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Abstract Accurate quantitative measurement of drugs and
their metabolites is important as this can be used to establish
long-term abuse of illicit materials as well as establish accu-
rate drug dosing for legal therapeutics. However, the levels of
drugs and xenometabolites found in human body fluids neces-
sitate methods that are highly sensitive as well as reproducible
with the potential for portability. Raman spectroscopy does
offer excellent reproducibility, portability and chemical spec-
ificity, but unfortunately, the Raman effect is generally too
weak unless it is enhanced. We therefore developed surface-
enhanced Raman scattering (SERS) and combined it with the
powerful machine learning technique of artificial neural net-
works to enable rapid quantification of caffeine and its two
major metabolites theobromine and paraxanthine. We
established a three-way mixture analysis from 10−5 to
10−7 mol/dm3, and excellent predictions were generated for
all three analytes in tertiary mixtures. The range we selected
reflects the levels found in human body fluids, and the typical
errors for our portable SERS analysis were 1.7×10−6 mol/dm3

for caffeine, 8.8×10−7 mol/dm3 for theobromine and 9.6×
10−7 mol/dm3 for paraxanthine. We believe this demonstrates
the exciting prospect of using SERS for the quantitative

analysis of multiple analytes simultaneously without recourse
to lengthy and time-consuming chromatography, a method
that often has to be combined with mass spectrometry.
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Introduction

Raman spectroscopy has been proven to be a powerful phys-
iochemical technique that can provide highly specific molec-
ular information about a sample under analysis and allows
unambiguous analyte structural characterisation [1]. This is
essential in the case of detection, identification and quantifi-
cation of legal drugs and illicit substances, and Raman spec-
troscopy has therefore been used extensively for the identifi-
cation of drugs of abuse [2–5].

Although Raman spectroscopy is a useful technique that
can be deployed in a portable manner, a major limitation of its
use is the fact that the signal from the normal Raman process is
unfortunately inherently weak. Significant enhancement of
the signal can be accomplished using either resonance
Raman or surface-enhanced Raman scattering (SERS).
When using SERS, it is necessary for the analyte to be either
in direct contact or close to a roughed metal surface [6–10],
and for quantitative analysis, colloidal preparations of silver or
gold nanoparticles are usually employed [11, 12]. In our lab-
oratory, initial work has been carried out for optimising SERS
for trace detection of human drugs [13] as well as illicit ma-
terials and legal highs [14, 15].

Many studies in this field have focused on the detection of
a single analyte, and therefore, illicit substance detection has
been limited to the detection of the specific xenobiotic. Due to
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the pharmacodynamics of drug metabolism, which usually
occurs in the liver, if one could measure the major drug me-
tabolites, this would allow the establishment of long-term
abuse of illicit materials. This of course has the major advan-
tage that if the drug itself is not present in any human body
fluids, after it has been modified in the liver, its
xenometabolites might still be present.

Chromatography linked with mass spectrometry has been
used for detection, identification and quantification of drugs
and their metabolites [16]. However, this requires specialist
expensive equipment, is labour intensive as well as time con-
suming and is not generally considered field portable. By con-
trast, it has recently been shown that SERS offers considerable
potential for drug detection and quantification and that this
approach can readily be coupled with Raman spectrometry
[13, 15], and we have presented recent evidence that SERS
is powerful when combined with chemometrics to be used for
the quantitative analysis of the drug nicotine and its major
metabolites cotinine and trans-3-hydroxycotinine [17]. We
have also developed SERS for the quantitative detection of
DNA sequences from three bacterial pathogens [18].

In this study, we aimed to investigate the drug caffeine,
which occurs in many foodstuffs (including tea, coffee and
chocolate), and its major xenometabolites. Caffeine breaks
down in the liver within 3–5 h after consumption where it is
converted to the metabolites paraxanthine (80 %), theobro-
mine (12 %) and theophylline (7 %) [19]. Caffeine is readily
measured in human serum and, in epidemiological studies, is
one of the most variable small molecules measured [20], and
this reflects its variable (person-specific) consumption levels.

