10,570 research outputs found

    Methodology for evaluating the safety level of current accepted design solutions for limiting fire spread between buildings

    Get PDF
    External fire spread between buildings is internationally considered as a major concern for buildings in dense urban environments. While design guidelines differ between countries, the fundamental methods currently used for limiting the risk of fire spread between buildings are generally limited to specifying the minimum required separation distance for a given unprotected façade area, or conversely, limiting the maximum allowable unprotected façade area for a given separation distance. The safety level associated with the current design guidelines is however unknown, making the implementation of innovative, safer and more cost-effective design solutions difficult. In order to assess the safety target implicitly incorporated in currently accepted design solutions, a methodology is developed for evaluating the annual probability of reaching unacceptable radiation intensities at the opposite façade. As a case study, the methodology is applied to a design which is in agreement with the current UK requirements specified in BR 187. This case study exposes inconsistencies in the current design guidelines, indicating the need for developing explicit safety targets

    Phonon Properties of Knbo3 and Ktao3 from First-Principles Calculations

    Full text link
    The frequencies of transverse-optical Γ\Gamma phonons in KNbO3_3 and KTaO3_3 are calculated in the frozen-phonon scheme making use of the full-potential linearized muffin-tin orbital method. The calculated frequencies in the cubic phase of KNbO3_3 and in the tetragonal ferroelectric phase are in good agreement with experimental data. For KTaO3_3, the effect of lattice volume was found to be substantial on the frequency of the soft mode, but rather small on the relative displacement patterns of atoms in all three modes of the T1uT_{1u} symmetry. The TO frequencies in KTaO3_3 are found to be of the order of, but somehow higher than, the corresponding frequencies in cubic KNbO3_3.Comment: 8 pages + 1 LaTeX figure, Revtex 3.0, SISSA-CM-94-00

    New distinguished classes of spectral spaces: a survey

    Full text link
    In the present survey paper, we present several new classes of Hochster's spectral spaces "occurring in nature", actually in multiplicative ideal theory, and not linked to or realized in an explicit way by prime spectra of rings. The general setting is the space of the semistar operations (of finite type), endowed with a Zariski-like topology, which turns out to be a natural topological extension of the space of the overrings of an integral domain, endowed with a topology introduced by Zariski. One of the key tool is a recent characterization of spectral spaces, based on the ultrafilter topology, given in a paper by C. Finocchiaro in Comm. Algebra 2014. Several applications are also discussed

    Thermodynamic Scaling of the Viscosity of Van Der Waals, H-Bonded, and Ionic Liquids

    Full text link
    Viscosities and their temperature, T, and volume, V, dependences are reported for 7 molecular liquids and polymers. In combination with literature viscosity data for 5 other liquids, we show that the superpositioning of relaxation times for various glass-forming materials when expressed as a function of TV^g, where the exponent g is a material constant, can be extended to the viscosity. The latter is usually measured to higher temperatures than the corresponding relaxation times, demonstrating the validity of the thermodynamic scaling throughout the supercooled and higher T regimes. The value of g for a given liquid principally reflects the magnitude of the intermolecular forces (e.g., steepness of the repulsive potential); thus, we find decreasing g in going from van der Waals fluids to ionic liquids. For strongly H-bonded materials, such as low molecular weight polypropylene glycol and water, the superpositioning fails, due to the non-trivial change of chemical structure (degree of H-bonding) with thermodynamic conditions.Comment: 16 pages 7 figure

    Twist1 Is a TNF-Inducible Inhibitor of Clock Mediated Activation of Period Genes.

    Get PDF
    BACKGROUND: Activation of the immune system affects the circadian clock. Tumor necrosis factor (TNF) and Interleukin (IL)-1β inhibit the expression of clock genes including Period (Per) genes and the PAR-bZip clock-controlled gene D-site albumin promoter-binding protein (Dbp). These effects are due to cytokine-induced interference of E-box mediated transcription of clock genes. In the present study we have assessed the two E-box binding transcriptional regulators Twist1 and Twist2 for their role in cytokine induced inhibition of clock genes. METHODS: The expression of the clock genes Per1, Per2, Per3 and of Dbp was assessed in NIH-3T3 mouse fibroblasts and the mouse hippocampal neuronal cell line HT22. Cells were treated for 4h with TNF and IL-1β. The functional role of Twist1 and Twist2 was assessed by siRNAs against the Twist genes and by overexpression of TWIST proteins. In luciferase (luc) assays NIH-3T3 cells were transfected with reporter gene constructs, which contain a 3xPer1 E-box or a Dbp E-box. Quantitative chromatin immunoprecipitation (ChIP) was performed using antibodies to TWIST1 and CLOCK, and the E-box consensus sequences of Dbp (CATGTG) and Per1 E-box (CACGTG). RESULTS: We report here that siRNA against Twist1 protects NIH-3T3 cells and HT22 cells from down-regulation of Period and Dbp by TNF and IL-1β. Overexpression of Twist1, but not of Twist2, mimics the effect of the cytokines. TNF down-regulates the activation of Per1-3xE-box-luc, the effect being prevented by siRNA against Twist1. Overexpression of Twist1, but not of Twist2, inhibits Per1-3xE-box-luc or Dbp-E-Box-luc activity. ChIP experiments show TWIST1 induction by TNF to compete with CLOCK binding to the E-box of Period genes and Dbp. CONCLUSION: Twist1 plays a pivotal role in the TNF mediated suppression of E-box dependent transactivation of Period genes and Dbp. Thereby Twist1 may provide a link between the immune system and the circadian timing system

