82 research outputs found

    Compensatory T Cell Responses in IRG-Deficient Mice Prevent Sustained Chlamydia trachomatis Infections

    Get PDF
    The obligate intracellular pathogen Chlamydia trachomatis is the most common cause of bacterial sexually transmitted diseases in the United States. In women C. trachomatis can establish persistent genital infections that lead to pelvic inflammatory disease and sterility. In contrast to natural infections in humans, experimentally induced infections with C. trachomatis in mice are rapidly cleared. The cytokine interferon-Ξ³ (IFNΞ³) plays a critical role in the clearance of C. trachomatis infections in mice. Because IFNΞ³ induces an antimicrobial defense system in mice but not in humans that is composed of a large family of Immunity Related GTPases (IRGs), we questioned whether mice deficient in IRG immunity would develop persistent infections with C. trachomatis as observed in human patients. We found that IRG-deficient Irgm1/m3(-/-) mice transiently develop high bacterial burden post intrauterine infection, but subsequently clear the infection more efficiently than wildtype mice. We show that the delayed but highly effective clearance of intrauterine C. trachomatis infections in Irgm1/m3(-/-) mice is dependent on an exacerbated CD4+ T cell response. These findings indicate that the absence of the predominant murine innate effector mechanism restricting C. trachomatis growth inside epithelial cells results in a compensatory adaptive immune response, which is at least in part driven by CD4+ T cells and prevents the establishment of a persistent infection in mice

    A Probiotic Adjuvant Lactobacillus rhamnosus Enhances Specific Immune Responses after Ocular Mucosal Immunization with Chlamydial Polymorphic Membrane Protein C

    Get PDF
    Recent advances in the development of chlamydia vaccines, using live-attenuated or ultraviolet light-inactivated chlamydia, are paving the way for new possibilities to oppose the societal challenges posed by chlamydia-related diseases, such as blinding trachoma. An effective subunit vaccine would mitigate the risks associated with the use of a whole-cell vaccine. Our rationale for the design of an efficient subunit vaccine against Chlamydia trachomatis (Ct) is based on the membrane proteins involved in the initial Ct-host cell contact and on the route of immunization that mimics the natural infection process (i.e., via the ocular mucosa). The first aim of our study was to characterize the specific conjunctival and vaginal immune responses following eye drop immunization in BALB/c mice, using the N-terminal portion of the Ct serovar E polymorphic membrane protein C (N-PmpC) as the subunit vaccine antigen. Second, we aimed to examine the adjuvant properties of the probiotic Lactobacillus rhamnosus (LB) when formulated with N-PmpC. N-PmpC applied alone stimulated the production of N-PmpC-and Ct serovar B-specific antibodies in serum, tears and vaginal washes, whereas the combination with LB significantly enhanced these responses. The N-PmpC/LB combination initiated a T cell response characterized by an elevated percentage of CD25+ T cells and CD8+ effector T cells, enhanced CD4+ T-helper 1 skewing, and increased regulatory T cell responses. Together, these results show that eye drop vaccination with combined use of N-PmpC and a live probiotic LB stimulates specific cellular and humoral immune responses, not only locally in the conjunctiva but also in the vaginal mucosa, which could be a promising approach in Ct vaccine development

    APC Activation Restores Functional CD4+CD25+ Regulatory T Cells in NOD Mice that Can Prevent Diabetes Development

