834 research outputs found

    CALDER - Neutrinoless double-beta decay identification in TeO2_2 bolometers with kinetic inductance detectors

    Get PDF
    Next-generation experiments searching for neutrinoless double-beta decay must be sensitive to a Majorana neutrino mass as low as 10 meV. CUORE, an array of 988 TeO2_2 bolometers being commissioned at Laboratori Nazionali del Gran Sasso in Italy, features an expected sensitivity of 50-130 meV at 90% C.L, that can be improved by removing the background from α\alpha radioactivity. This is possible if, in coincidence with the heat release in a bolometer, the Cherenkov light emitted by the β\beta signal is detected. The amount of light detected is so far limited to only 100 eV, requiring low-noise cryogenic light detectors. The CALDER project (Cryogenic wide-Area Light Detectors with Excellent Resolution) aims at developing a small prototype experiment consisting of TeO2_2 bolometers coupled to new light detectors based on kinetic inductance detectors. The R&D is focused on the light detectors that could be implemented in a next-generation neutrinoless double-beta decay experiment.Comment: 8 pages, 3 figures, added reference to first result

    Selective HCN1 block as a strategy to control oxaliplatin-induced neuropathy

    Get PDF
    Chemotherapy-Induced Peripheral Neuropathy (CIPN) is the most frequent adverse effect of pharmacological cancer treatments. The occurrence of neuropathy prevents the administration of fully-effective drug regimen, affects negatively the quality of life of patients, and may lead to therapy discontinuation. CIPN is currently treated with anticonvulsants, antidepressants, opioids and non-opioid analgesics, all of which are flawed by insufficient anti-hyperalgesic efficacy or addictive potential. Understandably, developing new drugs targeting CIPN-specific pathogenic mechanisms would dramatically improve efficacy and tolerability of anti-neuropathic therapies. Neuropathies are associated to aberrant excitability of DRG neurons due to the alteration in the expression or function of a variety of ion channels. In this regard, Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channels are overexpressed in inflammatory and neuropathic pain states, and HCN blockers have been shown to reduce neuronal excitability and to ameliorate painful states in animal models. However, HCN channels are critical in cardiac action potential, and HCN blockers used so far in pre-clinical models do not discriminate between cardiac and non-cardiac HCN isoforms. In this work, we show an HCN current gain of function in DRG neurons from oxaliplatin-treated rats. Biochemically, we observed a downregulation of HCN2 expression and an upregulation of the HCN regulatory beta-subunit MirP1. Finally, we report the efficacy of the selective HCN1 inhibitor MEL57A in reducing hyperalgesia and allodynia in oxaliplatin-treated rats without cardiac effects. In conclusion, this study strengthens the evidence for a disease-specific role of HCN1 in CIPN, and proposes HCN1-selective inhibitors as new-generation pain medications with the desired efficacy and safety profile

    Measuring CMB Polarization with BOOMERANG

    Full text link
    BOOMERANG is a balloon-borne telescope designed for long duration (LDB) flights around Antarctica. The second LDB Flight of BOOMERANG took place in January 2003. The primary goal of this flight was to measure the polarization of the CMB. The receiver uses polarization sensitive bolometers at 145 GHz. Polarizing grids provide polarization sensitivity at 245 and 345 GHz. We describe the BOOMERANG telescope noting changes made for 2003 LDB flight, and discuss some of the issues involved in the measurement of polarization with bolometers. Lastly, we report on the 2003 flight and provide an estimate of the expected results.Comment: 12 pages, 8 figures, To be published in the proceedings of "The Cosmic Microwave Background and its Polarization", New Astronomy Reviews, (eds. S. Hanany and K.A. Olive). Fixed typos, and reformatted citation

    Five-year retrospective italian multicenter study of visceral leishmaniasis treatment

    Get PDF
    The treatment of visceral leishmaniasis (VL) is poorly standardized in Italy in spite of the existing evidence. All consecutive patients with VL admitted at 15 Italian centers as inpatients or outpatients between January 2004 and December 2008 were retrospectively considered; outcome data at 1 year after treatment were obtained for all but 1 patient. Demographic characteristics, underlying diseases, diagnostic procedures, treatment regimens and outcomes, as well as side effects were recorded. A confirmed diagnosis of VL was reported for 166 patients: 120 (72.3%) immunocompetent, 21 (12.6%) patients with immune deficiencies other than HIV infection, and 25 (15.1%) coinfected with HIV. Liposomal amphotericin B (L-AmB) was the drug almost universally used for treatment, administered to 153 (92.2%) patients. Thirty-seven different regimens, including L-AmB were used. The mean doses were 29.4 \ub1 7.9 mg/kg in immunocompetent patients, 32.9 \ub1 8.6 mg/kg in patients with non-HIV-related immunodeficiencies, and 40.8 \ub1 6.7 mg/kg in HIV-infected patients (P < 0.001). The mean numbers of infusion days were 7.8 \ub1 3.1 in immunocompetent patients, 9.6 \ub1 3.9 in non-HIV-immunodeficient patients, and 12.0 \ub1 3.4 in HIV-infected patients (P < 0.001). Mild and reversible adverse events were observed in 12.2% of cases. Responsive patients were 154 (93.3%). Successes were 98.4% among immunocompetent patients, 90.5% among non-HIV-immunodeficient patients, and 72.0% among HIV-infected patients. Among predictors of primary response to treatment, HIV infection and age held independent associations in the final multivariate models, whereas the doses and duration of L-AmB treatment were not significantly associated. Longer treatments and higher doses of L-AmB were not able to significantly modify treatment outcomes either in the immunocompetent or in the immunocompromised population

    Subdegree Sunyaev-Zel'dovich Signal from Multifrequency BOOMERanG observations

    Get PDF
    The Sunyaev-Zel'dovich (SZ) effect is the inverse Compton-scattering of cosmic microwave background (CMB) photons by hot electrons in the intervening gas throughout the universe. The effect has a distinct spectral signature that allows its separation from other signals in multifrequency CMB datasets. Using CMB anisotropies measured at three frequencies by the BOOMERanG 2003 flight we constrain SZ fluctuations in the 10 arcmin to 1 deg angular range. Propagating errors and potential systematic effects through simulations, we obtain an overall upper limit of 15.3 uK (2 sigma) for rms SZ fluctuations in a broad bin between multipoles of of 250 and 1200 at the Rayleigh-Jeans (RJ) end of the spectrum. When combined with other CMB anisotropy and SZ measurements, we find that the local universe normalization of the density perturbations is sigma-8(SZ) < 0.96 at the 95% confidence level, consistent with sigma-8 determined from primordial perturbations.Comment: accepted for publication in ApJ. Letter

    Cosmological Parameters from the 2003 flight of BOOMERANG

    Full text link
    We present the cosmological parameters from the CMB intensity and polarization power spectra of the 2003 Antarctic flight of the BOOMERANG telescope. The BOOMERANG data alone constrains the parameters of the Λ\LambdaCDM model remarkably well and is consistent with constraints from a multi-experiment combined CMB data set. We add LSS data from the 2dF and SDSS redshift surveys to the combined CMB data set and test several extensions to the standard model including: running of the spectral index, curvature, tensor modes, the effect of massive neutrinos, and an effective equation of state for dark energy. We also include an analysis of constraints to a model which allows a CDM isocurvature admixture.Comment: 18 pages, 10 figures, submitted to Ap
    • …
    corecore