22 research outputs found

    Vibrational and electronic heating in nanoscale junctions

    Full text link
    Understanding and controlling the flow of heat is a major challenge in nanoelectronics. When a junction is driven out of equilibrium by light or the flow of electric charge, the vibrational and electronic degrees of freedom are, in general, no longer described by a single temperature[1-6]. Moreover, characterizing the steady-state vibrational and electronic distributions {\it in situ} is extremely challenging. Here we show that surface-enhanced Raman emission may be used to determine the effective temperatures for both the vibrational modes and the flowing electrons in a biased metallic nanoscale junction decorated with molecules[7]. Molecular vibrations show mode-specific pumping by both optical excitation[8] and dc current[9], with effective temperatures exceeding several hundred Kelvin. AntiStokes electronic Raman emission\cite[10,11] indicates electronic effective temperature also increases to as much as three times its no-current values at bias voltages of a few hundred mV. While the precise effective temperatures are model-dependent, the trends as a function of bias conditions are robust, and allow direct comparisons with theories of nanoscale heating.Comment: 28 pages, including 4 main figures and 10 supplemental figure

    Plant ecology meets animal cognition: impacts of animal memory on seed dispersal

    Get PDF
    We propose that an understanding of animal learning and memory is critical to predicting the impacts of animals on plant populations through processes such as seed dispersal, pollination and herbivory. Focussing on endozoochory, we review the evidence that animal memory plays a role in seed dispersal, and present a model which allows us to explore the fundamental consequences of memory for this process. We demonstrate that decision-making by animals based on their previous experiences has the potential to determine which plants are visited, which fruits are selected to be eaten from the plant and where seeds are subsequently deposited, as well as being an important determinant of animal survival. Collectively, these results suggest that the impact of animal learning and memory on seed dispersal is likely to be extremely important, although to date our understanding of these processes suffers from a conspicuous lack of empirical support. This is partly because of the difficulty of conducting appropriate experiments but is also the result of limited interaction between plant ecologists and those who work on animal cognition

    Assessment of the Food Habits of the Moroccan Dorcas Gazelle in M’Sabih Talaa, West Central Morocco, Using the trnL Approach

    Get PDF
    Food habits of the Moroccan dorcas gazelle, Gazella dorcas massaesyla, previously investigated in the 1980s using microhistological fecal analysis, in the M’Sabih Talaa Reserve, west central Morocco, were re-evaluated over three seasons (spring, summer and autumn 2009) using the trnL approach to determine the diet composition and its seasonal variation from fecal samples. Taxonomic identification was carried out using the identification originating from the database built from EMBL and the list of plant species within the reserve. The total taxonomic richness in the reserve was 130 instead of 171 species in the 1980s. The diet composition revealed to be much more diversified (71 plant taxa belonging to 57 genus and 29 families) than it was 22 years ago (29 identified taxa). Thirty-four taxa were newly identified in the diet while 13 reported in 1986–87 were not found. Moroccan dorcas gazelle showed a high preference to Acacia gummifera, Anagallis arvensis, Glebionis coronaria, Cladanthus arabicus, Diplotaxis tenuisiliqua, Erodium salzmannii, Limonium thouini, Lotus arenarius and Zizyphus lotus. Seasonal variations occurred in both number (40–41 taxa in spring-summer and 49 taxa in autumn vs. respectively 23–22 and 26 in 1986–1987) and taxonomic type of eaten plant taxa. This dietary diversification could be attributed either to the difference in methods of analysis, trnL approach having a higher taxonomic resolution, or a potential change in nutritional quality of plants over time

    Long-term memory of relative reward values

    No full text
    Long-term memory can be adaptive as it allows animals to retain information that is crucial for survival, such as the appearance and location of key resources. This is generally examined by comparing choices of stimuli that have value to the animal with those that do not; however, in nature choices are rarely so clear cut. Animals are able to assess the relative value of a resource via direct comparison, but it remains unclear whether they are able to retain this information for a biologically meaningful amount of time. To test this, captive red-footed tortoises (Chelonoidis carbonaria) were first trained to associate visual cues with specific qualities and quantities of food, and their preferences for the different reward values determined. They were then retested after an interval of 18 months. We found that the tortoises were able to retain the information they had learned about the cues as indicators of relative reward values over this interval, demonstrating a memory for the relative quantity and quality of food over an extended period of time. This is likely to impact directly on an animal’s foraging decisions, such as the exploitation of seasonally-varying resources, with obvious fitness implications for the individual; however, the implications may also extend to the ecological interactions in which the animal is involved, affecting processes such as herbivory and seed dispersal
    corecore