    Get PDF
    BACKGROUND: Defects in APC and regulatory cells are associated with diabetes development in NOD mice. We have shown previously that NOD APC are not effective at stimulating CD4(+)CD25(+) regulatory cell function in vitro. We hypothesize that failure of NOD APC to properly activate CD4(+)CD25(+) regulatory cells in vivo could compromise their ability to control pathogenic cells, and activation of NOD APC could restore this defect, thereby preventing disease. METHODOLOGY/PRINCIPAL FINDINGS: To test these hypotheses, we used the well-documented ability of complete Freund's adjuvant (CFA), an APC activator, to prevent disease in NOD mice. Phenotype and function of CD4(+)CD25(+) regulatory cells from untreated and CFA-treated NOD mice were determined by FACS, and in vitro and in vivo assays. APC from these mice were also evaluated for their ability to activate regulatory cells in vitro. We have found that sick NOD CD4(+)CD25(+) cells expressed Foxp3 at the same percentages, but decreased levels per cell, compared to young NOD or non-NOD controls. Treatment with CFA increased Foxp3 expression in NOD cells, and also increased the percentages of CD4(+)CD25(+)Foxp3(+) cells infiltrating the pancreas compared to untreated NOD mice. Moreover, CD4(+)CD25(+) cells from pancreatic LN of CFA-treated, but not untreated, NOD mice transferred protection from diabetes. Finally, APC isolated from CFA-treated mice increased Foxp3 and granzyme B expression as well as regulatory function by NOD CD4(+)CD25(+) cells in vitro compared to APC from untreated NOD mice. CONCLUSIONS/SIGNIFICANCE: These data suggest that regulatory T cell function and ability to control pathogenic cells can be enhanced in NOD mice by activating NOD APC

    Self-recognition of the endothelium enables regulatory T-cell trafficking and defines the kinetics of immune regulation

    Get PDF
    This study was supported by the British Heart Foundation (PG 09/002/ 2642). AJR is funded by King’s College London British Heart Foundation Centre of Excellence and EI was supported by the Department of Health via National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s and St Tomas’ NHF Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust. BG was supported by a British Heart Foundation studentship (FS/10/009/28166) and DC by an Arthritis Research UK Fellowship (18103)

    HCV+ Hepatocytes Induce Human Regulatory CD4+ T Cells through the Production of TGF-Ξ²

    Get PDF
    Background: Hepatitis C Virus (HCV) is remarkably efficient at establishing persistent infection and is associated with the development of chronic liver disease. Impaired T cell responses facilitate and maintain persistent HCV infection. Importantly, CD4 + regulatory T cells (Tregs) act by dampening antiviral T cell responses in HCV infection. The mechanism for induction and/or expansion of Tregs in HCV is unknown. Methodology/Principal Findings: HCV-expressing hepatocytes were used to determine if hepatocytes are able to induce Tregs. The infected liver environment was modeled by establishing the co-culture of the human hepatoma cell line, Huh7.5, containing the full-length genome of HCV genotype 1a (Huh7.5-FL) with activated CD4 + T cells. The production of IFN-c was diminished following co-culture with Huh7.5-FL as compared to controls. Notably, CD4 + T cells in contact with Huh7.5-FL expressed an increased level of the Treg markers, CD25, Foxp3, CTLA-4 and LAP, and were able to suppress the proliferation of effector T cells. Importantly, HCV + hepatocytes upregulated the production of TGF-b and blockade of TGF-b abrogated Treg phenotype and function. Conclusions/Significance: These results demonstrate that HCV infected hepatocytes are capable of directly inducing Tregs development and may contribute to impaired host T cell responses

    SHIP-Deficient Dendritic Cells, Unlike Wild Type Dendritic Cells, Suppress T Cell Proliferation via a Nitric Oxide-Independent Mechanism

