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Abstract ─ In this work a novel approach is presented  

for topology optimization of electromagnetic devices. In 

particular a surrogate model based on Deep Neural 

Networks with encoder-decoder architecture is introduced. 

A first autoencoder learns to represent the input images 

that describe the topology, i.e., geometry and materials. 

The novel idea is to use the low dimensional latent space 

(i.e., the output space of the encoder) as the search space 

of the optimization algorithm, instead of using the higher 

dimensional space represented by the input images. A 

second neural network learns the relationship between 

the encoder outputs and the objective function (i.e., an 

electromagnetic quantity that is crucial for the design of 

the device) which is calculated by means of a numerical 

analysis. The calculation time for the optimization is 

greatly improved by reducing the dimensionality of the 

search space, and by introducing the surrogate model, 

whereas the quality of the result is slightly affected.  

 

Index Terms ─ Deep neural networks, surrogate model, 

topology optimization. 
 

I. INTRODUCTION 
Design optimization of electromagnetic (EM) 

devices based on field computation is nowadays of 

interest both for research and industries. The conventional 

approach usually faces the following main challenges:  

 It is often difficult to set an adequate design 

space that includes a solution with satisfactory 

performance, as the design variables introduced 

by the user restrict the ability of the 

optimization models to deal with any arbitrary 

change in the design of a machine;  

 when numerical models are used to calculate 

the EM fields (i.e., in the majority of the cases 

since an analytical solution is rarely available), 

the computational burden resulting from 

repeated simulations is often excessive.  

In some specific cases, when the optimization is not 

limited to a reduced set of parameters, the first problem 

can be overcome by topology optimization [1], which 

does not require the definition of the design variables. In 

fact, geometries and materials are flexibly represented 

using a bitmap approach, which describes the device (or 

the part of the device that needs to be optimized) as a  

set of pixels. In addition, different materials could be 

represented by different colors (or grayscale levels). This 

allows free modification of material boundaries, that 

could be characterized also by the appearance of holes  

in the design region, resulting in new shapes which  

may outperform conventional design. The remarkable 

drawback is the increased dimensionality of the 

optimization search space, related to the bitmap 

resolution and color space.  

The second problem has led to the development of 

several surrogate models to aid the optimization process 

[2], [3]. Extensive research has been carried out in the 

field of magnetic equivalent circuits and neural networks, 

based on curve fitting, to partially or completely bypass 

computing the field solution using numerical techniques 

(often Finite Element Analysis, FEA). Most of these 

methods are usually suitable for specific types of 

problems and describe systems with very few parameters, 

i.e., they suffer of the first issue. 

Some preliminary studies used deep learning 

Convolutional Neural Networks (CNNs) as surrogate 

models for the computation of EM quantities [4]. In fact, 

CNNs have excellent capability in extracting relevant 

features from the input image and relating them to a 

desired output EM quantity. However, evolutionary 

optimization algorithms are not as well suited as deep 

neural networks to deal with high dimensional bitmaps 

as search space.  

The motivation of this work is the need to reduce  

the dimensionality of the search space for topology 

optimization. In particular, we exploit the feature 

extraction capabilities of a CNN based autoencoder that 

learns from the space of input bitmaps, and the encoded 

space (also called latent space) is used as the search 

space for the optimization.  

The main contributions of this paper are summarized 

as follows:  

 The evolutionary optimization algorithm works 

in the latent space that represents the original 

high dimensional bitmap space almost perfectly; 

 A new neural network surrogate model approach  
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is proposed and applied during optimization, 

reducing the time cost for calculating the 

numerical solution;  

 The constraints are defined both in the encoded 

space and in the decoded (original) space.  

The proposed method is applied here to a 2D test 

case, similar to the one shown in [5]: the shape of  

a “magnetic channel” is optimized, with the aim of 

maximizing the magnetic energy on a target zone. The 

2D simulations are performed with a commercial code, 

and the results show that the proposed procedure can 

speed up optimization procedures. 

