1,859 research outputs found

    A study of stability analysis of pyroclastic covers based on electrical resistivity measurements

    Full text link
    Usually, the degree of stability of a slope is quantified by the Factor of Safety whose values depend on physical and mechanical soil properties analyzed on samples of much reduced sizes or referring to very small soil volumes around porous probes. To overcome the limit of punctual information, we propose a semi-empirical approach based on the use of geophysical methods and the employment of a geophysical Factor of Safety recently introduced by the authors in terms of local resistivities and slope angles. In this paper, we show an application of our proposal on a test area of about 2000 m2 on Sarno Mountains (Campania Region - Southern Italy), where shallow landslides involving pyroclastic soils periodically occur triggered by critical rainfall events. Starting from two resistivity tomography surveys performed on the test area in autumn and spring, we obtained maps of the geophysical Factor of Safety at different depths for the two seasons. We also estimated the values of the Factor of Safety by using the infinite slope model in the dry and saturated scenario. A comparison between the values of the geophysical and geotechnical Factor of Safety shows advantages and disadvantages of our approach.Comment: 16 pages, 5 figure

    A Study of the Correlation Between Electrical Resistivity and Matric Suction for Unsaturated Ash-Fall Pyroclastic Soils in the Campania Region (Southern Italy)

    Full text link
    In the territory of the Campania region (southern Italy), critical rainfall events periodically trigger dangerous fast slope movements involving ashy and pyroclastic soils originated by the explosive phases of the Mt. Somma-Vesuvius volcano and deposited along the surrounding mountain ranges. In this paper, an integration of engineering-geological and geophysical measurements is presented to characterize unsaturated pyroclastic samples collected in a test area on the Sarno Mountains (Salerno and Avellino provinces, Campania region). The laboratory analyses were aimed at defining both soil water retention and electrical resistivity curves versus water content. From the matching of the experimental data, a direct relationship between electrical resistivity and matric suction is retrieved for the investigated soil horizons typical of a ash-fall pyroclastic succession. The obtained relation turns out to be helpful in characterizing soils up to close saturation, which is a critical condition for the trigger of slope failure. In such a regime, the water content and the matric suction have small variations, while electrical resistivity variations can be appreciated in a larger range of values. For this reason, besides suction measurements on very small soil volumes through classical tensiometers, our analyses suggest the direct monitoring of in-situ electrical resistivity values as an effective tool to recognise the hydrological state of larger and more representative soil volumes and to improve early warning of dangerous slope movements.Comment: 23 pages, 10 figures, 2 table

    Some new insights in swelling and swelling pressure of low active clay

    Get PDF
    This paper presents a multidimensional chemo-mechanical model for saturated clay treated as a two-phase deformable and chemically reactive porous medium. The constitutive relation is an extension of the original chemo-mechanical model proposed by Gajo et al. (2002) and Loret et al. (2002), in which a q-p formulation was proposed with a Cam-Clay-like elastic response. A novel hyper-elastic law is proposed in which shear stiffness and bulk stiffness change with stress state and ion concentration in pore solution. The proposed constitutive model and the associated coupled finite element formulation are implemented in a 2D, commercial, finite element code (ABAQUS) in the form of user-defined external subroutines. The proposed framework is used to simulate the oedometer tests performed on a low activity clay extracted from Costa della Gaveta slope. The computed chemo mechanical behaviour of the material prepared with distilled water is compared with the experimental results obtained from reconstituted specimens. Moreover, swelling and swelling pressure are computed for the overconsolidated material reconstituted with 1 M NaCl solution and then exposed to distilled water. The comparison of simulations and experiments shows a good agreement

    Feasibility to Use Continuous Magnetotelluric Observations for Monitoring Hydrothermal Activity. Numerical Modeling Applied to Campi Flegrei Volcanic System (Southern Italy)

    Get PDF
    The magnetotelluric (MT) method is useful for monitoring geophysical processes because of a large dynamic depth range. In this paper, a feasibility study of employing continuous MT observations to monitor hydrothermal systems for both volcanic hazard assessment and geothermal energy exploitation is presented. Sensitivity of the MT method has been studied by simulating spatial and temporal evolution of temperature and gas saturation distributions in a hydrothermal system, and by calculating the MT response at different time steps. Two possible scenarios have been considered: the first is related to an increase in the fluid flow rate at the system source, the second is associated to an increase in the permeability of the rocks hosting the hydrothermal system. Numerical simulations have been performed for each scenario, and the sensitivity of the MT monitoring has been analyzed by evaluating the time interval needed to observe significant variations in the MT response. This study has been applied to the hydrothermal system of the Campi Flegrei (CF; Southern Italy) and it has shown that continuous MT measurements are not sensitive enough to detect a significant increase in the source fluid flow rate over time intervals less than 10 years. On the contrary, if the permeability of the upwelling zone increases, a measurable change in the MT response occurs over a time interval ranging from 6 months to 3 years, depending on the extent of the permeability increase. Such findings are promising and suggest that continuous MT observations in active volcanic areas can be useful for imaging volcano–hydrothermal system activity

    Statistical moments of power spectrum: a fast tool for the classification of seismic events recorded on volcanoes