    Get PDF
    Dendritic cells (DCs) not only play a crucial role in activating immune cells but also suppressing them. We recently investigated SHIP's role in murine DCs in terms of immune cell activation and found that TLR agonist-stimulated SHIP-/- GM-CSF-derived DCs (GM-DCs) were far less capable than wild type (WT, SHIP+/+) GM-DCs at activating T cell proliferation. This was most likely because SHIP-/- GM-DCs could not up-regulate MHCII and/or co-stimulatory receptors following TLR stimulation. However, the role of SHIP in DC-induced T cell suppression was not investigated.In this study we examined SHIP's role in DC-induced T cell suppression by co-culturing WT and SHIP-/- murine DCs, derived under different conditions or isolated from spleens, with Ξ±CD3+ Ξ±CD28 activated WT T cells and determined the relative suppressive abilities of the different DC subsets. We found that, in contrast to SHIP+/+ and -/- splenic or Flt3L-derived DCs, which do not suppress T cell proliferation in vitro, both SHIP+/+ and -/- GM-DCs were capable of potently suppressing T cell proliferation. However, WT GM-DC suppression appeared to be mediated, at least in part, by nitric oxide (NO) production while SHIP-/- GM-DCs expressed high levels of arginase 1 and did not produce NO. Following exhaustive studies to ascertain the mechanism of SHIP-/- DC-mediated suppression, we could conclude that cell-cell contact was required and the mechanism may be related to their relative immaturity, compared to SHIP+/+ GM-DCs.These findings suggest that although both SHIP+/+ and -/- GM-DCs suppress T cell proliferation, the mechanism(s) employed are different. WT GM-DCs suppress, at least in part, via IFNΞ³-induced NO production while SHIP-/- GM-DCs do not produce NO and suppression can only be alleviated when contact is prevented

    Genetic Variants of Human Granzyme B Predict Transplant Outcomes after HLA Matched Unrelated Bone Marrow Transplantation for Myeloid Malignancies

    Get PDF
    Serine protease granzyme B plays important roles in infections, autoimmunity, transplant rejection, and antitumor immunity. A triple-mutated granzyme B variant that encodes three amino substitutions (Q48R, P88A, and Y245H) has been reported to have altered biological functions. In the polymorphism rs8192917 (2364A>G), the A and G alleles represent wild type QPY and RAH mutant variants, respectively. In this study, we analyzed the impact of granzyme B polymorphisms on transplant outcomes in recipients undergoing unrelated HLA-fully matched T-cell-replete bone marrow transplantation (BMT) through the Japan Donor Marrow Program. The granzyme B genotypes were retrospectively analyzed in a cohort of 613 pairs of recipients with hematological malignancies and their unrelated donors. In patients with myeloid malignancies consisting of acute myeloid leukemia and myelodysplastic syndrome, the donor G/G or A/G genotype was associated with improved overall survival (OS; adjusted hazard ratio [HR], 0.60; 95% confidence interval [CI], 0.41–0.89; Pβ€Š=β€Š0.01) as well as transplant related mortality (TRM; adjusted HR, 0.48; 95% CI, 0.27–0.86, Pβ€Š=β€Š0.01). The recipient G/G or A/G genotype was associated with a better OS (adjusted HR, 0.68; 95% CI, 0.47–0.99; Pβ€Š=β€Š0.05) and a trend toward a reduced TRM (adjusted HR, 0.61; 95% CI, 0.35–1.06; Pβ€Š=β€Š0.08). Granzyme B polymorphism did not have any effect on the transplant outcomes in patients with lymphoid malignancies consisting of acute lymphoid leukemia and malignant lymphoma. These data suggest that there is an association between the granzyme B genotype and better clinical outcomes in patients with myeloid malignancies after unrelated BMT

    Prior mucosal exposure to heterologous cells alters the pathogenesis of cell-associated mucosal feline immunodeficiency virus challenge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several lines of research suggest that exposure to cellular material can alter the susceptibility to infection by HIV-1. Because sexual contact often includes exposure to cellular material, we hypothesized that repeated mucosal exposure to heterologous cells would induce an immune response that would alter the susceptibility to mucosal infection. Using the feline immunodeficiency virus (FIV) model of HIV-1 mucosal transmission, the cervicovaginal mucosa was exposed once weekly for 12 weeks to 5,000 heterologous cells or media (control) and then cats were vaginally challenged with cell-associated or cell-free FIV.</p> <p>Results</p> <p>Exposure to heterologous cells decreased the percentage of lymphocytes in the mucosal and systemic lymph nodes (LN) expressing L-selectin as well as the percentage of CD4+ CD25+ T cells. These shifts were associated with enhanced ex-vivo proliferative responses to heterologous cells. Following mucosal challenge with cell-associated, but not cell-free, FIV, proviral burden was reduced by 64% in cats previously exposed to heterologous cells as compared to media exposed controls.</p> <p>Conclusions</p> <p>The pathogenesis and/or the threshold for mucosal infection by infected cells (but not cell-free virus) can be modulated by mucosal exposure to uninfected heterologous cells.</p

