0Q;/ T then the situation regarding the poles of

f may be different from that of R3.3.1 only if 0 lies on the axis of

H, i.e. only if xy, < - ae and y, = 0. The following three cases arise.

(a) The region Q; involves a cut and 0 lies on the cut but does

not coincide with the focus F of H.

In this case f has two simple poles at the two points of I given

by
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1
Zo :{2b2xvi2iab(x%,—a2—b2)2}/(a2+b2) . (3.34)

(b) 0 does not lie on a cut of ©Q; and does not coincide with

the focus F of H.

In this case f has a simple pole at the point zy given by (3.34),

where the sign in the square brackets is chosen so that zy lies on I

(c) O coincides with the focus F of H, i.e. x, = - ae and

yv=0.

In this case f has a double pole at the point

1

20 = - 2b%(a’+b?) (3.35)
i.e. at a vertex of the hyperbola H .
R3.3.3. If 0¢Q v (©@Q, /T) then f has no poles in QQUF'.

If the orientation of I' with respect to Q is such that G, and G;
are given by (2.6) then, in Figures 3.7-3.8, the roles of Q; and Q; are
reversed. The only other change concerns the result R3.3.2 which, in

this case, must be replaced by the following.

R.3.3.2- If0 € & Q /T then f has a simple pole at the point z,

given by (3.33), except when the origin coincides with the vertex of the

hyperbolic arc T'', i.e. when

gy =2 -a2)@2 +b2) Zandy, =0, (3.36)
In this case f has a singularity of the form

(z—ZO)_% , (3.37)
at the point

7o =2b2@2 +b2) 72, (3.38)

1.e. at the focus F of H.
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4. Numerical Examples.

In this section we present several examples illustrating the
practical significance of the results of Sections 2 and 3, in connection
with numerical conformal mapping techniques. Each example concerns
the numerical conformal mapping of a simply-connected domain Q, where
the approximation to the mapping function f is computed by using the
so-called Bergman kernel method (BKM). This is an expansion method

based on the theory of the Bergman kernel function K (z, 0) of Q.

Let L, (Q) be the Hilbert space of all square integrable analytic
function in Q. Then the kernel K (z,0) has the reproducing property

h(O):”Qh(z)K(z,O) dxdy,Vh e Ly (Q) , (4.1)

and is related to the mapping function f by means of

f! _ n % . 4.2
(Z)_{K(O,O)} K(z,0) ; (4.2)

see e.g. Bergman [1], Gaier [3] and Nehari [6].
In the BKM the approximation to f is obtained from (4.2) after first
approxim ating the kernel K(z,0) by a finite Fourier series sum. More

specifically, if {nj(z)} is a complete set of L, (Q) then the details
of the BKM are as follows:

The set {nj(z)}?_l is orthonormalized, by means of the Gram-Schmidt

n
process, to give the set of orthonormal functions %?(Z)}j—l Then,

because of (4.1),

n
Kn(z0)=Y n}(0) nj() . (4.3)
j=1

is the nth partial Fourier sum of the kernel function, and hence,
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from (4.2)
1
T 22
fn(Z)Z{m} gKn(C,O)dC , (4.4)

Is the nth BKM approximation to the mapping function f.

The significance of the results of Sections 2 and 3 concerns the

choice of the basis functions{n(z)}. A computationally convenient

basis is the set of monomials

A7 =123, (4.5)

However, the convergence of the resulting polynomial approximations
is often extremely slow and, for the reasons explained in [5, Sect. 2]
and [7, Sect. 4], the successful application of the BKM requires that
the basis set contains terms that reflect the main singular behaviour
of fin compl (Q). This can be achieved by using an "augmented basis",
formed by introducing appropriate singular functions into the set (4.5).
In particular the augmented basis must contain terms that reflect the
singular behaviour of the dominant poles of f. The purpose of the
examples considered below is to illustrate the importance of introducing

such terms into the basis set.

If Q involves sharp corners then the augmented basis must also
contain terms that reflect the singular behaviour of f in each of these
corners. The problem of choosing appropriate singular functions for
dealing with corner singularities is discussed fully in [5] and [7],
and is not considered further in the present paper. For this reason,
in each of the examples considered below, the domain is constructed so
that any two consecutive analytic arcs of its boundary intersect at

right angles. In this way the resulting corner singularities are not
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serious and can be ignored; see [5, Sect. 2.2] and L7, Sect. 4.2].