    Get PDF
    Abstract. Spectral analysis has been applied to almost thousand seismic events recorded at Vesuvius volcano (Naples, southern Italy) in 2018 with the aim to test a new tool for a fast event classification. We computed two spectral parameters, central frequency and shape factor, from the spectral moments of order 0, 1, and 2, for each event at seven seismic stations taking the mean among the three components of ground motion. The analyzed events consist of volcano-tectonic earthquakes, low frequency events and unclassified events (landslides, rockfall, thunders, quarry blasts, etc.). Most of them are of low magnitude, and/or low maximum signal amplitude, therefore the signal to noise ratio is very different between the low noise summit stations and the higher noise stations installed at low elevation around the volcano. The results of our analysis show that volcano-tectonic earthquakes and low frequency events are easily distinguishable through the spectral moments values, particularly at seismic stations closer to the epicenter. On the contrary, unclassified events show the spectral parameters values distributed in a broad range which overlap both the volcano-tectonic earthquakes and the low frequency events. Since the computation of spectral parameters is extremely easy and fast for a detected event, it may become an effective tool for event classification in observatory practice

    Predictivity of clinical, laboratory and imaging findings in diagnostic definition of palpable thyroid nodules. A multicenter prospective study

    Get PDF
    Abstract PURPOSE: To assess the role of clinical, biochemical, and morphological parameters, as added to cytology, for improving pre-surgical diagnosis of palpable thyroid nodules. METHODS: Patients with a palpable thyroid nodule were eligible if surgical intervention was indicated after a positive or suspicious for malignancy FNAC (TIR 4-5 according to the 2007 Italian SIAPEC-IAP classification), or two inconclusive FNAC at a 653 months interval, or a negative FNAC associated with one or more risk factor. Reference standard was histological malignancy diagnosis. Likelihood ratios of malignancy, sensitivity, specificity, negative (NPV), and positive predictive value (PPV) were described. Multiple correspondence analysis (MCA) and logistic regression were applied. RESULTS: Cancer was found in 433/902 (48%) patients. Considering TIR4-5 only as positive cytology, specificity, and PPV were high (94 and 91%) but sensitivity and NPV were low (61 and 72%); conversely, including TIR3 among positive, sensitivity and NPV were higher (88 and 82%) while specificity and PPV decreased (52 and 63%). Ultrasonographic size 653\u2009cm was independently associated with benignity among TIR2 cases (OR of malignancy 0.37, 95% CI 0.18-0.78). In TIR3 cases the hard consistency of small nodules was associated with malignity (OR: 3.51, 95% CI 1.84-6.70, p\u2009<\u20090.001), while size alone, irrespective of consistency, was not diagnostically informative. No other significant association was found in TIR2 and TIR3. CONCLUSIONS: The combination of cytology with clinical and ultrasonographic parameters may improve diagnostic definition of palpable thyroid nodules. However, the need for innovative diagnostic tools is still high

    Serafino Zappacosta: An Enlightened Mentor and Educator

    Get PDF
    With this article, the authors aim to honor the memory of Serafino Zappacosta, who had been their mentor during the early years of their career in science. The authors discuss how the combination of Serafino Zappacosta's extraordinary commitment to teaching and passion for science created a fostering educational environment that led to the creation of the “Ruggero Ceppellini Advanced School of Immunology.” The review also illustrates how the research on the MHC and the inspirational scientific context in the Zappacosta's laboratory influenced the authors' early scientific interests, and subsequent professional work as immunologists

    Abnormal RasGRP1 Expression in the Post-Mortem Brain and Blood Serum of Schizophrenia Patients

    Get PDF
    Schizophrenia (SCZ) is a polygenic severe mental illness. Genome-wide association studies (GWAS) have detected genomic variants associated with this psychiatric disorder and pathway analyses have indicated immune system and dopamine signaling as core components of risk in dorsolateral-prefrontal cortex (DLPFC) and hippocampus, but the mechanistic links remain unknown. The RasGRP1 gene, encoding for a guanine nucleotide exchange factor, is implicated in dopamine signaling and immune response. RasGRP1 has been identified as a candidate risk gene for SCZ and autoimmune disease, therefore representing a possible point of convergence between mechanisms involving the nervous and the immune system. Here, we investigated RasGRP1 mRNA and protein expression in post-mortem DLPFC and hippocampus of SCZ patients and healthy controls, along with RasGRP1 protein content in the serum of an independent cohort of SCZ patients and control subjects. Differences in RasGRP1 expression between SCZ patients and controls were detected both in DLPFC and peripheral blood of samples analyzed. Our results indicate RasGRP1 may mediate risk for SCZ by involving DLPFC and peripheral blood, thus encouraging further studies to explore its possible role as a biomarker of the disease and/or a target for new medication

    Abnormal RasGRP1 Expression in the Post-Mortem Brain and Blood Serum of Schizophrenia Patients

    Get PDF
    Schizophrenia (SCZ) is a polygenic severe mental illness. Genome-wide association studies (GWAS) have detected genomic variants associated with this psychiatric disorder and pathway analyses have indicated immune system and dopamine signaling as core components of risk in dorsolateral-prefrontal cortex (DLPFC) and hippocampus, but the mechanistic links remain unknown. The RasGRP1 gene, encoding for a guanine nucleotide exchange factor, is implicated in dopamine signaling and immune response. RasGRP1 has been identified as a candidate risk gene for SCZ and autoimmune disease, therefore representing a possible point of convergence between mechanisms involving the nervous and the immune system. Here, we investigated RasGRP1 mRNA and protein expression in post-mortem DLPFC and hippocampus of SCZ patients and healthy controls, along with RasGRP1 protein content in the serum of an independent cohort of SCZ patients and control subjects. Differences in RasGRP1 expression between SCZ patients and controls were detected both in DLPFC and peripheral blood of samples analyzed. Our results indicate RasGRP1 may mediate risk for SCZ by involving DLPFC and peripheral blood, thus encouraging further studies to explore its possible role as a biomarker of the disease and/or a target for new medication
    • …
    corecore