142 research outputs found
The Development of the Vascular System in Quail Embryos: A Combination of Microvascular Corrosion Casts and Immunohistochemical Identification
Although vascular casts, obtained by injection with methacrylates, are frequently used to investigate the adult vascular system, little data are available for embryonic stages. In this paper we use MercoxR in quail embryos in the period of 2 to 7 days after incubation. The microvascular corrosion casts were evaluated in the scanning electron microscope (SEM) with special attention to the development and remodelling of the large arteries and veins. Our results show that the remodelling of the large arteries and veins together with their developing tributary vessels can be visualized from very early embryonic stages onwards. However, complete replication of a developing vascular system depends on diameter and regularity of the lumen. In the stages investigated, the vascular lumen, even of the largest vessels, is still very irregular. Detailed cellular characteristics like nuclear impressions of endothelial cells, as often seen in adult material, were seldom found in the embryos. To examine whether blind-ending sprouts are completely or incompletely replicated in a developing vascular system, additional series of quail embryos were stained immunohistochemically with a monoclonal antibody (MB1) specific for endothelial and hemopoietic cells. It seems that a plexus consisting of endothelial precursors (endothelial cells lacking a lumen) is present in the developing organ before the formation of a lumen and assembly into vessels, which are connected to an adjacent artery or vein. Expansion of the vascular system may in part be due to incorporation of these endothelial precursors in the wall of existing vessels
Radiofrequency-induced thermotherapy of nasopharyngeal angiofibroma and immunohistochemical analysis of vessel proliferation: a case report
<p>Abstract</p> <p>Introduction</p> <p>Nasopharyngeal angiofibroma presents with symptoms of nasal obstruction and epistaxis. The treatment of choice is embolization followed by surgery.</p> <p>Case presentation</p> <p>A 52-year-old man underwent surgery for nasopharyngeal angiofibroma after adjuvant radiofrequency-induced thermotherapy. To the best of the authors' knowledge, this is the first case of angiofibroma with clinical follow-up after thermocoagulation therapy supported by quantitative, double immunohistochemistry. We found this case of angiofibroma to be of interest owing to the presentation of symptoms leading to biopsy, the pathohistological observations obtained with synchronous Ki67/cluster of differentiation 34 and Ki67/smooth muscle actin immunohistochemistry and high pericyte proliferation.</p> <p>Conclusion</p> <p>Coagulation of angiofibroma vessels followed by acquisition of a thick mantle of pericytes in a patient with a nasopharyngeal growth suggests that radiofrequency-induced thermotherapy could be a useful, palliative therapy for bleeding nasopharyngeal angiofibroma, supporting vessel maturation prior to surgical tumor removal.</p
Modeling acoustic propagation of airgun array pulses recorded on tagged sperm whales (Physeter macrocephalus)
Author Posting. © Acoustical Society of America, 2006. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 120 (2006): 4100-4114, doi:10.1121/1.2359705.In 2002 and 2003, tagged sperm whales (Physeter macrocephalus) were experimentally exposed to airgun pulses in the Gulf of Mexico, with the tags providing acoustic recordings at measured ranges and depths. Ray trace and parabolic equation (PE) models provided information about sound propagation paths and accurately predicted time of arrival differences between multipath arrivals. With adequate environmental information, a broadband acoustic PE model predicted the relative levels of multipath arrivals recorded on the tagged whales. However, lack of array source signature data limited modeling of absolute received levels. Airguns produce energy primarily below 250 Hz, with spectrum levels about 20–40 dB lower at 1 kHz. Some arrivals recorded near the surface in 2002 had energy predominantly above 500 Hz; a surface duct in the 2002 sound speed profile helps explain this effect, and the beampattern of the source array also indicates an increased proportion of high-frequency sound at near-horizontal launch angles. These findings indicate that airguns sometimes expose animals to measurable sound energy above 250 Hz, and demonstrate the influences of source and environmental parameters on characteristics of received airgun pulses. The study also illustrates that on-axis source levels and simple geometric spreading inadequately describe airgun pulse propagation and the extent of exposure zones.Funding for this work was provided by the Office of Naval
Research, the U.S. Department of the Interior Minerals Management
Service Cooperative Agreements Nos. 1435-01-02-
CA-85186 and NA87RJ0445, and the Industry Research
Funding Coalition. S.L.D.R. was supported by a National
Science Foundation Graduate Research Fellowship
Dynamic Analysis of Vascular Morphogenesis Using Transgenic Quail Embryos
Background: One of the least understood and most central questions confronting biologists is how initially simple clusters or sheet-like cell collectives can assemble into highly complex three-dimensional functional tissues and organs. Due to the limits of oxygen diffusion, blood vessels are an essential and ubiquitous presence in all amniote tissues and organs. Vasculogenesis, the de novo self-assembly of endothelial cell (EC) precursors into endothelial tubes, is the first step in blood vessel formation [1]. Static imaging and in vitro models are wholly inadequate to capture many aspects of vascular pattern formation in vivo, because vasculogenesis involves dynamic changes of the endothelial cells and of the forming blood vessels, in an embryo that is changing size and shape.
