343 research outputs found

    Exact Ward-Takahashi identity for the lattice N=1 Wess-Zumino model

    Full text link
    The lattice Wess-Zumino model written in terms of the Ginsparg-Wilson relation is invariant under a generalized supersymmetry transformation which is determined by an iterative procedure in the coupling constant. By studying the associated Ward-Takahashi identity up to order g2g^2 we show that this lattice supersymmetry automatically leads to restoration of continuum supersymmetry without fine tuning. In particular, the scalar and fermion renormalization wave functions coincide.Comment: 6 pages, 5 figures, Talk given at QG05, Cala Gonone, Sardinia, Italy. 12-16 September 200

    The TASCC of Secretion

    Get PDF
    Author Manuscript 2012 July 05The oncogene-induced activation of signaling pathways involving the tumor suppressor proteins p53 and retinoblastoma is likely an important mechanism for preventing the proliferation of potential cancer cells (1, 2). This activation causes cells to exit the cell division cycle and enter a senescent state, which is characterized by major changes in chromatin structure that are thought to render senescence irreversible. Despite the absence of proliferation, senescent cells are not as quiescent as first thought, as they signal to their surrounding environment by activating a protein secretion program (3, 4). On page 966 of this issue, Narita et al. (5) show that to enable this secretory state, a senescent cell profoundly reorganizes its endomembrane system

    Three Dimensional N=2 Supersymmetry on the Lattice

    Full text link
    We show how 3-dimensional, N=2 supersymmetric theories, including super QCD with matter fields, can be put on the lattice with existing techniques, in a way which will recover supersymmetry in the small lattice spacing limit. Residual supersymmetry breaking effects are suppressed in the small lattice spacing limit by at least one power of the lattice spacing a.Comment: 21 pages, 2 figures, typo corrected, reference adde

    About the realization of chiral symmetry in QCD2

    Get PDF
    Two dimensional massless Quantum Chromodynamics presents many features which resemble those of the true theory. In particular the spectrum consists of mesons and baryons arranged in flavor multiplets without parity doubling. We analyze the implications of chiral symmetry, which is not spontaneously broken in two dimensions, in the spectrum and in the quark condensate. We study how parity doubling, an awaited consequence of Coleman's theorem, is avoided due to the dimensionality of space-time and confinement. We prove that a chiral phase transition is not possible in the theory.Comment: 9 pages, latex, ftuv/92-

    Spin-Pseudospin Coherence and CP3^{3} Skyrmions in Bilayer Quantum Hall Ferromagnets

    Full text link
    We analyze bilayer quantum Hall ferromagnets, whose underlying symmetry group is SU(4). Spin-pseudospin coherence develops spontaneously when the total electron density is low enough. Quasiparticles are CP^3 skyrmions. One skyrmion induces charge modulations on both of the two layers. At the filling factorν=2/m\nu =2/m one elementary excitation consists of a pair of skyrmions and its charge is 2e/m2e/m. Recent experimental data due to Sawada et al. [Phys. Rev. Lett. {\bf 80}, 4534 (1998)] support this conclusion.Comment: 4 pages including 2 figures (published version

    The massive CPN1CP^{N-1} model for frustrated spin systems

    Full text link
    We study the classical SU(N)U(1)/SU(N1)U(1){SU(N)\otimes U(1)/SU(N-1)\otimes U(1)} Non Linear Sigma model which is the continuous low energy effective field theory for NN component frustrated spin systems. The β\beta functions for the two coupling constants of this model are calculated around two dimensions at two loop order in a low temperature expansion. Our study is completed by a large NN analysis of the model. The β\beta functions for the coupling constants and the mass gap are calculated in all dimensions between 2 and 4 at order 1/N{1/N}. As a main result we show that the standard procedure at the basis of the 1/N1/N expansion leads to results that partially contradict those of the weak coupling analysis. We finally present the procedure that reconciles the weak coupling and large NN analysis, giving a consistent picture of the expected scaling of frustrated magnets.Comment: 55 pages, Late

    Matrix formulation of superspace on 1D lattice with two supercharges

    Full text link
    Following the approach developed by some of the authors in recent papers and using a matrix representation for the superfields, we formulate an exact supersymmetric theory with two supercharges on a one dimensional lattice. In the superfield formalism supersymmetry transformations are uniquely defined and do not suffer of the ambiguities recently pointed out by some authors. The action can be written in a unique way and it is invariant under all supercharges. A modified Leibniz rule applies when supercharges act on a superfield product and the corresponding Ward identities take a modified form but hold exactly at least at the tree level, while their validity in presence of radiative corrections is still an open problem and is not considered here.Comment: 25 page

    The 1/N1/N Expansion and Spin Correlations in Constrained Wavefunctions

    Full text link
    We develop a large-N expansion for Gutzwiller projected spin states. We consider valence bonds singlets, constructed by Schwinger bosons or fermions, which are variational ground states for quantum antiferromagnets. This expansion is simpler than the familiar expansions of the quantum Heisenberg model, and thus more instructive. The diagrammatic rules of this expansion allow us to prove certain identities to all orders in 1/N. We derive the on-site spin fluctuations sum rule for arbitrary N. We calculate the correlations of the one dimensional Valence Bonds Solid states and the Gutzwiller Projected Fermi Gas upto order 1/N. For the bosons case, we are surprised to find that the mean field, the order 1/N and the exact correlations are simply proportional. For the fermions case, the 1/N correction enhances the zone edge singularity. The comparison of our leading order terms to known results for N=2, enhances our understanding of large-N approximations in general.Comment: 36 pages, LaTe

    Four Dimensional Black Holes in String Theory

    Full text link
    Exact solutions of heterotic string theory corresponding to four-dimensional charge Q magnetic black holes are constructed as tensor products of an SU(2)/Z(2Q+2) WZW orbifold with a (0,1) supersymmetric SU(1,1)/U(1) WZW coset model. The spectrum is analyzed in some detail. ``Bad'' marginal operators are found which are argued to deform these theories to asymptotically flat black holes. Surprising behaviour is found for small values of Q, where low-energy field theory is inapplicable. At the minimal value Q=1, the theory degenerates. Renormalization group arguments are given that suggest the potential gravitational singularity of the low-energy field theory is resolved by a massive two-dimensional field theory. At Q=0, a stable, neutral ``remnant,'' of potential relevance to the black hole information paradox, is found.Comment: 37 pages + 1 figure (tar compressed and uuencoded

    Exact Solutions of Berkovits' String Field Theory

    Full text link
    The equation of motion for Berkovits' WZW-like open (super)string field theory is shown to be integrable in the sense that it can be written as the compatibility condition ("zero-curvature condition") of some linear equations. Employing a generalization of solution-generating techniques (the splitting and the dressing methods), we demonstrate how to construct nonperturbative classical configurations of both N=1 superstring and N=2 fermionic string field theories. With and without u(n) Chan-Paton factors, various solutions of the string field equation are presented explicitly.Comment: 1+20 pages, LaTeX; v2: typos fixed, version to appear in Nucl. Phys.
    corecore