18 research outputs found

    Sjövärme för 140 småhus i Torsång : mätning och utvärdering /

    Get PDF
    International audienceIn this paper, a newly developed heat and moisture transfer model for green envelopes is integrated in a transient building simulation program (TRNSYS) in order to investigate its dynamic performances coupled with a multizone building code. On the one hand we focus on the understanding of the coupled heat and mass transfers between green envelopes and the building; and on the other hand we study the model accuracy to assess the vegetation impacts together with building design. At first, the model reliability is verified through experimental comparisons during a summer period. Then, the developed simulation tool is used to assess the impacts of green walls on building energy performance. Since this model involves different hygrothermal transfer phenomena, the detailed numerical model results are analyzed to determine the weight of each phenomenon: evapotranspiration, shading effect and additional thermal resistance of green roof or wall. The results highlight the thermal benefits in summer and winter, especially for the west walls. The analysis of the different transfer mechanisms show that the foliage shading reduces the surface temperature variation whereas the evapotranspiration ensures the passive cooling when the water availability is sufficient

    Impacts of green envelopes at the interface between buildings and urban microclimate

    No full text
    Cette étude s’inscrit dans le cadre du projet "ANR-Villes Durables VegDUD : Rôle du végétal dans le développement urbain durable ; une approche par les enjeux liés à la climatologie, l’hydrologie, la maîtrise de l’énergie et les ambiances" (2010-2013). Elle traite de la modélisation et de l’expérimentation de toitures et de façades végétales, en vue de l’évaluation de leurs impacts hygrothermiques sur les bâtiments et sur les microclimats urbains. Un modèle physique a été développé pour décrire les mécanismes de transferts couplés de chaleur et de masse au sein de la paroi végétale. L’implémentation de ce modèle dans un code de simulation thermique dynamique permet de prédire l’impact de la végétalisation sur la performance énergétique des bâtiments. L’extension de cette démarche à l’échelle d’une rue-canyon permet d’inclure l’interaction microclimatique dans la simulation thermohydrique des bâtiments. Sur le plan expérimental, une maquette reconstituant une scène urbaine est mise en place pour étudier l’impact de différentes typologies de parois végétales dans plusieurs configurations microclimatiques. La confrontation des résultats expérimentaux et ceux issus de la modélisation numérique a été entreprise à l’échelle du système constitué du bâtiment et du microclimat urbain environnant. Pour cela, l’étude du comportement d’un bâtiment et d’une rue végétalisés par rapport au comportement du même bâtiment et d’une rue témoins a permis d’évaluer l’incidence des transferts thermiques, hygrométriques et radiatifs de la végétalisation. Ceci a permis d’entreprendre la validation des outils de prédiction numérique développés. Les résultats de l’étude montrent que les transferts thermiques et hydriques sont fortement couplés et que le comportement thermique des parois végétales est tributaire de l’état hydrique du substrat de culture. Pour l’été comme pour l’hiver, les simulations numériques et les données expérimentales montrent que la végétalisation permet d’améliorer la performance énergétique des bâtiments et de réduire les îlots de chaleur urbains.This study was conducted in the framework of the National Program "ANR-VegDUD Project : Role of vegetation in sustainable urban development, an approach related to climatology, hydrology, energy management and environments" (2010 -2013). It deals with the experimental and numerical modeling of green roofs and green facades to evaluate their thermohydric effects on buildings and urban microclimates. A physical model describing the thermal and water transfer mechanisms within the vegetated building envelopes has been developed. The model’s program has been implemented in a building simulation program. Using this tool, we are able to predict the impact of green roofs and green facades on building energy performance. This approach is extended to the street canyon in order to assess the microclimatic interaction in building simulation. An experimental mockup modeling an urban scene at reduced scale is designed to study the impact of different types of green roofs and walls. The comparison of the measurements carried out on vegetated buildings and streets with the reference highlights the hygrothermal and radiative impacts of vegetated buildings envelopes. In addition, these experimental data are used to verify and validate the reliability of developed tools. The results show that thermal and water transfers are strongly coupled. Hence, the thermal behavior of green roofs and green walls depend on the water availability within the growing medium. In summer and winter, measurements and numerical simulations show that green envelopes improve the energy efficiency of buildings and reduce the urban heat island

