45 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo

    Get PDF
    Meeting Abstracts: Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo Clearwater Beach, FL, USA. 9-11 June 201

    CARACTERIZAÇÃO SÓCIO DEMOGRÁFICA DA POPULAÇÃO DO DISTRITO SANITÁRIO LESTE, GOIÂNIA, GOIÁS.

    No full text
    Introdução e objetivos: O levantamento dascondições gerais de saúde e a identificação dos problemas locais subsidiam açõesde saúde e educação, direcionadas as principais necessidades da população. Otrabalho buscou caracterizar demográfica e territorialmente a populaçãoresidente no Distrito Sanitário Leste, de Goiânia, identificar os principaisproblemas de saúde e, assim, traçar um plano de ações em saúde. Metodologia: Os dados foram coletadospor meio da estimativa rápida. A área pesquisada envolveu o Distrito SanitárioLeste, de Goiânia. Foram coletadas informações de 2011, no banco de dados doDATASUS1. Resultados ediscussões: Na região encontrou-seuma população de 177.661 habitantes, sendo 47,4% representada pelo gênerofeminino e 52,65% pelo masculino; 51% com idade entre 20 e 49 anos e 90,5%alfabetizada. Observou-se que 16,3% das residências não possuem tratamento deesgoto, o que pode contribuir para o aparecimento de problemas de saúde; 89,5%dos habitantes tem abastecimento de água por rede geral e 98,7% tem o lixocoletado. A dengue é o agravo transmissível de maior impacto nos atendimentosem unidades de saúde. As taxas de mortalidade infantil, neonatal e geral enatalidade foram 11,15; 4,961; 0,984 e 14,63, respectivamente. Conclusões: O levantamento dascondições de saúde da população possibilita abordagens específicas devigilância e promoção da saúd

    CHROMATOGRAPHIC INVESTIGATION OF RUTHENIUM NITROSYL COMPLEX: NO INTERCONVERSION AND REACTIONS WITH BIOLOGICAL REDUCTANTS

    No full text
    One experimental strategy to prepare a nitrosyl metal complex is based on the acid-base conversion of NO2- into NO+. Here, we employed UV-vis absorption and FTIR spectroscopies to investigate the reaction of cis-[Ru(NO2)(bpy)2(imN)]PF6 with H3O+, which produced cis-[Ru(NO)(bpy)2(imN)](PF6)3 complex. Chromatographic studies were carried out and showed that immediately after nitrite complex was dissolved only one species was present with retention time(tR) of 6.81 minutes. Addition of H3O+ to nitrite complex led to the formation of one major peak with tR of 3.92 min supporting nitrosyl complex formation. The reaction of nitrosyl complex with cysteine was also monitored by HPLC and it showed clearly the formation and followed decrease of a peak at 3.38 minute with maximum absorption at 380 nm, consistent with an intermediate complex. Later, it was observed the appearance of a peak at 4.15 minute with absorption band at 470 nm. In contrast to the reaction with cysteine, methionine did not show the formation of any intermediate. The use of HPLC was an important tool to support mechanistic assumptions for nitrosyl reactions
    corecore