    Influence of amyloglucosidase in bread crust properties

    Get PDF
    Enzymes are used in baking as a useful tool for improving the processing behavior or properties of baked products. A number of enzymes have been proposed for improving specific volume, imparting softness, or extend the shelf life of breads, but scarce studies have been focused on bread crust. The aim of this study was to determine the use of amyloglucosidase for modulating the properties of the bread crust and increase its crispness. Increasing levels of enzyme were applied onto the surface of two different partially bake breads (thin and thick crust bread). Amyloglucosidase treatment affected significantly (P<0.05) the color of the crust and decreased the moisture content and water activity of the crusts. Mechanical properties were modified by amyloglucosidase, namely increasing levels of enzyme promoted a decrease in the force (Fm) required for crust rupture and an increase in the number of fracture events (Nwr) related to crispy products. Crust microstructure analysis confirmed that enzymatic treatment caused changes in the bread crust structure, leading to a disruption of the structure, by removing the starchy layer that covered the granules and increasing the number of voids, which agree with the texture fragility.Authors acknowledge the financial support of Spanish Ministry of Economy and Sustainability (Project AGL2011-23802), the European Regional Development Fund (FEDER), Generalitat Valenciana (Project Prometeo 2012/064) and the Consejo Superior de Investigaciones Cientificas (CSIC). R. Altamirano-Fortoul would like to thank her grant to CSIC. The authors also thank Forns Valencians S. A. (Spain) for supplying commercial frozen partially baked breads.Altamirano Fortoul, RDC.; Hernando Hernando, MI.; Molina Rosell, MC. (2014). Influence of amyloglucosidase in bread crust properties. Food and Bioprocess Technology. 7(4):1037-1046. https://doi.org/10.1007/s11947-013-1084-xS1037104674Altamirano-Fortoul R, Hernando I & Rosell CM (2013) Texture of bread crust: puncturing settings effect and its relationship to microstructure. Journal of Texture Studies. doi: 10.1111/j.1745-4603.2012.00368.x .Altamirano-Fortoul, R., Le Bail, A., Chevallier, S., & Rosell, C. M. (2012). Effect of the amount of steam during baking on bread crust features and water diffusion. Journal of Food Engineering, 108, 128–134.Altamirano-Fortoul R & Rosell CM (2010) Alternatives for extending crispiness of crusty breads. In Proceedings of International Conference on Food Innovation, FoodInnova, 25–29 October 2010, Valencia, Spain. ISBN978-84-693-5011-.9.Arimi, J. M., Duggan, E., O’sullivan, M., Lyng, J. G., & O’riordan, E. D. (2010). Effect of water activity on the crispiness of a biscuit (crackerbread): mechanical and acoustic evaluation. Food Research International, 43, 1650–1655.Castro-Prada, E. M., Primo-Martin, C., Meinders, M. B. J., Hamer, R. J., & Van Vliet, T. (2009). Relationship between water activity, deformation speed, and crispness characterization. Journal of Texture Studies, 40, 127–156.Esveld, D. C., Van Der Sman, R. G. M., Van Dalen, G., Van Duynhoven, J. P. M., & Meinders, M. B. J. (2012). Effect of morphology on water sorption in cellular solid foods. Part I: Pore Scale Network Model. Journal of Food Engineering, 109, 301–310.Goedeken, D. L., & Tong, C. H. (1993). Permeability measurements of porous food materials. Journal of Food Science, 58, 1329–1331.Gondek, E., Lewicki, P. P., & Ranachowski, Z. (2006). Influence of water activity on the acoustic properties of breakfast cereals. Journal of Texture Studies, 37, 497–515.Guerrieri, N., Eynard, L., Lavelli, V., & Cerletti, P. (1997). Interactions of protein and starch studied through amyloglucosidase action. Cereal Chemistry, 74, 846–850.ICC. (1994). Standard methods of the International Association for Cereal Science and Technology. Vienna: Austria.Heenan, S. P., Dufour, J. P., Hamid, N., Harvey, W., & Delahunty, C. M. (2008). The sensory quality of fresh bread: descriptive attributes and consumer perceptions. Food Research International, 41, 989–997.HeiniΓΆ, R. L., Nordlund, E., Poutanen, K., & Buchert, J. (2012). Use of enzymes to elucidate the factors contributing to bitterness in rye flavor. Food Research International, 45, 31–38.Hug-Iten, S., Escher, F., & Conde-Petit, B. (2003). Staling of bread: role of amylose and amylopectin and influence of starch-degrading enzymes. Cereal Chemistry., 80(6), 