1,896 research outputs found

    Nucleosynthesis and mixing on the Asymptotic Giant Branch. III. Predicted and observed s-process abundances

    Get PDF
    We present the results of s-process nucleosynthesis calculations for AGB stars of different metallicities and initial masses. The computations were based on previously published stellar evolutionary models that account for the III dredge up phenomenon occurring late on the AGB. Neutron production is driven by the 13C(alpha,n)16O reaction during the interpulse periods in a tiny layer in radiative equilibrium at the top of the He- and C-rich shell. The s-enriched material is subsequently mixed with the envelope by the III dredge up, and the envelope composition is computed after each thermal pulse. We follow the changes in the photospheric abundance of the Ba-peak elements (heavy s, or `hs') and that of the Zr-peak ones (light s, or `ls'), whose logarithmic ratio [hs/ls] has often been adopted as an indicator of the s-process efficiency. The theoretical predictions are compared with published abundances of s elements for Galactic AGB giants of classes MS, S, SC, post-AGB supergiants, and for various classes of binary stars. The observations in general confirm the complex dependence of n captures on metallicity. They suggest that a moderate spread exists in the abundance of 13C that is burnt in different stars. Although additional observations are needed, a good understanding has been achieved of s-process operation in AGB. The detailed abundance distribution including the light elements (CNO) of a few s-enriched stars at different metallicity are examined.Comment: Accepted for ApJ, 59 pages, 19 figures, 5 table

    The effects of a revised 7^7Be e−^--capture rate on solar neutrino fluxes

    Get PDF
    The electron-capture rate on 7^7Be is the main production channel for 7^7Li in several astrophysical environments. Theoretical evaluations have to account for not only the nuclear interaction, but also the processes in the plasma where 7^7Be ions and electrons interact. In the past decades several estimates were presented, pointing out that the theoretical uncertainty in the rate is in general of few percents. In the framework of fundamental solar physics, we consider here a recent evaluation for the 7^7Be+e−^- rate, not used up to now in the estimate of neutrino fluxes. We analysed the effects of the new assumptions on Standard Solar Models (SSMs) and compared the results obtained by adopting the revised 7^7Be+e−^- rate to those obtained by the one reported in a widely used compilation of reaction rates (ADE11). We found that new SSMs yield a maximum difference in the efficiency of the 7^7Be channel of about -4\% with respect to what is obtained with the previously adopted rate. This fact affects the production of neutrinos from 8^8B, increasing the relative flux up to a maximum of 2.7\%. Negligible variations are found for the physical and chemical properties of the computed solar models. The agreement with the SNO measurements of the neutral current component of the 8^8B neutrino flux is improved.Comment: 7 pages, 3 figures, 4 tables. Accepted for the publication on A&

    On the Origin of the Early Solar System Radioactivities. Problems with the AGB and Massive Star Scenarios

    Get PDF
    Recent improvements in stellar models for intermediate-mass and massive stars are recalled, together with their expectations for the synthesis of radioactive nuclei of lifetime τ≲25\tau \lesssim 25 Myr, in order to re-examine the origins of now extinct radioactivities, which were alive in the solar nebula. The Galactic inheritance broadly explains most of them, especially if rr-process nuclei are produced by neutron star merging according to recent models. Instead, 26^{26}Al, 41^{41}Ca, 135^{135}Cs and possibly 60^{60}Fe require nucleosynthesis events close to the solar formation. We outline the persisting difficulties to account for these nuclei by Intermediate Mass Stars (2 ≲\lesssim M/M⊙≲7−8_\odot \lesssim 7 - 8). Models of their final stages now predict the ubiquitous formation of a 13^{13}C reservoir as a neutron capture source; hence, even in presence of 26^{26}Al production from Deep Mixing or Hot Bottom Burning, the ratio 26^{26}Al/107^{107}Pd remains incompatible with measured data, with a large excess in 107^{107}Pd. This is shown for two recent approaches to Deep Mixing. Even a late contamination by a Massive Star meets problems. In fact, inhomogeneous addition of Supernova debris predicts non-measured excesses on stable isotopes. Revisions invoking specific low-mass supernovae and/or the sequential contamination of the pre-solar molecular cloud might be affected by similar problems, although our conclusions here are weakened by our schematic approach to the addition of SN ejecta. The limited parameter space remaining to be explored for solving this puzzle is discussed.Comment: Accepted for publication on Ap

    Magnetic-buoyancy-induced mixing in AGB stars: Fluorine nucleosynthesis at different metallicities

    Get PDF
    DV and SC acknowledge S. Bagnulo for fruitful discussions. DV acknowledges financial support from the German-Israeli Foundation (GIF No. I-1500-303.7/2019). CA acknowledges financial support from the Agencia Estatal de Investigacion of the Spanish Ministerio de Ciencia e Innovacion through the FEDER founds projects PGC2018-095317-B-C2.Asymptotic giant branch (AGB) stars are considered to be among the most significant contributors to the fluorine budget in our Galaxy. While observations and theory agree at close-to-solar metallicity, stellar models at lower metallicities overestimate the fluorine production with respect to that of heavy elements. We present F-19 nucleosynthesis results for a set of AGB models with different masses and metallicities in which magnetic buoyancy acts as the driving process for the formation of the C-13 neutron source (the so-called C-13 pocket). We find that F-19 is mainly produced as a result of nucleosynthesis involving secondary N-14 during convective thermal pulses, with a negligible contribution from the N-14 present in the C-13 pocket region. A large F-19 production is thus prevented, resulting in lower fluorine surface abundances. As a consequence, AGB stellar models with mixing induced by magnetic buoyancy at the base of the convective envelope agree well with available fluorine spectroscopic measurements at low and close-to-solar metallicity.German-Israeli Foundation for Scientific Research and Development I-1500-303.7/2019Agencia Estatal de Investigacion of the Spanish Ministerio de Ciencia e Innovacion through the FEDER founds projects PGC2018-095317-B-C