 

II. AUTOENCODER FOR 

DIMENSIONALITY REDUCTION AND 

SURROGATE MODEL 

A. Autoencoder for dimensionality reduction 

The term autoencoder [6], shown in Fig. 1, is usually 

referred to an unsupervised neural network composed by 

an encoder, that maps the input space (usually of large 

dimension, for instance an image) to a reduced number of 

features, denoted as code or latent space, and a decoder 

that maps the latent variables back to the original data.  

The dimensionality reduction (i.e., compression) 

made by the encoder is learned in order to minimize the 

error between the decoder output and original input, i.e., 

the reconstruction error. Then, the latent representation 

can be considered as a reduced feature space that fully 

describes the original high dimensional input space.  

 

 
 

Fig. 1. Typical structure of an autoencoder. 

 

The main idea of this proposal is to train the 

autoencoder with a proper set of bitmaps describing 

different geometries of the system to be optimized (i.e., 

different design solutions). At the end of the training 

period, the autoencoder has created a consistent 

representation in the latent space of the different 

geometries. 

For the readers that might not be familiar with the 

structure of an autoencoder, it can be described, in its 

simplest form, by a set of equations; given one hidden 

layer, the encoder stage takes the input 𝒙 ∈ ℝ𝑛 and maps 

it to 𝒉 ∈ ℝ𝑝 according to: 
 

 𝒉 = 𝜎(𝑾𝒙 + 𝒃), (1) 
 

where the image 𝒉 is usually referred to as code, and the 

space of 𝒉 is the latent space. With the same terminology 

usually used for neural networks, 𝜎, 𝑾, 𝒃 respectively are 

the sigmoidal activation function, the weight matrix and a 

bias vector that will be learned during the training process. 

The decode stage of the autoencoder maps 𝒉 to the 

reconstruction 𝒙′: 
 

  𝒙′ = 𝜎′(𝑾′𝒉 + 𝒃′),  (2) 
 

in which 𝜎′, 𝑾′, 𝒃′ are not necessarily related to the 

corresponding quantities of equation (2). 

During the training phase, the autoencoder is trained 

to minimise the reconstruction error, explained as follows: 
 

ℒ(𝒙, 𝒙′) = ‖𝒙 − 𝒙′‖2 = 

= ‖𝒙 − 𝜎′(𝑾′(𝜎(𝑾𝒙 + 𝒃)) + 𝒃′) ‖
2

. (3) 
 

Once this is done, the optimization is performed in 

the latent space, hence working with a lower number of 

parameters to be optimized.  

The main issue here is the lack of physical meaning 

of the latent space entries. For this reason, an additional 

surrogate neural network model is needed. 

In order to well represent the input space the 

autoencoder needs to be trained with a large variety of 

geometries, including shapes that correspond to low 

performance designs. The latent space corresponding to 

the training data is then analyzed by means of determining 

the upper and lower bounds of each latent variable. These 

bounds are used in the following as constraints for the 

optimization, which will be performed in the space of the 

latent variables. It is important to note that decoder and 

encoder networks are tightly interconnected, and cannot 

be adopted separately, and that a properly trained 

autoencoder ensures univocity of mapping of training 

data. 
 

B. Surrogate neural network model 

For each image (design solution) of the training  

set we pre-calculated the corresponding EM quantity to  

be optimized by means of a FEA (but any other 

computational technique could be used). A second neural 

network based surrogate model is also trained using the 

latent representation of the corresponding geometry as 

input, and the desired quantity as output. This approach 

allows the surrogate model to benefit from the 

dimensionality reduction provided by the autoencoder.  

The role of the surrogate model is to provide a  

fast prediction of the objective function, bypassing the 

expensive numerical computation. The surrogate model is 

trained offline before optimization, and it is also updated 

online using the new input-output pairs generated during 

the optimization process.  

Figure 2 shows two neural networks architectures, 

in the typical graphical representation showing the 

inputs, the weights and the activation functions. In 

particular, the top part of Fig. 2 shows the autoencoder 

having dimensionality from 100 to 20 (these numbers  

are the ones used in the test case), while the bottom of 

Fig. 2 shows the surrogate model having as input the  
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20 variables of the decoder’s latent space and as output 

the desired EM quantity Tem (a standard feed forward  

NN with one hidden layer, [7]). The whole structure 

represented in Fig. 2, is a Deep Neural Network 

architecture. 