Methodology/Principal Findings: We have generated Tie1 transgenic quail lines Tg(tie1:H2B-eYFP) that express H2B-eYFP in all of their endothelial cells which permit investigations into early embryonic vascular morphogenesis with unprecedented clarity and insight. By combining the power of molecular genetics with the elegance of dynamic imaging, we follow the precise patterning of endothelial cells in space and time. We show that during vasculogenesis within the vascular plexus, ECs move independently to form the rudiments of blood vessels, all while collectively moving with gastrulating tissues that flow toward the embryo midline. The aortae are a composite of somatic derived ECs forming its dorsal regions and the splanchnic derived ECs forming its ventral region. The ECs in the dorsal regions of the forming aortae exhibit variable mediolateral motions as they move rostrally; those in more ventral regions show significant lateral-to-medial movement as they course rostrally.
Conclusions/Significance: The present results offer a powerful approach to the major challenge of studying the relative role(s) of the mechanical, molecular, and cellular mechanisms of vascular development. In past studies, the advantages of the molecular genetic tools available in mouse were counterbalanced by the limited experimental accessibility needed for imaging and perturbation studies. Avian embryos provide the needed accessibility, but few genetic resources. The creation of transgenic quail with labeled endothelia builds upon the important roles that avian embryos have played in previous studies of vascular development
Recommended from our members
Acoustic and foraging behavior of a Baird’s beaked whale, Berardius bairdii, exposed to simulated sonar
Beaked whales are hypothesized to be particularly sensitive to anthropogenic noise, based on previous
strandings and limited experimental and observational data. However, few species have been studied in
detail. We describe the underwater behavior of a Baird’s beaked whale (Berardius bairdii) from the first
deployment of a multi-sensor acoustic tag on this species. The animal exhibited shallow (23 ± 15 m max
depth), intermediate (324 ± 49 m), and deep (1138 ± 243 m) dives. Echolocation clicks were produced with
a mean inter-click interval of approximately 300 ms and peak frequency of 25 kHz. Two deep dives included
presumed foraging behavior, with echolocation pulsed sounds (presumed prey capture attempts) associated
with increased maneuvering, and sustained inverted swimming during the bottom phase of the dive. A
controlled exposure to simulated mid-frequency active sonar (3.5-4 kHz) was conducted 4 hours after tag
deployment, and within 3 minutes of exposure onset, the tagged whale increased swim speed and body
movement, and continued to show unusual dive behavior for each of its next three dives, one of each type.
These are the first data on the acoustic foraging behavior in this largest beaked whale species, and the first
experimental demonstration of a response to simulated sonar
Recommended from our members
Using accelerometers to determine the calling behavior of tagged baleen whales
Low-frequency acoustic signals generated by baleen whales can
propagate over vast distances, making the assignment of calls to
specific individuals problematic. Here, we report the novel use of
acoustic recording tags equipped with high-resolution accelerometers
to detect vibrations from the surface of two tagged fin whales that
directly match the timing of recorded acoustic signals. A tag deployed
on a buoy in the vicinity of calling fin whales and a recording from a
tag that had just fallen off a whale were able to detect calls
acoustically but did not record corresponding accelerometer signals
that were measured on calling individuals. Across the hundreds of
calls measured on two tagged fin whales, the accelerometer
response was generally anisotropic across all three axes, appeared
to depend on tag placement and increased with the level of received
sound. These data demonstrate that high-sample rate accelerometry
can provide important insights into the acoustic behavior of baleen
whales that communicate at low frequencies. This method helps
identify vocalizing whales, which in turn enables the quantification of
call rates, a fundamental component of models used to estimate
baleen whale abundance and distribution from passive acoustic
monitoring.Keywords: Whale, Acceleration, Acoustic
Why whales are big but not bigger : physiological drivers and ecological limits in the age of ocean giants
This research was funded in part by grants from the National Science Foundation (IOS-1656676, IOS-1656656; OPP-1644209 and 07-39483), the Office of Naval Research (N000141612477), and a Terman Fellowship from Stanford University. All procedures in USA were conducted under approval of the National Marine Fisheries Service (Permits 781-1824, 16163, 14809, 16111, 19116, 15271, 20430), Canada DFO SARA/MML 2010-01/SARA-106B, National Marine Sanctuaries (MULTI-2017-007), Antarctic Conservation Act (2009-014, 2015-011) and institutional IACUC committee protocols. Fieldwork, data collection and data processing for M. densirostris were funded by the Office of Naval Research grants N00014-07-10988, N00014-07-11023, N00014-08-10990, N00014-18-1-2062, and 00014-15-1-2553, and the U.S. Strategic Environmental Research and Development Program Grant SI-1539. PLT gratefully acknowledges funding from funding the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (HR09011) and contributing institutions.The largest animals are marine filter feeders, but the underlying mechanism of their large size remains unexplained. We measured feeding performance and prey quality to demonstrate how whale gigantism is driven by the interplay of prey abundance and harvesting mechanisms that increase prey capture rates and energy intake. The foraging efficiency of toothed whales that feed on single prey is constrained by the abundance of large prey, whereas filter-feeding baleen whales seasonally exploit vast swarms of small prey at high efficiencies. Given temporally and spatially aggregated prey, filter feeding provides an evolutionary pathway to extremes in body size that are not available to lineages that must feed on one prey at a time. Maximum size in filter feeders is likely constrained by prey availability across space and time.PostprintPeer reviewe
Googling Food Webs: Can an Eigenvector Measure Species' Importance for Coextinctions?