654–661.Jakubczyk, E., Marzec, A., & Lewicki, P. P. (2008). Relationship between water activity of crisp bread and its mechanical properties and structure. Polish Journal of Food and Nutrition Sciences, 58(1), 45–51.Luyten, A., Pluter, J. J., & Van Vliet, T. (2004). Crispy/crunchy crusts of cellular solid foods: a literature review with discussion. Journal of Texture Studies, 35, 445–492.Potter, N. N., & Hotchkiss, J. H. (1998). Food dehydration and concentration. In N. N. Potter & J. H. Hotchkiss (Eds.), Food Science (5th ed.). New York: Aspen Publishers.Primo-Martin, C., Van de Pijpekamp, A., Van Vliet, T., Jongh, H. H. J., Plijter, J. J., & Hamer, R. J. (2006). The role of the gluten network in the crispness of bread crust. Journal of Cereal Science, 43, 342–352.Primo-Martin, C., Sozer, N., Hamer, R. J., & Van Vliet, T. (2009). Effect of water activity on fracture and acoustic characteristics of a crust model. Journal of Food Engineering, 90, 277–284.Roudaut, G., Dacremont, C., & Le Meste, M. (1998). Influence of water on the crispness of cereal-based foods: acoustic, mechanical, and sensory studies. Journal of Texture Studies, 29, 199–213.Roudaut, G., Dacremont, C., Pamies, B. V., Colas, B., & Le Meste, M. (2002). Crispness: a critical review on sensory and material science approaches. Trends in Food Science and Technology, 13, 217–227.Rojas JA (2000) Uso combinado de hidrocoloides y alfa-amilasa como mejorantes en panificaciΓ³n. Dissertation PhD Thesis. Universidad PolitΓ©cnica de ValenciaRosell, C. M. (2007). Vitamin and mineral fortification of bread. In B. Hamaker (Ed.), Technology of functional cereal products. Cambridge: Woodhead Publishing Ltd.Rosell, C. M. (2011). The science of doughs and bread quality. In V. R. Preedy, R. R. Watson, & V. B. Patel (Eds.), Flour and breads and their fortification in health and disease prevention (pp. 3–14). London: Academic.Rosell CM, Altamirano-Fortoul R & Hernando I (2011) Mechanical properties of bread crust by puncture test and the effect of sprayed enzymes. In: Proceedings of 6th International Congress Flour. Bread’11, 8th Croatian Congress of Cereal Technologist, 12–14 October 2011, Opatija, Croatia. ISSN 1848–2562.SahlstrΓΆm, S., & Brathen, E. (1997). Effects of enzyme preparations for baking, mixing time and resting time on bread quality and bread staling. Food Chemistry, 58, 75–80.Sharma K & Singh J (2010) Enzymes in baking industry. Panesar, P.S.; Marwaha, S.S and Chopra, H.K. (Eds), Enzymes in food processing, fundamentals and potential applications, IK International Publishing House Pvt. Ltd, New Delhi, India.Stokes, D. J., & Donald, A. M. (2000). In situ mechanical testing of dry and hydrated breadcrumb in the environmental scanning electron microscope (ESEM). Journal of Materials Science, 35, 599–607.Tsukakoshi, Y., Naito, S., & Ishida, N. (2008). Fracture intermittency during a puncture test of cereal snacks and its relation to porous structure. Food Research International, 41, 909–917.Van Benschop CHM, Terdu AG & Hille JDR (2012) Baking enzyme composition as SSL replacer. Patent No.US2012164272.Van Eijk JH (1991) Retarding the firming of bread crumb during storage. Patent No. US5023094.Van Hecke, E., Allaf, K., & Bouvier, J. M. (1998). Texture and structure of crispy-puffed food productsβ€”part II: mechanical properties in puncture. Journal of Texture Studies, 29, 617–632.Vanin, F. M., Lucas, T., & Trystram, G. (2009). Crust formation and its role during bread baking. Trends in Food Science and Technology, 20, 333–343.Van Nieuwenhuijzen, N. H., Primo-Martin, C., Meinders, M. B. J., Tromp, R. H., Hamer, R. J., & Van Vliet, T. (2008). Water content or water activity: what rules crispy behavior in bread crust? Journal of Agricultural and Food Chemistry, 56, 6432–6438.Van Oort, M. (2010). Enzymes in bread making. In R. J. Whitehurst & M. Van Oort (Eds.), Enzymes in food technology (2nd ed.). Iowa: Wiley-Blackwell.Vidal, F.D., Guerrety, A.B. (1979) Antistaling agent for bakery products. Patent No. US54160848.WΓ€hlby, U., & Skjoldebrand, C. (2002). Reheating characteristic of crust formed on buns, and crust formation. Journal of Food Engineering, 53, 177–184.WΓΌrsch, P., & Gumy, D. (1994). Inhibition of amylopectin retrogradation by partial beta-amylosis. Carbohydrate Research, 256, 129–137.Xiong, X., Narsimhan, G., & Okos, M. R. (1991). Effect of composition and pore structure on binding energy and effective diffusivity of moisture in porous foods. Journal of Food Engineering, 15, 187–208