 

 
 

Fig. 2. Top: autoencoder; bottom: surrogate model 

structure. 

 

III. OPTIMIZATION 
As explained before, the optimization is carried  

out in the latent space, working on the reduced set of 

parameters. As in any optimization process, a fitness 

function has to be calculated at each step. The main 

advantage in using the proposed approach, is that at  

each iteration the calculation of the fitness function is  

not performed through a time-consuming numerical 

solution, but by the surrogate neural network model. This 

procedure might lead, though, to meaningless solution, 

because working in the latent space of the autoencoder 

does not allow the imposition of constraints to the 

physical variables.  

For this reason, the authors propose an approach that 

will be explained later in this section. 

In the literature, when dealing with topology 

optimization, Genetic Algorithms (GA) are often used; 

in this formulation, an evolutionary optimization 

algorithm, previously proposed by the authors is used 

[8], which is based on self-organizing maps, SOM,  

and denoted as self-organizing centroids optimization, 

SOC-opt. It was shown that SOC-opt outperforms many 

standard evolutionary optimization algorithms in a 

number of benchmarks. The algorithm uses a population 

of fixed size, and implements selection and mutation 

operators.  

In the following descriptions, we will refer to a FEA, 

since this is the numerical method used in our test case; 

the set of the pre-calculated FEA solutions (that are used 

to train the autoencoder), are included in a set that we 

call FEAdata. 

The optimization is carried out as follows: 

1. Initialize the population in the latent space 

randomly within the bounds of the latent 

variables;  

2. Provide each solution to the surrogate model in 

order to calculate the corresponding torque;  

3. Calculate the new population of feasible 

solutions;  

4. Divide the population in two subsets: subset1 

(eventually empty) contains individuals to be 

simulated with FEA, subset2 the remaining 

population;  

5. Decompress each individual of subset1 to the 

corresponding bitmap using the decoder section 

of the autoencoder, provide the bitmap to the 

FEA software to calculate the fitness function, 

update the surrogate model with such solutions, 

add the solutions to FEAdata;  

6. Provide each individual of subset2 to the 

surrogate model in order to calculate the 

corresponding fitness function;  

7. Iterate steps 3 to 6 until a stop criterion is 

verified.  

The classifications of the individuals either in 

subset1 or in subset2 is carried out by means of the 

following heuristic strategy: a point is included in 

subset2 if it is located in the FEAdata convex hull; on 

the contrary, if the individual it is outside the convex hull 

then the fitness function is evaluated through a regular 

FEA analysis (subset1). The criterion is graphically shown 

in Fig. 3.  

 

 
 

Fig. 3. Fitness function calculation criterion. 

 

IV. TEST CASE 

A. Description of the magnetostatics problem 

The performance of the method has been tested on a 

simple magnetostatics test case, very similar to the test 

case shown in [5]. 

In particular, we perform the optimization of the 

distribution of the magnetic material 𝜇𝑟 = 1000 in the 

design domain: practically speaking the objective of this 

optimization is maximizing the energy in the target 

domain finding the best feasible shape for the magnetic 

circuits. The source of the magnetic field is a permanent 

magnet characterized by a remnant flux density 𝐵𝑟 =
1𝑇, while the target domain is characterized by a 

rectangular shape of 𝜇𝑟 = 1 above a rectangle of 

ferromagnetic material 𝜇𝑟 = 5000. At first sight it is 

evident that the solution has to be in the form of a 

ferromagnetic channel connecting the permanent magnet 

and the target region. The presence of the iron below the  
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target and the presence of the airgap between the design 

domain and the target make the problem non-trivial. 

Figure 4 shows a simple outline of the problem. 

 

 
 

Fig. 4. Description of the test case. 

 

B. Autoencoder training 

The proper training set has been obtained by 

randomly generate 104 geometries, represented by 10x10 

matrices in which each single entry can be either 1 or 0 

(ferromagnetic material or vacuum). In order to have 

physically reasonable geometries, the following constraints 

have been imposed: a) the ferromagnetic material be 

characterized by a connected shape, b) 40% of the design 

space must be filled by the ferromagnetic material. 

 

 
 

Fig. 5. Example of randomly generated geometries with 

the above mentioned constraints. 

