513 research outputs found

    Resonant, broadband and highly efficient optical frequency conversion in semiconductor nanowire gratings at visible and UV wavelengths

    Full text link
    Using a hydrodynamic approach we examine bulk- and surface-induced second and third harmonic generation from semiconductor nanowire gratings having a resonant nonlinearity in the absorption region. We demonstrate resonant, broadband and highly efficient optical frequency conversion: contrary to conventional wisdom, we show that harmonic generation can take full advantage of resonant nonlinearities in a spectral range where nonlinear optical coefficients are boosted well beyond what is achievable in the transparent, long-wavelength, non-resonant regime. Using femtosecond pulses with approximately 500 MW/cm2 peak power density, we predict third harmonic conversion efficiencies of approximately 1% in a silicon nanowire array, at nearly any desired UV or visible wavelength, including the range of negative dielectric constant. We also predict surface second harmonic conversion efficiencies of order 0.01%, depending on the electronic effective mass, bistable behavior of the signals as a result of a reshaped resonance, and the onset fifth order nonlinear effects. These remarkable findings, arising from the combined effects of nonlinear resonance dispersion, field localization, and phase-locking, could significantly extend the operational spectral bandwidth of silicon photonics, and strongly suggest that neither linear absorption nor skin depth should be motivating factors to exclude either semiconductors or metals from the list of useful or practical nonlinear materials in any spectral range.Comment: 12 pages, 4 figure

    Fano collective resonance as complex mode in a two dimensional planar metasurface of plasmonic nanoparticles

    Get PDF
    Fano resonances are features in transmissivity/reflectivity/absorption that owe their origin to the interaction between a bright resonance and a dark (i.e., sub-radiant) narrower resonance, and may emerge in the optical properties of planar two-dimensional (2D) periodic arrays (metasurfaces) of plasmonic nanoparticles. In this Letter, we provide a thorough assessment of their nature for the general case of normal and oblique plane wave incidence, highlighting when a Fano resonance is affected by the mutual coupling in an array and its capability to support free modal solutions. We analyze the representative case of a metasurface of plasmonic nanoshells at ultraviolet frequencies and compute its absorption under TE- and TM-polarized, oblique plane-wave incidence. In particular, we find that plasmonic metasurfaces display two distinct types of resonances observable as absorption peaks: one is related to the Mie, dipolar resonance of each nanoparticle; the other is due to the forced excitation of free modes with small attenuation constant, usually found at oblique incidence. The latter is thus an array-induced collective Fano resonance. This realization opens up to manifold flexible designs at optical frequencies mixing individual and collective resonances. We explain the physical origin of such Fano resonances using the modal analysis, which allows to calculate the free modes with complex wavenumber supported by the metasurface. We define equivalent array dipolar polarizabilities that are directly related to the absorption physics at oblique incidence and show a direct dependence between array modal phase and attenuation constant and Fano resonances. We thus provide a more complete picture of Fano resonances that may lead to the design of filters, energy-harvesting devices, photodetectors, and sensors at ultraviolet frequencies.Comment: 6 pages, 5 figure

    Non-lethal effects of N-acetylcysteine on xylella fastidiosa strain De Donno biofilm formation and detachment

    Get PDF
    This study investigated in-vitro the non-lethal eects of N-acetylcysteine (NAC) on Xylella fastidiosa subspecies pauca strain De Donno (Xf-DD) biofilm. This strain was isolated fromthe olive trees aected by the olive quick decline syndrome in southern Italy. Xf-DD was first exposed to non-lethal concentrations of NAC from 0.05 to 1000 M. Cell surface adhesion was dramatically reduced at 500 M NAC (47%), hence, this concentration was selected for investigating the eects of pre-, postand co-treatments on biofilm physiology and structural development, oxidative homeostasis, and biofilm detachment. Even though 500 MNAC reduced bacterial attachment to surfaces, compared to the control samples, it promoted Xf-DD biofilm formation by increasing: (i) biofilm biomass by up to 78% in the co-treatment, (ii) matrix polysaccharides production by up to 72% in the pre-treatment, and (iii) reactive oxygen species levels by 3.5-fold in the co-treatment. Xf-DD biofilm detachment without and with NAC was also investigated. The NAC treatment did not increase biofilm detachment, compared to the control samples. All these findings suggested that, at 500 M, NAC diversified the phenotypes in Xf-DD biofilm, promoting biofilm formation (hyper-biofilm-forming phenotype) and discouraging biofilm detachment (hyper-attachment phenotype), while increasing oxidative stress level in the biofilm

    Reevaluation of radiation reaction and consequences for light-matter interactions at the nanoscale

    Get PDF
    In the context of electromagnetism and nonlinear optical interactions damping is generally introduced as a phenomenological, viscous term that dissipates energy, proportional to the temporal derivative of the polarization. Here, we follow the radiation reaction method presented in [G. W. Ford and R. F. O'Connell, Phys. Lett. A, 157, 217 (1991)], which applies to non-relativistic electrons of finite size, to introduce an explicit reaction force in the Newtonian equation of motion, and derive a hydrodynamic equation that offers new insight on the influence of damping in generic plasmas, metal-based and/or dielectric structures. In these settings, we find new damping-dependent linear and nonlinear source terms that suggest the damping coefficient is proportional to the local charge density, and nonlocal contributions that stem from the spatial derivative of the magnetic field and discuss the conditions that could modify both linear and nonlinear electromagnetic responses.Comment: 11 pages, 1 figure, 19 reference