    Rebrote, rendimiento y nutrición de Leymus chinensis y Hordeum brevisubulatum en respuesta a la frecuencia e intensidad de defoliación

    Get PDF
    The effects of different defoliation intensities and frequencies were studied on regrowth and herbage mass of Leymus chinensis and Hordeum brevisubulatum in northeast China for two years. Plants were defoliated to 6, 8 or 10 cm stubble height by removing about 40% of growth down to each designated defoliation height. In the first year, L. chinensis was defoliated 22, 17 or 13 times, and in the second year was defoliated 21, 15 or 15 times to reach 6, 8 or 10 cm stubble height treatments, respectively. H. brevisubulatum was defoliated 26, 21 or 15 times in the first year, and 28, 23 or 21 times in the second year to reach the 6, 8 or 10 cm stubble, respectively. L. chinensis was more productive than H. brevisubulatum, but H. brevisubulatum showed a better forage quality than L. chinensis because H. brevisubulatum showed a higher leaf to stem ratio and crude protein concentration than L. chinensis. Both species produced the highest yield, but the lowest quality when defoliated to 10 cm stubble. There were no significant differences in water soluble carbohydrate (WSC) concentrations in below-ground culm and rhizome tissues between defoliation heights, but L. chinensis had a higher WSC concentration than H.brevisubulatum.Fil: Song, Y.. Dalian Minzu University. College of Environment and Bioresources; ChinaFil: Busso, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaFil: Yu, Y.. China National Environmental Monitoring Center; ChinaFil: Wang, P.. Northeast Normal University. School of Environment; ChinaFil: Wuyunna. Dalian Minzu University. College of Environment and Bioresources; ChinaFil: Zhou, D.. Chinese Academy of Sciences; República de Chin

    Elemental abundances of intermediate age open cluster NGC 3680

    Full text link
    We present a new abundance analysis of the intermediate age Galactic open cluster NGC 3680, based on high resolution, high signal-to-noise VLT/UVES spectroscopic data. Several element abundances are presented for this cluster for the first time, but most notably we derive abundances for the light and heavy s-process elements Y, Ba, La, and Nd. The serendipitous measurement of the rare-earth r-process element Gd is also reported. This cluster exhibits a significant enhancement of Na in giants as compared to dwarfs, which may be a proxy for an O to Na anti-correlation as observed in Galactic globular clusters but not open clusters. We also observe a step-like enhancement of heavy s-process elements towards higher atomic number, contrary to expectations from AGB nucleosynthesis models, suggesting that the r-process played a significant role in the generation of both La and Nd in this clusterComment: 8 pages, 6 figures, accepted for publication in MNRA

    HD 11397 and HD 14282 - Two new barium stars?

    Full text link
    We have performed a detailed abundance analysis of the content of s-process elements of two dwarf stars with suspected overabundace of those elements. Such stars belong to a special kinematic sample of the solar neighborhood, with peculiar kinematics and different chemical abundances when compared to "normal" disk stars. We aim to define if those stars can be identified as barium stars, based on their s-process elements abundances, and their classification, i.e., if they share their chemical profile with strong or mild barium stars. We also intend to shed light on the possible origins of the different kinds of barium stars. Spectra have been taken by using the FEROS spectrograph at the 1.52m telescope of ESO, La Silla. Abundances have been derived for 18 elements, by matching the synthetic profile with the observed spectrum. We have found that HD 11397 shows a mild enhancement for most of the s-process elements as well as for some r-process elements. This star seems to share its abundance profile with the mild Ba-stars. Although showing some slight chemical anomalies for Y, Sr, Mo, and Pb, HD 14282 depicts a chemical pattern similar to the normal stars with slight s-process enhancements.Comment: 11 pages, 5 figure

    Theoretical estimate of the half-life for the radioactive 134^{134}Cs and 135^{135}Cs in astrophysical scenarios

    Get PDF
    We analyze the 55134^{134}_{55}Cs→56134\rightarrow^{134}_{56}Ba and 55135^{135}_{55}Cs→56135\rightarrow^{135}_{56}Ba β−\beta^- decays, which are crucial production channels for Ba isotopes in Asymptotic Giant Branch (AGB) stars. We reckon, from relativistic quantum mechanis, the effects of multichannel scattering onto weak decays, including nuclear and electronic excited states (ES) populated above ≃\simeq 10 keV, for both parent and daughter nuclei. We find increases in the half-lives for T>108T>10^8 K (by more than a factor 3 for 134^{134}Cs) as compared to previous works based on systematics. We also discuss our method in view of these previous calculations. An important impact on half-lives comes from nuclear ES decays, while including electronic temperatures yields further increases of about 20\% at energies 10-30 keV, typical of AGB stars of moderate mass (M≲8 M⊙M \lesssim 8~M_{\odot}). Despite properly considering these effects, the new rates remain sensitively lower than the TY values, implying longer half-lives at least above 8-9 keV. Our rate predictions are in substantial accord with recent results based on the shell model, and strongly modify branching ratios along the ss-process path previously adopted. With our new rate, nucleosynthesis models well account for the isotopic admixtures of Ba in presolar SiC grains and in the Sun.Comment: 15 pages, 3 figures, 5 tables. Accepted for publication in Ap
    • …
    corecore