30 research outputs found

    Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star

    Get PDF
    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the planet. The system passes a battery of tests for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year span. Although the velocities do not lead to a reliable orbit and mass determination, they are able to constrain the mass to a 3{\sigma} upper limit of 124 MEarth, safely in the regime of planetary masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262K for a planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the Habitable Zone of any star other than the Sun.Comment: Accepted to Ap

    FUV and X-ray absorption in the Warm-Hot Intergalactic Medium

    Get PDF
    The Warm-Hot Intergalactic Medium (WHIM) arises from shock-heated gas collapsing in large-scale filaments and probably harbours a substantial fraction of the baryons in the local Universe. Absorption-line measurements in the ultraviolet (UV) and in the X-ray band currently represent the best method to study the WHIM at low redshifts. We here describe the physical properties of the WHIM and the concepts behind WHIM absorption line measurements of H I and high ions such as O VI, O VII, and O VIII in the far-ultraviolet and X-ray band. We review results of recent WHIM absorption line studies carried out with UV and X-ray satellites such as FUSE, HST, Chandra, and XMM-Newton and discuss their implications for our knowledge of the WHIM.Comment: 26 pages, 9 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 3; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Solar parameters for modeling interplanetary background

    Full text link
    The goal of the Fully Online Datacenter of Ultraviolet Emissions (FONDUE) Working Team of the International Space Science Institute in Bern, Switzerland, was to establish a common calibration of various UV and EUV heliospheric observations, both spectroscopic and photometric. Realization of this goal required an up-to-date model of spatial distribution of neutral interstellar hydrogen in the heliosphere, and to that end, a credible model of the radiation pressure and ionization processes was needed. This chapter describes the solar factors shaping the distribution of neutral interstellar H in the heliosphere. Presented are the solar Lyman-alpha flux and the solar Lyman-alpha resonant radiation pressure force acting on neutral H atoms in the heliosphere, solar EUV radiation and the photoionization of heliospheric hydrogen, and their evolution in time and the still hypothetical variation with heliolatitude. Further, solar wind and its evolution with solar activity is presented in the context of the charge exchange ionization of heliospheric hydrogen, and in the context of dynamic pressure variations. Also the electron ionization and its variation with time, heliolatitude, and solar distance is presented. After a review of all of those topics, we present an interim model of solar wind and the other solar factors based on up-to-date in situ and remote sensing observations of solar wind. Results of this effort will further be utilised to improve on the model of solar wind evolution, which will be an invaluable asset in all heliospheric measurements, including, among others, the observations of Energetic Neutral Atoms by the Interstellar Boundary Explorer (IBEX).Comment: Chapter 2 in the planned "Cross-Calibration of Past and Present Far UV Spectra of Solar System Objects and the Heliosphere", ISSI Scientific Report No 12, ed. R.M. Bonnet, E. Quemerais, M. Snow, Springe

    Modelling converted seismic waveforms in isotropic and anisotropic 1-D gradients: discontinuous versus continuous gradient representations

    No full text
    Over the past decade, there have been numerous receiver function studies directed at imaging the lithosphere-asthenosphere boundary (LAB). Although it is generally accepted that receiver function phases observed in these studies are derived from physical mode conversions at depth within the lithosphere-asthenosphere transition, it is still debatable as to whether these phases are directly indicative of the LAB. This is because interpretation of receiver function LAB signals relies on understanding the elastic characteristics of the Earth’s outer thermal boundary layer. The main issues for receiver function imaging are the sharpness of the elastic material property transition and, more importantly, what specifically are the material gradients. To test the various transition models, a forward modelling approach is required that allows accurate waveform synthetics for a range of discontinuous and continuous gradients in anisotropic, elastic media. We present a derivation of the reflection and transmission response for continuous one-dimensional (1-D) gradients in generally anisotropic elastic media. We evaluate the influence of 1-D isotropic and anisotropic elastic gradients on the seismic waveform by comparing numerical results of models for discontinuous and continuous transitions. The results indicate that discontinuous representations using layers each with uniform parameters and with thicknesses on the order of approximately 1/3 to 1/8 of the dominant seismic wavelength can be used to accurately model P-to-S and S-to-P mode conversions due to continuous transitions of both isotropic and anisotropic elastic properties. From a practical point of view, when comparing synthetic modelling with observation, this constraint can be relaxed further. The presence of signal noise and/or the result of receiver function stacking techniques will likely obscure these subtle waveform effects. Hence this study suggests that accurate synthetic waveforms for LAB transitions can be modelled with discontinuous gradient representations using a reasonable number of discrete transition layers with layer thicknesses no greater than 1/2 to 1/3 the dominant seismic wavelength

    The Magnificent Seven in the dusty prairie

    No full text
    Abstract The Magnificent Seven have all been discovered by their exceptional soft X-ray spectra and high ratios of X-ray to optical flux. They all are considered to be nearby sources. Searching for similar objects with larger distances, one expects larger interstellar absorption resulting in harder X-ray counterparts. Current interstellar absorption treatment depends on chosen abundances and scattering cross-sections of the elements as well as on the 3D distribution of the interstellar medium. After a discussion of these factors we use the comprehensive 3D measurements of the Local Bubble by Lallement et al. (2003) to construct two simple models of the 3D distribution of the hydrogen column density. We test these models by using a set of soft X-ray sources with known distances. Finally, we discuss possible applications for distance estimations and population synthesis studies. Keywords neutron stars · absorption · ISM · X-ray:general
    corecore