24,335 research outputs found

    String-derived renormalization of Yang-Mills theory

    Get PDF
    We review the application of bosonic string techniques to the calculation of renormalization constants and effective actions in Yang-Mills theory. We display the multiloop string formulas needed to compute Yang-Mills amplitudes, and we discuss how the renormalizations of proper vertices can be extracted in the field theory limit. We show how string techniques lead to the background field method in field theory, and indicate how the gauge invariance of the multiloop effective action can be inferred form the string formalism. (Proceedings of the 29th International Symposium on the Theory of Elementary Particles, Buckow (Germany), Aug.-Sept. 1995. Preprint DFTT 04/96)Comment: 11 pages. Latex, uses espcrc2.sty. Proceedings Buckow '9

    Intrinsic colors and ages of extremely red elliptical galaxies at high redshift

    Full text link
    In order to know the formation epoch of the oldest elliptical galaxies as a function of mass and observed redshift, a statistical analysis for 333 extremely red objects (EROs) classified as old galaxies (OGs) at 0.8<z<2.3 is carried out. Once we get M_V and (B-V) at rest for each galaxy, we calculate the average variation of this intrinsic color with redshift and derive the average age through a synthesis model (the code for the calculation of the age has been made publicly available). The average gradient of the (B-V) color at rest of EROs/OGs is 0.07-0.10 Gyr^{-1} for a fixed luminosity. The stars in these extremely red elliptical galaxies were formed when the Universe was ~2 Gyr old on average. We have not found a significant enough dependence on the observed redshift and stellar mass: dt_{formation}/dt_{observed}=-0.46+/-0.32, dt_{formation}/(d log_10 M_*)=-0.81+/-0.98 Gyr. This fits a scenario in which the stellar formation of the objects that we denominate as EROs-OGs is more intense at higher redshifts, at which the stellar populations of the most massive galaxies form earlier than or at the same time as less massive galaxies.Comment: accepted to be published in A

    String techniques for the calculation of renormalization constants in field theory

    Get PDF
    We describe a set of methods to calculate gauge theory renormalization constants from string theory, all based on a consistent prescription to continue off shell open bosonic string amplitudes. We prove the consistency of our prescription by explicitly evaluating the renormalizations of the two, three and four-gluon amplitudes, and showing that they obey the appropriate Ward identities. The field theory limit thus performed corresponds to the background field method in Feynman gauge. We identify precisely the regions in string moduli space that correspond to different classes of Feynman diagrams, and in particular we show how to isolate contributions to the effective action. Ultraviolet divergent terms are then encoded in a single string integral over the modular parameter Ď„\tau. Finally, we derive a multiloop expression for the effective action by computing the partition function of an open bosonic string interacting with an external non-abelian background gauge field.Comment: 54 pages, Latex, uses FEYNMAN.te

    Local polynomial regression for circular predictors

    No full text
    We consider local smoothing of datasets where the design space is the d-dimensional (d >= 1) torus and the response variable is real-valued. Our purpose is to extend least squares local polynomial fitting to this situation. We give both theoretical and empirical results

    Many-Electron Systems with Constrained Current

    Full text link
    A formulation for transport in an inhomogeneous, interacting electron gas is described. Electronic current is induced by a constraint condition imposed as a vector Lagrange multiplier. Constrained minimization of the total energy functional on the manifold of an arbitrary constant current leads to a many-electron Schroedinger equation with a complex, momentum-dependent potential. Constant current Hartree-Fock and Kohn-Sham approximations are formulated within the method and application to transport for quantum wires is developed. No appeal is made to near equilibrium conditions or other approximations allowing development of a general ab initio electronic transport formulation

    On boosting kernel regression

    No full text
    In this paper we propose a simple multistep regression smoother which is constructed in an iterative manner, by learning the Nadaraya-Watson estimator with L-2 boosting. We find, in both theoretical analysis and simulation experiments, that the bias converges exponentially fast. and the variance diverges exponentially slow. The first boosting step is analysed in more detail, giving asymptotic expressions as functions of the smoothing parameter, and relationships with previous work are explored. Practical performance is illustrated by both simulated and real data

    Searching for pulsed emission from XTE J0929-314 at high radio frequencies

    Full text link
    The aim of this work is to search for radio signals in the quiescent phase of accreting millisecond X-ray pulsars, in this way giving an ultimate proof of the recycling model, thereby unambiguously establishing that accreting millisecond X-ray pulsars are the progenitors of radio millisecond pulsars. To overcome the possible free-free absorption caused by matter surrounding accreting millisecond X-ray pulsars in their quiescence phase, we performed the observations at high frequencies. Making use of particularly precise orbital and spin parameters obtained from X-ray observations, we carried out a deep search for radio-pulsed emission from the accreting millisecond X-ray pulsar XTE J0929-314 in three steps, correcting for the effect of the dispersion due to the interstellar medium, eliminating the orbital motions effects, and finally folding the time series. No radio pulsation is present in the analyzed data down to a limit of 68 microJy at 6.4 GHz and 26 microJy at 8.5 GHz. We discuss several mechanisms that could prevent the detection, concluding that beaming factor and intrinsic low luminosity are the most likely explanations.Comment: 7 pages, 4 figures. Accepted for publication in Astronomy & Astrophysic

    Current-Voltage Curves for Molecular Junctions Computed Using All-Electron Basis Sets

    Full text link
    We present current-voltage (I-V) curves computed using all-electron basis sets on the conducting molecule. The all-electron results are very similar to previous results obtained using effective core potentials (ECP). A hybrid integration scheme is used that keeps the all-electron calculations cost competitive with respect to the ECP calculations. By neglecting the coupling of states to the contacts below a fixed energy cutoff, the density matrix for the core electrons can be evaluated analytically. The full density matrix is formed by adding this core contribution to the valence part that is evaluated numerically. Expanding the definition of the core in the all-electron calculations significantly reduces the computational effort and, up to biases of about 2 V, the results are very similar to those obtained using more rigorous approaches. The convergence of the I-V curves and transmission coefficients with respect to basis set is discussed. The addition of diffuse functions is critical in approaching basis set completeness

    Kernel density estimation on the torus

    No full text
    Kernel density estimation for multivariate, circular data has been formulated only when the sample space is the sphere, but theory for the torus would also be useful. For data lying on a d-dimensional torus (d >= 1), we discuss kernel estimation of a density, its mixed partial derivatives, and their squared functionals. We introduce a specific class of product kernels whose order is suitably defined in such a way to obtain L-2-risk formulas whose structure can be compared to their Euclidean counterparts. Our kernels are based on circular densities; however, we also discuss smaller bias estimation involving negative kernels which are functions of circular densities. Practical rules for selecting the smoothing degree, based on cross-validation, bootstrap and plug-in ideas are derived. Moreover, we provide specific results on the use of kernels based on the von Mises density. Finally, real-data examples and simulation studies illustrate the findings
    • …
    corecore