    Impacts des enveloppes végétales à l’interface bâtiment microclimat urbain

    No full text
    This study was conducted in the framework of the National Program "ANR-VegDUD Project : Role of vegetation in sustainable urban development, an approach related to climatology, hydrology, energy management and environments" (2010 -2013). It deals with the experimental and numerical modeling of green roofs and green facades to evaluate their thermohydric effects on buildings and urban microclimates. A physical model describing the thermal and water transfer mechanisms within the vegetated building envelopes has been developed. The model’s program has been implemented in a building simulation program. Using this tool, we are able to predict the impact of green roofs and green facades on building energy performance. This approach is extended to the street canyon in order to assess the microclimatic interaction in building simulation. An experimental mockup modeling an urban scene at reduced scale is designed to study the impact of different types of green roofs and walls. The comparison of the measurements carried out on vegetated buildings and streets with the reference highlights the hygrothermal and radiative impacts of vegetated buildings envelopes. In addition, these experimental data are used to verify and validate the reliability of developed tools. The results show that thermal and water transfers are strongly coupled. Hence, the thermal behavior of green roofs and green walls depend on the water availability within the growing medium. In summer and winter, measurements and numerical simulations show that green envelopes improve the energy efficiency of buildings and reduce the urban heat island.Cette étude s’inscrit dans le cadre du projet "ANR-Villes Durables VegDUD : Rôle du végétal dans le développement urbain durable ; une approche par les enjeux liés à la climatologie, l’hydrologie, la maîtrise de l’énergie et les ambiances" (2010-2013). Elle traite de la modélisation et de l’expérimentation de toitures et de façades végétales, en vue de l’évaluation de leurs impacts hygrothermiques sur les bâtiments et sur les microclimats urbains. Un modèle physique a été développé pour décrire les mécanismes de transferts couplés de chaleur et de masse au sein de la paroi végétale. L’implémentation de ce modèle dans un code de simulation thermique dynamique permet de prédire l’impact de la végétalisation sur la performance énergétique des bâtiments. L’extension de cette démarche à l’échelle d’une rue-canyon permet d’inclure l’interaction microclimatique dans la simulation thermohydrique des bâtiments. Sur le plan expérimental, une maquette reconstituant une scène urbaine est mise en place pour étudier l’impact de différentes typologies de parois végétales dans plusieurs configurations microclimatiques. La confrontation des résultats expérimentaux et ceux issus de la modélisation numérique a été entreprise à l’échelle du système constitué du bâtiment et du microclimat urbain environnant. Pour cela, l’étude du comportement d’un bâtiment et d’une rue végétalisés par rapport au comportement du même bâtiment et d’une rue témoins a permis d’évaluer l’incidence des transferts thermiques, hygrométriques et radiatifs de la végétalisation. Ceci a permis d’entreprendre la validation des outils de prédiction numérique développés. Les résultats de l’étude montrent que les transferts thermiques et hydriques sont fortement couplés et que le comportement thermique des parois végétales est tributaire de l’état hydrique du substrat de culture. Pour l’été comme pour l’hiver, les simulations numériques et les données expérimentales montrent que la végétalisation permet d’améliorer la performance énergétique des bâtiments et de réduire les îlots de chaleur urbains

    Experimental Study of a Green Wall System Effects in Urban Canyon Scene

    No full text
    International audienc

    Numerical Study for the Evaluation of the Effectiveness and Benefits of Using Photovoltaic-Thermal (PV/T) System for Hot Water and Electricity Production under a Tropical African Climate: Case of Comoros

    No full text
    Several rural regions located in Africa are experiencing recurrent and even permanent problems in terms of energy production, supply, and distribution to citizens. This study was conducted to investigate the relevance of the use of a new solar technology that is gradually responding in Europe and in industrialized countries. It is about the use of hybrid photovoltaic thermal (PV/T) solar panels that co-produce electricity and hot water for local use. Furthermore, in Africa, local use of solar energy can provide a share in the energy mix. This work is motivated by the lack of studies on these hybrid solar panels in tropical climates. Hence, the paper examines the potential for integration of these systems in small households. A complete PV/T system consisting of solar panels, pump, storage tank, batteries, and controllers was tested and calibrated by using the TRNSYS simulation tool. A comparative study could thus be carried out for the performance of PV/T in a tropical climate (case of the city of Koua in the Comoros) to its performance in Mediterranean and continental climates (Marseille in the south and Longwy in the northeast of France). The results quantify the performance of the PV/T in the three climates and show that the performance in the town of Koua is 44% to 54% higher than in European climates. It can be concluded from this study that the Comorian market and more generally the sub-Saharan market for PVT systems has a good potential for development
    corecore