    Autoencoder Based Optimization for Electromagnetics Problems

    Get PDF
    In this work a novel approach is presented for topology optimization of electromagnetic devices. In particular a surrogate model based on Deep Neural Networks with encoder-decoder architecture is introduced. A first autoencoder learns to represent the input images that describe the topology, i.e., geometry and materials. The novel idea is to use the low dimensional latent space (i.e., the output space of the encoder) as the search space of the optimization algorithm, instead of using the higher dimensional space represented by the input images. A second neural network learns the relationship between the encoder outputs and the objective function (i.e., an electromagnetic quantity that is crucial for the design of the device) which is calculated by means of a numerical analysis. The calculation time for the optimization is greatly improved by reducing the dimensionality of the search space, and by introducing the surrogate model, whereas the quality of the result is slightly affected

    The red and blue galaxy populations in the GOODS field: evidence for an excess of red dwarfs

    Full text link
    We study the evolution of the galaxy population up to z\sim3 as a function of its colour properties. In particular, luminosity functions and luminosity densities have been derived as a function of redshift for the blue/late and red/early populations. We use data from the GOODS-MUSIC catalogue which have typical magnitude limits z<26 and Ks<23.5 for most of the sample. About 8% of the galaxies have spectroscopic redshifts; the remaining have well calibrated photometric redshifts derived from the extremely wide multi-wavelength coverage in 14 bands (from the U band to the Spitzer 8 \mu m band). We have derived a catalogue of galaxies complete in rest-frame B-band, which has been divided in two subsamples according to their rest-frame U-V colour (or derived specific star formation rate, SSFR) properties. We confirm a bimodality in the U-V colour and SSFR of the galaxy sample up to z\sim 3. This bimodality is used to compute the LFs of the blue/late and red/early subsamples. The LFs of the blue/late and total samples are well represented by steep Schechter functions evolving in luminosity with increasing redshifts. The volume density of the LFs of the red/early populations decreases with increasing redshift. The shape of the red/early LFs shows an excess of faint red dwarfs with respect to the extrapolation of a flat Schechter function and can be represented by the sum of two Schechter functions. Our model for galaxy formation in the hierarchical clustering scenario, which also includes external feedback due to a diffuse UV background, shows a general broad agreement with the LFs of both populations, the larger discrepancies being present at the faint end for the red population. Hints on the nature of the red dwarf population are given on the basis of their stellar mass and spatial distributions.Comment: accepted for publication in A&A. Uses aa.cls, 13 pages, 11 figure

    UV slope of z\sim3 bright (L>LL>L^{*}) Lyman-break galaxies in the COSMOS field

    Get PDF
    We analyse a unique sample of 517 bright (L>LL>L^{*}) LBGs at redshift z\sim3 in order to characterise the distribution of their UV slopes β\beta and infer their dust extinction under standard assumptions. We exploited multi-band observations over 750 arcmin2^2 of the COSMOS field that were acquired with three different ground-based facilities: the Large Binocular Camera (LBC) on the Large Binocular Telescope (LBT), the Suprime-Cam on the SUBARU telescope, and the VIRCAM on the VISTA telescope (ULTRAVISTA DR2). Our multi-band photometric catalogue is based on a new method that is designed to maximise the signal-to-noise ratio in the estimate of accurate galaxy colours from images with different point spread functions (PSF). We adopted an improved selection criterion based on deep Y-band data to isolate a sample of galaxies at z3z\sim 3 to minimise selection biases. We measured the UV slopes (β\beta) of the objects in our sample and then recovered the intrinsic probability density function of β\beta values (PDF(β\beta)), taking into account the effect of observational uncertainties through detailed simulations. The galaxies in our sample are characterised by mildly red UV slopes with 1.70\simeq -1.70 throughout the enitre luminosity range that is probed by our data (24M160021-24\lesssim M_{1600}\lesssim -21). The resulting dust-corrected star formation rate density (SFRD) is log(SFRD)1.6M/yr/Mpc3log(SFRD)\simeq-1.6 M_{\odot}/yr/Mpc^{3}, corresponding to a contribution of about 25% to the total SFRD at z\sim3 under standard assumptions. Ultra-bright LBGs at z3z \sim 3 match the known trends, with UV slopes being redder at decreasing redshifts, and brighter galaxies being more highly dust extinct and more frequently star-forming than fainter galaxies. [abridged]Comment: Matched to journal version. 11 pages, 13 figures, Astronomy & Astrophysics in pres
    corecore