A major challenge in ecology is forecasting the effects of species' extinctions, a pressing problem given current human impacts on the planet. Consequences of species losses such as secondary extinctions are difficult to forecast because species are not isolated, but interact instead in a complex network of ecological relationships. Because of their mutual dependence, the loss of a single species can cascade in multiple coextinctions. Here we show that an algorithm adapted from the one Google uses to rank web-pages can order species according to their importance for coextinctions, providing the sequence of losses that results in the fastest collapse of the network. Moreover, we use the algorithm to bridge the gap between qualitative (who eats whom) and quantitative (at what rate) descriptions of food webs. We show that our simple algorithm finds the best possible solution for the problem of assigning importance from the perspective of secondary extinctions in all analyzed networks. Our approach relies on network structure, but applies regardless of the specific dynamical model of species' interactions, because it identifies the subset of coextinctions common to all possible models, those that will happen with certainty given the complete loss of prey of a given predator. Results show that previous measures of importance based on the concept of “hubs” or number of connections, as well as centrality measures, do not identify the most effective extinction sequence. The proposed algorithm provides a basis for further developments in the analysis of extinction risk in ecosystems
Acoustic sequences in non-human animals: a tutorial review and prospectus.
Animal acoustic communication often takes the form of complex sequences, made up of multiple distinct acoustic units. Apart from the well-known example of birdsong, other animals such as insects, amphibians, and mammals (including bats, rodents, primates, and cetaceans) also generate complex acoustic sequences. Occasionally, such as with birdsong, the adaptive role of these sequences seems clear (e.g. mate attraction and territorial defence). More often however, researchers have only begun to characterise - let alone understand - the significance and meaning of acoustic sequences. Hypotheses abound, but there is little agreement as to how sequences should be defined and analysed. Our review aims to outline suitable methods for testing these hypotheses, and to describe the major limitations to our current and near-future knowledge on questions of acoustic sequences. This review and prospectus is the result of a collaborative effort between 43 scientists from the fields of animal behaviour, ecology and evolution, signal processing, machine learning, quantitative linguistics, and information theory, who gathered for a 2013 workshop entitled, 'Analysing vocal sequences in animals'. Our goal is to present not just a review of the state of the art, but to propose a methodological framework that summarises what we suggest are the best practices for research in this field, across taxa and across disciplines. We also provide a tutorial-style introduction to some of the most promising algorithmic approaches for analysing sequences. We divide our review into three sections: identifying the distinct units of an acoustic sequence, describing the different ways that information can be contained within a sequence, and analysing the structure of that sequence. Each of these sections is further subdivided to address the key questions and approaches in that area. We propose a uniform, systematic, and comprehensive approach to studying sequences, with the goal of clarifying research terms used in different fields, and facilitating collaboration and comparative studies. Allowing greater interdisciplinary collaboration will facilitate the investigation of many important questions in the evolution of communication and sociality.This review was developed at an investigative workshop, “Analyzing Animal Vocal Communication Sequences” that took place on October 21–23 2013 in Knoxville, Tennessee, sponsored by the National Institute for Mathematical and Biological Synthesis (NIMBioS). NIMBioS is an Institute sponsored by the National Science Foundation, the U.S. Department of Homeland Security, and the U.S. Department of Agriculture through NSF Awards #EF-0832858 and #DBI-1300426, with additional support from The University of Tennessee, Knoxville. In addition to the authors, Vincent Janik participated in the workshop. D.T.B.’s research is currently supported by NSF DEB-1119660. M.A.B.’s research is currently supported by NSF IOS-0842759 and NIH R01DC009582. M.A.R.’s research is supported by ONR N0001411IP20086 and NOPP (ONR/BOEM) N00014-11-1-0697. S.L.DeR.’s research is supported by the U.S. Office of Naval Research. R.F.-i-C.’s research was supported by the grant BASMATI (TIN2011-27479-C04-03) from the Spanish Ministry of Science and Innovation. E.C.G.’s research is currently supported by a National Research Council postdoctoral fellowship. E.E.V.’s research is supported by CONACYT, Mexico, award number I010/214/2012.This is the accepted manuscript. The final version is available at http://dx.doi.org/10.1111/brv.1216
The MiniArc sling for female stress urinary incontinence: clinical results after 1-year follow-up
Development and application of statistical models for medical scientific researc
- …