As shown in Fig. 1, caffeine is metabolised into the major
metabolites paraxanthine (80 %) and theobromine (12 %).
Therefore, it is reasonable to assume that these metabolic
products can be detected in human body fluids, whilst theoph-
ylline being only a modest 7 % is likely to be rather difficult to
detect [21]. Based on this assumption, in this study, the drug
caffeine and its two major metabolites (theobromine and
paraxanthine) were prepared in tertiary mixtures to establish
if SERS can be deployed for the detection and quantification

of multiple analytes simultaneously, without resorting to the
more complicated and time-consuming chromatographic sep-
aration and mass spectrometry techniques mentioned earlier.

Experimental

Chemicals

The reagents used in this investigation were silver nitrate
(>99 %), trisodium citrate, potassium nitrate, sodium borohy-
dride (NaBH4) (98+%), caffeine (≥99 %), theobromine
(∼98 %) and paraxanthine (∼98 %), all of which were pur-
chased from Sigma-Aldrich (Dorset, UK) and supplied as ra-
cemates. Acetic acid (analytical reagent grade) was purchased
from Fisher Scientific Company (Loughborough, UK), and
sodium hydroxide standard solution (0.1 mol/L) was obtained
from Riedel de-Haen Company (Seelze, Germany).

SERS colloid preparation

Silver citrate colloid

Silver citrate colloid was prepared using the Lee and Meisel
method [22]. Briefly, 90 mg of silver nitrate was dissolved in
500 mL of deionised water, and after which, the solution was
heated to its boiling point. Ten millilitres of 1 % trisodium
citrate was then added to the boiling silver nitrate solution
drop by drop whilst the solution was vigorously stirred. The
mixed solution was kept boiling for a further 10 min. A green-
grey silver colloid was obtained, which proved to be stable at
room temperature in glass conical flask covered with foil for
several weeks.

Silver borohydride colloid

Ag nanoparticles were prepared by the reduction of AgNO3

using NaBH4 aqueous solution as a reducing agent, following
the method of Lee and Meisel [22]. AgNO3 (10

−3 mol/dm3,
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25mL) was added to an ice-cold solution of vigorously stirred
NaBH4 (2×10

−3 mol/dm3, 75 mL) to form a yellow colloid of
Ag nanoparticles. This colloid was also stable when stored in
the dark at room temperature.

Gold citrate colloid

Gold nanoparticles were synthesised according to a protocol
described by Turkevich and colleagues [23]. In brief, 100 mL
of HAuCl4 solution (containing 50 mg) was added to 850 mL
of boiling water under vigorous stirring. Once the solution had
returned to a boiling, 50 mL of 1 % trisodium citrate was
added. After 30 min of continuous boiling and stirring, the
gold nanoparticle solution was left to cool at room tempera-
ture. This colloid was also stable when stored in the dark at
room temperature.

Colloid characterisation

Multiple batches of these three colloids were assessed by UV-
visible spectroscopy (Thermo BioMate 5; Thermo Fisher
Scientific, Inc., MA, USA), and spectra were very similar to
those we had synthesised previously [15, 17, 24]. Initial SERS
optimisation established that the silver borohydride colloid
and gold citrate colloid did not produce very reproducible
SERS data and thus were abandoned in this investigation.

Electronmicroscopy ofmultiple batches of the silver citrate
colloid using a Zeiss Supra 40 VP field-emission gun scan-
ning electron microscope (FEG-SEM; Carl Zeiss SMT
GmBH, Oberkochen, Germany) operating at a voltage of
1 kV established that we had produced nanoparticles of 70±
30 nm (data not shown).

Raman spectroscopy

As detailed in Alharbi et al. [17], Raman spectra were obtain-
ed using a DeltaNu® Advantage 200A (DeltaNu, Inc.,
Laramie, Wyoming, WY, USA) portable Raman probe. This
probe was equipped with a 633-nm HeNe laser providing
approximately 3 mW of power on the sample. The spectral
range used was 200 to 3400 cm−1 with a spectral resolution of
8 cm−1. All spectra acquired in this study were from 30 s
exposure of the analyte(s)-colloid preparations.