The computational details of the BKM procedure used in the

examples are exactly as described in [5, Sect. 3] and [7, Sect. 5].

In particular, the estimate E,, of the maximum error in |fn(z)| is

obtained, as in [5] and [7], by computing

en (2) =1-[fn(2)

at a number of "boundary test points" z5 € 9Q, and then determining

, (4.6)

En =max ‘en(Zj)‘ . (4. 7)
J

Also, in each example, the numerical results presented correspond to

the approximation fN . where n = Nopt is the 'optimum number' of
op

basis functions which gives maximum accuracy in the sense described
in [5, p.177] and [7, p.295]. That is, this number is determined
by computing a sequence of approximations {f,(z)}, where at each stage

the number n of basis functions is increased by one. If at the (n+I)th

stage the inequality

is satisfied then the approximation f;42 is computed. When for a

certain value of n, due to numerical instability, (4.8) no longer holds

then we terminate the process and take n = Nopt.

In presenting the results we adopt the notation used in [5] and
[7], and denote the BKM with monomial basis (4.5) by BKM/MB and the
BKM with augmented basis by BKM/AB.
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Example 4.1.

Let Qp, be the domain bounded by the elliptical arc

DAB = {z: z=5 (-e/2 + coss) + ibsins, - w/2 <s<mw /2}, 0 <Db <35,

and the straight line

BCD ={z:z=x+1y,x = -5¢/2,-b< y < b},

where
1
e=(25-b%)2/5

is the eccentricity of the ellipse; see Fig. 4.1.

al

Figure 4.1.

Since the origin O lies halfway between the centre C and the
focus F of the ellipse, the situation regarding the poles of the mapping
N
function f with respect to arc DAB is as described in 3.1.2(a). That

is, f has simple poles at the points z ;, z, where, from (3.9),
_ 2L 2\5 o
z1 ={b“ + i5V3b}/(25-b")2 and zy = 7 .
The function f also has a simple pole with respect to the straight line
BCDat the point

1
z3=—~(25-b%)2 ,
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the mirror image of 0 in BCD. Thus the augmented basis set, used

in the BKM/AB for approximating the kernel
1
2
K(z0) = {M} £') .
T

1s
1

nj(z):{ 2 }; j=123, njp3 =207k j=123..
Z—Zj

The numerical results obtained for various values of b are

listed in Table 4.1.

Table 4.1
BKM/MB BKM/AB

b Nopt Enopt Nopt Enopt

3 143 1.5x 107" 11 4.8 x 107"
2 |30 |2.9x10°® 15 1.3 x 107"°
1 |24 7.9 x 107* 16 4.8 x 107
1/2 |22 3.6x 107 20 2.5x 1077
1/3 |20 1.1 x 10" 19 3.4x107°
1/4 |21 1.7 x 107! 19 22x 10"
1/5119 |23 x 107! 21 5.0x 10"

Example 4.2.

The purpose of this example is to illustrate the critical effect
that the position of the origin has on the quality of the approximation.

In order to do this we consider the domain Q Ex. 4.1 translated
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by an amount 5e/2 in the negative x-direction so that

SA\B = {z: z = 5(-e + coss) + ibsins, - /2 <s < w/2}

BCD = {z : z=x+1y, x=-5e, -b<y<b}.

In this way the origin 0 coincides with the focus F and, from
R3.1.2(c), the mapping function f has a double pole with respect

N .
to arc DAB at the point

_1
21 =2b2(25-b%) 72 |

As in Ex. 4.1, f also has a simple pole at the mirror image of 0

with respect to BCD, i.e. at the point

2 1
25 =—2(25-b%)2 |

Thus, in this case, the augmented basis used in the BKM/AB is

'
'

n1(2) = {ﬁ} . M2(2) = {i} 2@ =271 =123,
zZ—7]

Table 4.2.
BKM/MB BKM/AB
b Nopt Enopt Nopt Enopt
3 |14 2.8x 107" 15 2.3x 1077
2 |13 2.2x 107 14 8.3x 107
1 |11 2.7x 10" 13 3.3x 107

The numerical results obtained, for the three cases where

b=3,2,1, are listed in Table 4.2. These results, like those of

Table 4.1, illustrate the improvement in accuracy achieved by
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introducing into the basis set functions that reflect the singular
behaviour of the dominant poles of f. However, both the BKM/MB
and BKM/AB approximations to the present f are considerably less
accurate than the corresponding approximations to the mapping
function of Ex. 4.1. The reason for this is that in the present
example the origin O lies close to the boundary of Q. The
difficulty is due entirely to the position of 0, and can be overcome
quite simply by observing that f is connected to the mapping function

f of Ex. 4.1 by means of

_M f1(z)-a _
f(z) = 2 et a = f] (ae/2). (4.9)

If the BKM/AB approximations to f; are used in (4.9) then the
resulting approximations to f are of comparable accuracy to the BKM/AB

approximations of Ex. 4.1.