    Why Functional Pre-Erythrocytic and Bloodstage Malaria Vaccines Fail: A Meta-Analysis of Fully Protective Immunizations and Novel Immunological Model

    Get PDF
    Background: Clinically protective malaria vaccines consistently fail to protect adults and children in endemic settings, and at best only partially protect infants. Methodology/Principal Findings: We identify and evaluate 1916 immunization studies between 1965-February 2010, and exclude partially or nonprotective results to find 177 completely protective immunization experiments. Detailed reexamination reveals an unexpectedly mundane basis for selective vaccine failure: live malaria parasites in the skin inhibit vaccine function. We next show published molecular and cellular data support a testable, novel model where parasite-host interactions in the skin induce malaria-specific regulatory T cells, and subvert early antigen-specific immunity to parasite-specific immunotolerance. This ensures infection and tolerance to reinfection. Exposure to Plasmodium-infected mosquito bites therefore systematically triggers immunosuppression of endemic vaccine-elicited responses. The extensive vaccine trial data solidly substantiate this model experimentally. Conclusions/Significance: We conclude skinstage-initiated immunosuppression, unassociated with bloodstage parasites, systematically blocks vaccine function in the field. Our model exposes novel molecular and procedural strategies to significantly and quickly increase protective efficacy in both pipeline and currently ineffective malaria vaccines, and forces fundamental reassessment of central precepts determining vaccine development. This has major implications fo
    • …
    corecore