As in our usual practice [17], daily calibration of the instru-
ment was achieved by obtaining the Raman spectrum of poly-
styrene using the calibration routine built into the instrument
manufacture’s software. The spectrometer was controlled
using DeltaNu, NuSpec™ software.

SERS analyses

For SERS measurements, the following protocol was used:
200 μL of either caffeine, theobromine or paraxanthine was

added to 200 μL of the colloid, and the mixture was left for
10 min to equilibrate before the addition of the aggregating
agent (50 μL of 1 mol/dm3 NaCl). Directly after that, these
mixtures were placed into the Raman system, where spectra
were collected using a 633-nm laser and each reading took
30 s.

Where necessary before aggregation, the mixtures were
adjusted to the required pH value by the addition of aqueous
solutions of 1 mol/dm3 acetic acid or 1 mol/dm3 sodium hy-
droxide. One sample of each pH was prepared, five reading
were recorded, and the averages were used in plots of intensity
versus Raman shift recorded for a pH range of 2–12 for the
analytes investigated.

Artificial neural network analysis

Prior to any chemometric analysis, the SERS data were base-
line corrected using an asymmetric least squares (ALS) algo-
rithm and, after which, standard normal variate (SNV) nor-
malisation was applied as detailed in Alharbi et al. [17]. This
and subsequent principal component analysis (PCA) and arti-
ficial neural network (ANN) analyses were carried out in
Matlab version R2014a (The MathWorks, Natick, MA,
USA) as detailed in Alharbi et al. [17].

ANNs are powerful supervised learning methods, and we
used these to predict the concentration levels of caffeine, theo-
bromine and paraxanthine in tertiary mixtures. The output
from SERS spectra consisted of 1024 wavenumber shifts
(from 200 to 3400 cm−1; equally spaced), and these were fed
into the input nodes of the ANNs. We used three layers in our
ANNs. In addition to the 1024 inputs, we have previously
established that 20 nodes in the hidden layer are appropriate
for Raman spectra with this many inputs [17] and so we used
20 nodes in the hidden layer. As also tested in Alharbi et al.
[17], the output layer consisted of (i) a single node, which
model predicted one analyte only and so three 1024-20-1
ANNs were constructed, and (ii) alternatively, three nodes
were used (one for each analyte) and this model predicted
the three analytes simultaneously. All ANNs were calibrated
using the scaled conjugate gradient algorithm, and the ANN
models typically converged after 20–100 epochs; an epoch is
when the total data used to calibrate/train the ANN were pre-
sented before the weights between the hidden layers were
updated.

Validation of supervised methods is vital to test model sta-
bility, and we have employed the following procedure before
[17]. Therefore, in order to test the validity of the ANN
models, a bootstrapping random resampling procedure was
employed. In each bootstrapping iteration, n samples (n=total
number of samples) were randomly selected with replacement
(i.e. one particular sample could be selected multiple times)
and used as the training set. The samples that had not been
selected at all were used as the test set. Within the training sets,
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∼70% of samples were used for training (i.e. the inner training
set) and the remaining ∼30 % of samples from the training
data were used as the validation/tuning set. The regression
model was built on the inner training set. The model parame-
ters that yielded the best prediction accuracy of the validation
set were chosen for the final regression model, and this model
was then applied to the test sets from the bootstrap selections.
A total number of 1000 bootstrapping iterations were per-
formed, and the prediction accuracies of these test set
iterations were then averaged and reported. The prediction
accuracies were presented in terms of validated correlation
coefficient (Q2) and root mean square error of prediction
(RMSEP) as in Eqs. 1 and 2.

Q2 ¼ 1−
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Where ŷi is the predicted relative concentration of
sample i, yi is the actual relative concentration of sam-
ple i, y is the averaged relative concentration of all the
samples in the test set, and n is the total number of
samples in the test.