Example 4.3.

Let Q be the domain bounded by the elliptical arc LMN, the

- N S
straight lines NP and LR and the circular arc PQR, illustrated in

Figure 4.2. The details of Figure 4.2 are as follows:

/

LMN = {z: z=(-17/2+5coss )+ 3isins, - /5 <s<mn/5},

K is the point where the normals to the ellipse at L and N cut the

R R S/
x-axis, NPand LR are segments of these normals and PQR is an arc of

the circle with centre at the point K and radius KQ, where Q = (7/2,0).
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P
N
K .. '_ .. Q_._.
L\
R
Figure 4.2
The co-ordinates x, = - 17/2, y. = 0 of the centre of the

ellipse satisfy (3.11), i.e. the origin 0/2@ the focus F = (-9/2,0)
are inverse points with respect to arc LMN. Therefore, from

R.3.1.2', the mapping function f has a singularity of the form

_1
(z+9/2)"2

at F. The function, f also has simple poles at the mirror images

z1, z of 0 with respect to NP and LR,, and at the geometric inverse
N
z3 of 0 with respect to arc PQR. Thus, the augmented basis used in

the BKM/AB is

1

nj(Z)_{ & } 5 j: 192’39 1’]4(Z) =

Z—Zj

V4

b

1
(z+9/2)2

n @ =27k =123,

j+4
where in ng the branch cut of the square root is taken along the

line x <-9/2,y =0.
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The numerical results obtained are as follows;

BKM/MB: Nopt = 35, Ess=1.8 x 107%"
BKM/AB: Nopt = 23, Eys;=4.4 x 107

Example 4.4.

Let Q, be the domain bounded by the two parabolic arcs

—_—

ABC = {z: z=(-0.4-0.6a +82) - 2is, -a<s <a},a>1,
and
CDA = {z: z= (0.6 + 0.4a° - s?) + 2ias, - 1 <s <1},

which intersect orthogonally at the points A and C; see Figure 4.3.

I
w)

- e e e e

Figure 4.3.

Because of the position of the origin, the poles of the mapping
function f with respect to the arcs ABC and CDA are as described in

R3.2.2(a) and R3.2.1 respectively. That is, f has two simple poles
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/
with respect to arc ABC at the points

1 _
z1=-4+41 (0.6(12 -0.6)2 and zp =71,
~—~
and a simple pole with respect to arc CDA at the point

2

1
z3 = 4a{a—-(0.6a” -0.6)2}. Thus the augmented basis used

in the BKM/AB is

'

z ) S
n () ={ } ; =123, njy3@ =277 j= 1,23,
Z—Zj

The numerical results obtained, for the three cases where

o=2,5,10, are listed in Table 4.3.

Table 4.3
BKM/MB BKM/AB
o
Nopt ENopt Nopt ENOPt
2 32 5.8x 107° 13 1.8 x 10°1°
5 36 1.6 x 1077 16 2.4 x101°
10 24 22x107° 18 1.5x10°%

Example 4.5

Let Q be the domain bounded by the two hyperbolic arcs
N ‘ ‘
ABC ={zz =(-xg +2cosh s) +1(—yq +sinh s), s; <s <sp},

and

N

CDA = {z:z = (X0 - 2 coshs) + i(yo - sinhs), s; <s < s»},
where

Xo = cosh s; + cosh s3, yo = (sinh s; + sinh s;)/2
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. A~
are the co-ordinates of the centre of arc CDA. We take

s2> =1 and choose s;, so that
4 tanh sy tanh sp + 1=0.

In this way the two arcs intersect orthogonally at A and C; see

Figure 4.4.

D = (x0—2, yo)

- - - - =X

Figure 4.4

Because of the position of the origin the poles of the mapping
7~ N
function f with respect to both arc ABC and arc CDA@ are as described

in R3.3.1. That is, from (3.33), f has simple poles at the points
— - 1
Zl:ZO—{3ZO + 41 (Z3—5)2}/5 and zy) =—-121,

where zp = Xo + iygo. The symmetry of the domain implies that the
polynomial representation of the kernel function involves only even
powers of z, and that the augmented basis may be taken to be

2z1z

Mm@ = {525 i@ =220 =123
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The numerical results obtained are as follows:

BKM/MB: Nopt=13, E;; =1.5x 10"
BKM/AB: Nopt=12, E;, =3.1x10"

Example 4.6.