 

Starting from a dimension of 100 inputs (the number 

of “pixels” of each image), the latent space is 

characterized by a dimension of 20 variables and a 5-fold 

cross validation on the reconstruction error has been 

evaluated. Figure 5 shows few of the randomly generated 

geometries, while Fig. 6 shows the relative reconstructed 

images. In particular Fig. 6 is related to a continuous 

output (between 0 and 1): a proper threshold is then 

needed to move back to the materials discrete space (1 or 

0). In this case the chosen threshold value is 0.5 and used 

in Figs. 8 and 9. 

The ability of the autoencoder to well represent the 

original information can be easily verified. 

 
 

Fig. 6. Reconstructed geometries. 

 

C. Neural network surrogate model training 

The neural network surrogate model should be  

able to estimate the energy in the target zone from the 

geometry as represented in the latent space: for this 

reason, the input to the neural network has dimension 20 

(latent space variables), while the output has dimension 

1 (energy in the target area).  

The same randomly generated 104 geometries  

have been simulated with Comsol, a commercial FEM 

software: each simulation (that includes magnetic field 

calculation and the evaluation of the magnetic energy in 

the target area) takes about 2s on an Intel I7 – 6 cores 4.0 

GHz CPU. 

Figure 7 shows the accuracy of the surrogate model 

with respect to the results obtained by the FEM model 

for 1100 geometries that have not been used for the 

neural network training: it is evident that the output of 

the surrogate model is accurate, and it can be used in the 

optimization algorithm.  

Each evaluation of the target energy by the use  

of the surrogate model costs about 40𝜇𝑠, 5 ∙ 105 times 

faster than the corresponding FEM solution. 

 

 
 

Fig. 7. Comparison between target energy calculated by 

FEM and by neural network model. 

 

D. Optimization procedure results 

The SOC-Opt optimization algorithm explained in  
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Section III has been implemented. The results relative to 

one optimization procedure (considering a stopping 

criteria of 105 global evaluations) are shown in Figs. 8 

and 9. Figure 8 shows the field map and flux lines 

relative to the best solution among the original random 

geometries (target energy 0.0116 J), while Fig. 9 shows 

the same quantities relative the optimization procedure 

(target energy 0.01306J). 

 

 
 

Fig. 8. Field map (B) and flux lines relative to the best 

solution among the initial pre-calculated random 

geometries. 

 

 
 

Fig. 9. Field map (B) and flux lines relative to the best 

solution after the optimization procedure. 

 

The increase of the energy in the target region shows 

that the optimization procedure has reached its goal. 

There is no analytical solution to the problem, so we 

have no guarantee that the reached solution is a local or 

a global optimal (even though the SOC-Opt algorithm is 

robust in this point of view), and there might be different 

geometries giving practically coincident target energies. 

However, after numerous optimization procedures, the 

one shown in Fig. 9 is the best result obtained in terms 

of final energy. 

Table 1 shows the CPU time required for training 

and for optimization, in which only 500 cases over 105 

were outside the convex hull of the autoencoder (hence 

needed a FEA evaluation). 

It is evident that the cost of the initial pre-calculated 

solutions is not negligible and it is a price to pay 

whenever neural networks to be trained are present.  

In this case, given the specific problem (basically no 

geometrical shape constraint) the number of iterations of 

the optimization procedure is one order of magnitude 

higher than the pre-calculated FEA solution, hence the 

final CPU time effort is positively affected by the use of 

proposed technique 

 

Table 1: CPU time for training and optimization 

Evaluations Time 

104 FEA Solutions  

(pre-calculated) 
2 ∙ 104𝑠 

99500 surrogate model 

(optimization) 
4𝑠 

500 FEA solutions 

(optimization) 
1000s 

 

V. CONCLUSION 
Optimizing an EM device in the latent 

representation space of an autoencoder has shown to  

be a promising approach, allowing the flexibility of 

topology optimization and reducing the dimensionality 

of both the search space and the surrogate model. 

Through the decoder it is possible to observe the 

solutions, and the introduction of a surrogate model 

approach, which also works in the latent space, reduces 

the number of required FEA simulations. Further work 

will be devoted to study the potential application in the 

case of multiobjective optimization.  
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