Results and discussion

SERS optimisation experiments

SERS is a complex process that necessitates that (i) the analyte
under investigation associates with the metal surfaces of the
nanoparticle suspension, (ii) appropriate aggregation occurs
using either salts and/or controlling pH conditions, and (iii)
that this process is reproducible. Thus, rigorous optimisation
of SERS is necessary. Whilst we have explored SERS optimi-
sation for the analysis of individual analytes [12, 13, 15],
when multiple analytes are to be investigated, it is important
that one analyte does not dominate otherwise the others may
not be seen, and the SERS signal can be highly variable [25].
Therefore, we systematically optimised the analyte-sol mix-
ture for each of the analytes (caffeine, theobromine and
paraxanthine) individually before we conducted our tertiary
mixture analysis.

Below, we briefly report the optimisation of the appropriate
colloid, the best aggregating agent and appropriate pH condi-
tions, the aggregation time and also the analyte-sol association
time. Whilst below these appear to be detailed in a specific
order, in reality, this optimisation process occurred simulta-
neously and iteratively.

As described earlier (Section 3.2), we prepared and
characterised (by UV and EM) silver citrate colloids, silver
borohydride colloids and gold citrate colloids. Initial experi-
ments conducted with the three analytes established that silver
borohydride colloids and gold citrate colloids were not very
reproducible; in addition, for silver borohydride colloids, the
SERS spectra were dominated by theobromine and, for gold
citrate colloids, by paraxanthine (data not shown). Therefore,
we only concentrate here on the optimisation process for the
silver citrate colloids. Three separate batches of silver citrate
colloids were prepared to assess batch-to-batch reproducibility
and to select the most reproducible sol.

Each of the three silver citrate colloid batches prepared
were assessed by UV-visible spectroscopy, and batches 2
and 3 showed peak maxima at ca. 430 nm, which indicates
the presence of silver [26]. By contrast, batch 1 had a broader
peak extending from around 420 to 520 nm, indicating a wider
particle size distribution, and this helped explain why this
batch was not so reproducible.

As potassium nitrate and sodium chloride are popular ag-
gregating agents for silver colloids [27], we prepared aqueous
solutions of 0.5 and 1.0 mol/dm3 and these were used for
optimising the aggregating agent with the three analytes. By
comparing repeat aggregations (n=5) of the three analytes
and the SERS spectral reproducibility, we established that
1.0 mol/dm3 NaCl produced the most reproducible results and
therefore was selected as themost appropriate aggregating agent.

Next, we optimised the pH of the analyte-sol suspension as
this is known to affect the propensity for an analyte to associ-
ate with the surface. This is due to the fact that our silver
colloid has citrate on the surface and is thus negatively
charged, and for some analytes, the optimisation of pH is
important to either neutralise the charge or to protonate the
analyte so that it associates with the silver surface [17, 28].
This pH profiling for each of the analytes is shown in Fig. 2
(which is a plot of pH against peak areas for each of the
analytes), and the raw spectra are reported in Electronic
Supplementary Material (ESM) Figs. S1, S2 and S3. For each
pH value, the peak areas of five repeats were averaged and
used in the plots. The peak areas were calculated using trape-
zoidal numerical integration [29] on the baseline-corrected
characteristic peak for each analyte (see below). Each of the
analytes has different profiles: caffeine has an enhanced signal
between pH 6 and 8, paraxanthine needs to be above pH 3 for
maximal signal and theobromine above pH 7. As a suitable
compromise, we therefore selected pH 8 as the optimal pH for
all further experimentation.

The differences in these responses as a function of pH and
the resultant changes in the SERS profiles for each of the
analytes are clearly different (ESM Figs. S1, S2 and S3).
The pKa of the molecule is a good indication of its ionisation
state under different pH conditions: caffeine has a pKa of 10.4,
theobromine’s pKa is 9.9, and paraxanthine has a pKa of 10.8
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(Drug Bank, http://www.drugbank.ca; Human Metabolome
Database, http://www.hmdb.ca). The N–H group in the
pyrimidine ring of theobromine and paraxanthine can be
deprotonated (–N−–) under alkaline conditions, whilst under
acidic conditions, the =N–N can be protonated to =NH+– in
the imidazole ring (and full chemical descriptions of the
molecules are available in http://www.chemicalize.org). This
may go someway to explain the SERS spectra differences that
we observe as this change in ionisation in specific places on
each of the molecules will result in each of the molecules
interacting differently with the negatively charged surface of
the silver nanoparticles. Of course, exactly how that
interaction occurs is currently very different to predict, as
computational approaches, whilst being very good at
predicting Raman spectra are not yet perfected for including
metal particles which are needed to predict SERS spectra.