    Harmonic generation from metal-oxide and metal-metal boundaries

    Get PDF
    We explore the outcomes of detailed microscopic models by calculating second- and third-harmonic generation from thin-film surfaces with discontinuous free-electron densities. These circumstances can occur in structures consisting of a simple metal mirror, or arrangements composed of either different metals or a metal and a free-electron system like a conducting oxide. Using a hydrodynamic approach we highlight the case of a gold mirror and that of a two-layer system containing indium tin oxide (ITO) and gold. We assume the gold mirror surface is characterized by a free-electron cloud of varying density that spills into the vacuum, which as a result of material dispersion exhibits epsilon-near-zero conditions and local-field enhancement at the surface. For a bilayer consisting of a thin ITO and gold film, if the wave is incident from the ITO side the electromagnetic field is presented with a free-electron discontinuity at the ITO-gold interface, and wavelength-dependent epsilon-near-zero conditions that enhance local fields and conversion efficiencies and determine the surface's emission properties. We evaluate the relative significance of additional nonlinear sources that arise when a free-electron discontinuity is present, and show that harmonic generation can be sensitive to the density of the screening free-electron cloud, and not its thickness. Our findings also suggest the possibility to control surface harmonic generation through surface charge engineering.Peer ReviewedPostprint (author's final draft

    Reevaluation of radiation reaction and consequences for light-matter interactions at the nanoscale

    Full text link
    In the context of electromagnetism and nonlinear optical interactions damping is generally introduced as a phenomenological, viscous term that dissipates energy, proportional to the temporal derivative of the polarization. Here, we follow the radiation reaction method presented in [G. W. Ford and R. F. O'Connell, Phys. Lett. A, 157, 217 (1991)], which applies to non-relativistic electrons of finite size, to introduce an explicit reaction force in the Newtonian equation of motion, and derive a hydrodynamic equation that offers new insight on the influence of damping in generic plasmas, metal-based and/or dielectric structures. In these settings, we find new damping-dependent linear and nonlinear source terms that suggest the damping coefficient is proportional to the local charge density, and nonlocal contributions that stem from the spatial derivative of the magnetic field and discuss the conditions that could modify both linear and nonlinear electromagnetic responses.Comment: 11 pages, 1 figure, 19 reference

    Conversion from calcineurin inhibitor to belatacept-based maintenance immunosuppression in renal transplant recipients:A randomized phase 3b Trial

    Get PDF
    Significance Statement This randomized trial demonstrates the safety and efficacy of conversion from calcineurin inhibitor (CNI)? to belatacept-based maintenance immunosuppression in renal transplant recipients 6?60 months post-transplant. Patients converted to belatacept showed sustained improvement in renal function associated with an acceptable safety profile consistent with prior experience and a smaller treatment difference in acute rejection postconversion compared with that observed in earlier studies in de novo renal allograft recipients. These results favor the use of belatacept as an alternative to continued long-term CNI-based maintenance immunosuppression, which is particularly relevant for CNI-intolerant patients, including those who experience nephrotoxicity. These data help inform clinical practice guidelines regarding the conversion of such patients to an alternative immunosuppressive drug regimen.Background Calcineurin inhibitors (CNIs) are standard of care after kidney transplantation, but they are associated with nephrotoxicity and reduced long-term graft survival. Belatacept, a selective T cell costimulation blocker, is approved for the prophylaxis of kidney transplant rejection. This phase 3 trial evaluated the efficacy and safety of conversion from CNI-based to belatacept-based maintenance immunosuppression in kidney transplant recipients.Methods Stable adult kidney transplant recipients 6?60 months post-transplantation under CNI-based immunosuppression were randomized (1:1) to switch to belatacept or continue treatment with their established CNI. The primary end point was the percentage of patients surviving with a functioning graft at 24 months.Results Overall, 446 renal transplant recipients were randomized to belatacept conversion (n=223) or CNI continuation (n=223). The 24-month rates of survival with graft function were 98% and 97% in the belatacept and CNI groups, respectively (adjusted difference, 0.8; 95.1% CI, ?2.1 to 3.7). In the belatacept conversion versus CNI continuation groups, 8% versus 4% of patients experienced biopsy-proven acute rejection (BPAR), respectively, and 1% versus 7% developed de novo donor-specific antibodies (dnDSAs), respectively. The 24-month eGFR was higher with belatacept (55.5 versus 48.5 ml/min per 1.73 m(2) with CNI). Both groups had similar rates of serious adverse events, infections, and discontinuations, with no unexpected adverse events. One patient in the belatacept group had post-transplant lymphoproliferative disorder.Conclusions Switching stable renal transplant recipients from CNI-based to belatacept-based immunosuppression was associated with a similar rate of death or graft loss, improved renal function, and a numerically higher BPAR rate but a lower incidence of dnDSA. Clinical Trial registry name and registration number: A Study in Maintenance Kidney Transplant Recipients Following Conversion to Nulojix? (Belatacept)-Based, NCT01820572Nephrolog
    • …
    corecore