4,266 research outputs found
Observation of long-lived polariton states in semiconductor microcavities across the parametric threshold
The excitation spectrum around the pump-only stationary state of a polariton
optical parametric oscillator (OPO) in semiconductor microcavities is
investigated by time-resolved photoluminescence. The response to a weak pulsed
perturbation in the vicinity of the idler mode is directly related to the
lifetime of the elementary excitations. A dramatic increase of the lifetime is
observed for a pump intensity approaching and exceeding the OPO threshold. The
observations can be explained in terms of a critical slowing down of the
dynamics upon approaching the threshold and the following onset of the soft
Goldstone mode
The diurnal evolution of the urban heat island of Paris: a model-based case study during Summer 2006
The urban heat island (UHI) over Paris during summer 2006 was simulated using the Advanced Regional Prediction System (ARPS) updated with a simple urban parametrization at a horizontal resolution of 1 km. Two integrations were performed, one with the urban land cover of Paris and another in which Paris was replaced by cropland. The focus is on a five-day clear-sky period, for which the UHI intensity reaches its maximum. The diurnal evolution of the UHI intensity was found to be adequately simulated for this five day period. The maximum difference at night in 2 m temperature between urban and rural areas stemming from the urban heating is reproduced with a relative error of less than 10%. The UHI has an ellipsoidal shape and stretches along the prevailing wind direction. The maximum UHI intensity of 6.1 K occurs at 23:00 UTC located 6 km downstream of the city centre and this largely remains during the whole night. An idealized one-column model study demonstrates that the nocturnal differential sensible heat flux, even though much smaller than its daytime value, is mainly responsible for the maximum UHI intensity. The reason for this nighttime maximum is that additional heat is only affecting a shallow layer of 150 m. An air uplift is explained by the synoptic east wind and a ramp upwind of the city centre, which leads to a considerable nocturnal adiabatic cooling over cropland. The idealized study demonstrates that the reduced vertical adiabatic cooling over the city compared to cropland induces an additional UHI build-up of 25%. The UHI and its vertical extent is affected by the boundary-layer stability, nocturnal low-level jet as well as radiative cooling. Therefore, improvements of representing these boundary-layer features in atmospheric models are important for UHI studies
Design and experimental validation of a compact collimated Knudsen source
In this paper we discuss the design and performance of a collimated Knudsen
source which has the benefit of a simple design over recirculating sources.
Measurements of the flux, transverse velocity distribution and brightness at
different temperatures were conducted to evaluate the performance. The scaling
of the flux and brightness with the source temperature follow the theoretical
predictions. The transverse velocity distribution in the transparent operation
regime also agrees with the simulated data. The source was found able to
produce a flux of s at a temperature of 433 K. Furthermore the
transverse reduced brightness of an ion beam with equal properties as the
atomic beam reads A/(m sr eV) which is sufficient for
our goal: the creation of an ultra-cold ion beam by ionization of a
laser-cooled and compressed atomic rubidium beam
Cavity-enhanced photoionization of an ultracold rubidium beam for application in focused ion beams
A two-step photoionization strategy of an ultracold rubidium beam for
application in a focused ion beam instrument is analyzed and implemented. In
this strategy the atomic beam is partly selected with an aperture after which
the transmitted atoms are ionized in the overlap of a tightly cylindrically
focused excitation laser beam and an ionization laser beam whose power is
enhanced in a build-up cavity. The advantage of this strategy, as compared to
without the use of a build-up cavity, is that higher ionization degrees can be
reached at higher currents. Optical Bloch equations including the
photoionization process are used to calculate what ionization degree and
ionization position distribution can be reached. Furthermore, the ionization
strategy is tested on an ultracold beam of Rb atoms. The beam current is
measured as a function of the excitation and ionization laser beam intensity
and the selection aperture size. Although details are different, the global
trends of the measurements agree well with the calculation. With a selection
aperture diameter of 52 m, a current of pA is
measured, which according to calculations is 63% of the current equivalent of
the transmitted atomic flux. Taking into account the ionization degree the ion
beam peak reduced brightness is estimated at A/(msreV).Comment: 13 pages, 9 figure
The effect of a multispecies probiotic on the composition of the faecal microbiota and bowel habits in chronic obstructive pulmonary disease patients treated with antibiotics
Short-term antibiotic treatment profoundly affects the intestinal microbiota, which may lead to sustained changes in microbiota composition. Probiotics may restore such a disturbance. The objective of the present study was to investigate the effect of a multispecies probiotic on the faecal microbiota during and after antibiotic intake in patients with a history of frequent antibiotic use. In this randomised, placebo-controlled, double-blind study, thirty chronic obstructive pulmonary disease (COPD) patients treated with antibiotics for a respiratory tract infection received 5 g of a multispecies probiotic or placebo twice daily for 2 weeks. Faecal samples were collected at 0, 7, 14 and 63 d. Changes in the composition of the dominant faecal microbiota were determined by PCR-denaturing gradient gel electrophoresis (DGGE). Changes in bacterial subgroups were determined by quantitative PCR and culture. Bowel movements were scored daily according to the Bristol stool form scale. During and after antibiotic treatment, DGGE-based similarity indices (SI) were high ( >/= 84 %) and band richness was relatively low, both remaining stable over time. No difference in SI was observed between patients with and without diarrhoea-like bowel movements. The multispecies probiotic had a modest effect on the bacterial subgroups. Nevertheless, it affected neither the composition of the dominant faecal microbiota nor the occurrence of diarrhoea-like bowel movements. The dominant faecal microbiota was not affected by antibiotics in this COPD population, suggesting an existing imbalance of the microbiota, which may also have contributed to the lack of effect by probiotic intak
Laser application to measure vertical sea temperature and turbidity, design phase
An experiment to test a new method was designed, using backscattered radiation from a laser beam to measure oceanographic parameters in a fraction of a second. Tyndall, Rayleigh, Brillouin, and Raman scattering all are utilized to evaluate the parameters. A beam from a continuous argon ion laser is used together with an interferometer and interference filters to gather the information. The results are checked by direct measurements. Future shipboard and airborne experiments are described
- β¦