It is also known that the time for the aggregation to occur is
vital in order to get reproducible SERS. If the aggregation is
dynamic, then quantification is difficult as one must collect
data within a very narrow time window. We therefore collect-
ed data immediately after adding the aggregating agent for
30min, collecting spectra every 30 s. Rather than using visible
inspection of the spectra by eye, we used principal component
analysis (PCA) of the full spectral data set (180 spectra) and
plotted the first two PC scores as these explained the most
variance in these data. For each of the three batches of silver
citrate colloid, we constructed PCA score biplots (ESM
Fig. S4) and it is clear that in batches 1 and 2 there is no effect
on the spectra with respect to time; by contrast, batch 3 shows
spectral changes as a function of time, again highlighting why
it was not so reproducible. This may be because of the wider
particle distribution (vide supra); hence, based on UV-visible
spectroscopy and the PCA score biplots, batches 1 and 3 were

discarded and batch 2 was selected for further optimisation.
From the PCA plot of batch 2 (ESM Fig. S4B), it is clear that
all spectra are identical irrespective of the aggregation time
and, therefore, we chose to take measurements immediately
after the aggregating agent was added.

Finally, the time at which the analyte was allowed to asso-
ciate with the colloid was optimised. Whilst this obviously is
conducted first in the actual order of performing a SERS mea-
surement, we report it here as the above process was of course
performed iteratively to establish the most optimal SERS con-
ditions. The analyte and sol were allowed to associate for up to
60 min prior to aggregation with spectra collected every
5 min. Plots of time versus the peak areas for each of the three
analytes (Fig. 3) established that theobromine and
paraxanthine associated almost instantaneously with the silver
surface, whilst there was slower association for caffeine,
which started to plateau after 10 min. We therefore allowed
the analytes in the tertiary mixture 10min to associate with the
sol prior to aggregation.

Examples of the SERS spectra for the optimised SERS
conditions for each of the analytes are shown in Fig. 4, and
Table 1 provides the tentative band assignments for caffeine,
theobromine and paraxanthine.

SERS analysis of tertiary mixtures

Now that we have established the optimal SERS conditions to
be used, prior to tertiary mixture analysis, we first conducted
serial dilutions of each of the analytes individually to calculate
the working concentration range. Each analyte was diluted
from 10−2 to 10−7 mol/dm3, and five repeats for eachmeasure-
ment were made. Peak areas for the bands at 693 cm−1 from
C=O deformation for caffeine and paraxanthine and
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1303 cm−1 from ν(C–N)+ρ(CH3) for theobromine were cal-
culated. Plots against concentrations of each of the analytes
(ESM Fig. S5) showed reasonable linearity for all analytes
between 10−5 and 10−7 mol/dm3 for theobromine and
paraxanthine and between 10−4 and 10−6 mol/dm3 for caf-
feine, respectively. This higher working range for caffeine is

likely to be due to the slower dynamics of association (ESM
Fig. S4).

Based on the above, we decided to make three-way mix-
tures of the three analytes from 10−5 to 10−7 mol/dm3. The
number of molecules in the reaction was consistently kept to
10−5 mol/dm3 (10 μmol/L), and the preparation of the 66
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dm3) and a 50:40:10 ratio of
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time is 30 s
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mixtures (at ‘10 %’ range intervals) is illustrated in ESM
Table S1. All mixtures were prepared in triplicate. All 198
samples were analysed over a period of 5 days using the fol-
lowing optimised protocol:

& The reaction pH was 8.
& The analyte-silver citrate colloid association time was

10 min.
& 1.0 mol/dm3 NaCl aggregating agent was used and

vortexed for 10 s.
& SERS spectra were collected immediately at 633 nm with

∼3 mW power on the sample.

ANN mixture modelling

Prior to any neural network modelling, the SERS data were
baseline corrected using an ALS smoothing algorithm tech-
nique after which SNV was performed [17].