Let Q be the domain bounded by the straight lines

EZ{Z;z=x+iy,-2<x<2,y=-1/3},
B_CZ{Z:z=x+iy,x=2,—1/3<y<1},
EA = {z: z=x+1iy,x=-2,-1/3 <y <1/3},

and the arc

S~
EDC = {z: z=c(s), - 2 <s <2},

where
c(s) =s + i{2/3 + s/4 - s°/48};

see Figure 4.5. In the figure, the point D has x-coordinate

xp =-0.156,
~~

and is chosen so that the line OD is nearly normal to arc EDC.

Figure 4.5
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A BKM approximation to the mapping function f is given in
[8, Ex. 2.2]. This approximation is computed by using an augmented

basis obtained by introducing into the monomial set (4.5) the

functions
{ = }; i=123, (4.10)
7—7;
J
and
z , (4.11)
z—z?)
where

z1=-21/3, zp =4, z3=-4,

are the mirror images of 0 with respect to HB,B_C and EA, and

;0 = 2zp
=-0312 +1 1.2555 491 517 33.

Thus, the basis set used in [8] contains the three singular functions

(4.10) which correspond to the simple poles that f has with respect

to the straight lines E,ﬁ and ﬁ,. However, the choice of the

singular function (4.11) is based entirely on intuitive arguments,
~

which suggest that f might have a simple pole with respect to arc EDC

at some point near the pointZ,. The precise nature of the poles of

f with respect to arc EDC can be determined, by means of the

technique of Section 2, as follows.

By using the Newton-Raphson method we find that the equation
c(@)=0
has a root at the point

Lo =—0159 775 27190 —1 0.622 932 820 27
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and that

zo =c(Cp)
=—-0319 550 543 81 +1 1.245 865 640 54.

Also, it can be shown easily that

c(Cp —c(€2)=(1 -C2)R(E1,82)

Where

R(1.C0) = (1+/4) — i(CF +2180 +(3)/48.
Since

R(G,,G,) #0

for all points (;,(, in the rectangle
G={0:C{=s+it, -2<s<2, -1 <t <1},

it follows that the function ¢({) is one-one in G. Thus, there

exists a region G* satisfying the conditions C2.1 and C2.2 and

containing the points andz0 Therefore, by R2.1, f has a simple

pole with respect to arc EDC at zy,. For this reason, we construct
the augmented basis for the BKM/AB by introducing into the monomial

set the three functions (4.11) and the function

'

{ z } (4.12)
AN

Our BKM/AB results are listed below and are compared with the results

of the BKM/MB and also the results BKM/ A:B, obtained in [8] by using
the singular function (4.11), instead of (4.12). The numerical
results justify completely the choice of the singular function (4.12).

BKM/MB  : Nopt =23, E;;=53x107"

BKM/AB,[8]: Nopt =22, E;»=4.9x 10

BKM/AB : Nopt =20, E;;=5.5x10"
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We end this section, by pointing out a difficulty which occurs

when the regions Q; corresponding to two separate analytic arcs of

0Q overlap. Let I'y and I'; be two such arcs and denote by Qg) and
(2) . . . :
QZ the corresponding Q; regions. Then, in general, the mapping

function f will have two different continuations in Q(zl)ﬂQ(zz)

and, for this reason, it might not be possible to reach any conclusions
regarding the poles of f with respect to I'y and I',. This situation
arises frequently when I'; and I'; are the arms of a corner, where f has
a branch point singularity which, in general, is much more serious
than any poles with respect to I') and I'; that our method might predict.
Fortunately, the appropriate singular basis functions needed for
dealing with branch point singularities can be determined, as in [5]
and [7], by considering the asymptotic expansion of f in a neighbourhood

of a corner.
5. Discussion

The numerical examples of Section 4 illustrate how the results
of Sections 2 and 3, concerning the nature of the "poles" of the
mapping function f, can be used to improve the BKM approximations to
f. Naturally, the accuracy of other expansion methods for numerical
conformal mapping can be improved in exactly the same way, by ensuring
that the basis set used for approximating f contains functions that

reflect the singular behaviour of the dominant poles of f.
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