As neural networks are a supervised learning method, it is
important that they are not over trained. That is to say, they
have learnt the training data too perfectly and are not able to
generalise to an independent test set. In order to assess the
ability of ANNs to predict the concentrations of the three
analytes, we performed bootstrap validation and all the data
generated here are the results from 1000 test sets.

Table 1 Tentative band
assignment for SERS spectra of
caffeine, theobromine and
paraxanthine

Raman shift (cm−1) Assignment

Caffeine and paraxanthine 509 N–C–C deformation (1)

650 O=C–N deformation (1)

693 C=O deformation (1)

1006 N–CH3 asymmetric stretch (1)

1247 C–N stretch (1)

1450 δ(CH3)
(2)

1672 Unassigned

2953 ν(CH3)
(2)

Theobromine 637 δ(pyrimidine, imidazole ring)+δ(CH3)+ρ(CH3)
(3)

1228 δ(CH–N)+ρ(CH3)
(3)

1303 ν(C–N)+ρ(CH3)
(2)

1353 δ(CH–N)+ρ(CH3)
(3)

1413 δ(CH3)
(3)

1603 ν(C=C)+ν(C–N)+δ(CH3)
(3)

–

2953 ν(CH3)
(2)
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Fig. 5 Artificial neural network
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models trained to quantify the
levels of caffeine (a),
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(c). Points are the averages from
the 1000 test set bootstraps, and
error bars show the standard
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We initially calibrated three ANNs with the topology 1024-
20-1 where the input was the total SERS spectra, and we used
20 nodes in the hidden layer and a single output node. The
results for the 1000 bootstrap test sets are shown in Fig. 5. It is
clear that the predicted concentrations versus the actual con-
centrations are very close to the expected y=x line. Indeed, the
ANNs’ ability to predict each of the three analytes are very
good and the statistics from these models (Table 2) shows that
the error in the predictions for theobromine (RMSEP 9×
10−7 mol/dm3) and paraxanthine (1×10−6 mol/dm3) is lower
than that for caffeine (2×10−6 mol/dm3) and that the correla-
tion coefficient for the test sets (Q2) are 0.9 for theobromine
and paraxanthine, and this drops to 0.7 for caffeine. This is
perhaps to be expected, given that caffeine associates with the
surface slower than either theobromine or paraxanthine.

We also conducted additional ANN analyses where the
ANN was calibrated to predict the three analytes simulta-
neously. The network architecture was 1024-20-3 where the
three output nodes were used for caffeine, paraxanthine and
theobromine. It was clear from the statistics on the 1000 boot-
straps (Table 2) that the predictions were not as accurate as the
three individual models, a phenomenon that is routinely seen
with mixture modelling [17, 30].

Concluding remarks

Measuring drugs and their metabolites are important as they
can be used to establish long-term abuse of illicit materials.
This is normally achieved using targeted LC-MS and therefore
involves large expensive equipment and is time consuming
and labour intensive. For remote testing, there is therefore
the need for small portable analytical techniques. In order to
investigate this, we chose the model drug caffeine with its two
major metabolomics theobromine and paraxanthine and se-
lected Raman spectroscopy as the analytical method as it is
reproducible, robust and portable. However, the signal from

the normal Raman scattering process is too weak for this to be
practical. Therefore, we developed colloid-based SERS for
the quantitative analysis of these three analytes in tertiary
mixtures without recourse to prior chromatographic separa-
tion. SERS spectra were obtained using a portable Raman
probe (DeltaNu instrumentation), the multivariate data gener-
ated were analysed with ANNs, and this allowed for the si-
multaneous quantification of the drug caffeine and its
xenometabolites theobromine and paraxanthine. The predic-
tions generated between 10−5 and 10−7 mol/dm3 were excel-
lent for all the three analytes which are easily within the blood
and urine concentrations for caffeine and its major metabolites
(maximum of ca. 0.5–10 μM 1.2 h after coffee consumption
[19]). Future studies will be conducted to extend this to testing
from complex biological matrices, including blood and urine,
where we expect that we shall have to use selective solvent
extraction to recover these pyridine-based chemical species.
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