3,800 research outputs found
Controlling circular polarization of light emitted by quantum dots using chiral photonic crystal slab
We study the polarization properties of light emitted by quantum dots that
are embedded in chiral photonic crystal structures made of achiral planar GaAs
waveguides. A modification of the electromagnetic mode structure due to the
chiral grating fabricated by partial etching of the wave\-guide layer has been
shown to result in a high circular polarization degree of the quantum
dot emission in the absence of external magnetic field. The physical nature of
the phenomenon can be understood in terms of the reciprocity principle taking
into account the structural symmetry. At the resonance wavelength, the
magnitude of is predicted to exceed 98%. The experimentally achieved
value of % is smaller, which is due to the contribution of
unpolarized light scattered by grating defects, thus breaking its periodicity.
The achieved polarization degree estimated removing the unpolarized nonresonant
background from the emission spectra can be estimated to be as high as 96%,
close to the theoretical prediction
Electronic structure and magnetic properties of the spin-1/2 Heisenberg system CuSe2O5
A microscopic magnetic model for the spin-1/2 Heisenberg chain compound
CuSe2O5 is developed based on the results of a joint experimental and
theoretical study. Magnetic susceptibility and specific heat data give evidence
for quasi-1D magnetism with leading antiferromagnetic (AFM) couplings and an
AFM ordering temperature of 17 K. For microscopic insight, full-potential DFT
calculations within the local density approximation (LDA) were performed. Using
the resulting band structure, a consistent set of transfer integrals for an
effective one-band tight-binding model was obtained. Electronic correlations
were treated on a mean-field level starting from LDA (LSDA+U method) and on a
model level (Hubbard model). In excellent agreement of experiment and theory,
we find that only two couplings in CuSe2O5 are relevant: the nearest-neighbour
intra-chain interaction of 165 K and a non-frustrated inter-chain coupling of
20 K. From a comparison with structurally related systems (Sr2Cu(PO4)2,
Bi2CuO4), general implications for a magnetic ordering in presence of
inter-chain frustration are made.Comment: 20 pages, 8 figures, 3 table
Laser acceleration of ion beams
We consider methods of charged particle acceleration by means of
high-intensity lasers. As an application we discuss a laser booster for heavy
ion beams provided, e.g. by the Dubna nuclotron. Simple estimates show that a
cascade of crossed laser beams would be necessary to provide additional
acceleration to gold ions of the order of GeV/nucleon.Comment: 4 pages, 4 figures, Talk at the Helmholtz International Summer School
"Dense Matter in heavy Ion Collisions and Astrophysics", August 21 -
September 1, 2006, JINR Dubna, Russia; v2, misprints correcte
Методика регистрации угловых диаграмм отражения и рассеяния света прецизионных оптических поверхностей
Описано методику реєстрації кутових діаграм відбивання і розсіяння світла і показано, що за індикатрисами розсіяння при оптимальному напрямку спостереження можна оцінити шорсткість оптичних поверхонь за шириною піка, що спостерігається на фоні незмінного п’єдесталу.The technique of registration of angular diagram’s of reflexion and dispersion of light is described and is shown, that on in indicatrix dispersion at an optimum direction of supervision it is possible to estimate a roughness of optical surfaces on width of peak which is observed against an invariable pedestal.Описана методика регистрации угловых диаграмм отражения и рассеяния света и показано, что по индикатрисам рассеяния при оптимальном направлении наблюдения можно оценить шероховатость оптических поверхностей по ширине пика, который наблюдается на фоне неизменного пьедестала
Sequential decoupling of negative-energy states in Douglas-Kroll-Hess theory
Here, we review the historical development, current status, and prospects of
Douglas--Kroll--Hess theory as a quantum chemical relativistic electrons-only
theory.Comment: 15 page
Inertial mechanism: dynamical mass as a source of particle creation
A kinetic theory of vacuum particle creation under the action of an inertial
mechanism is constructed within a nonpertrubative dynamical approach. At the
semi-phenomenological level, the inertial mechanism corresponds to quantum
field theory with a time-dependent mass. At the microscopic level, such a
dependence may be caused by different reasons: The non-stationary Higgs
mechanism, the influence of a mean field or condensate, the presence of the
conformal multiplier in the scalar-tensor gravitation theory etc. In what
follows, a kinetic theory in the collisionless approximation is developed for
scalar, spinor and massive vector fields in the framework of the oscillator
representation, which is an effective tool for transition to the quasiparticle
description and for derivation of non-Markovian kinetic equations. Properties
of these equations and relevant observables (particle number and energy
densities, pressure) are studied. The developed theory is applied here to
describe the vacuum matter creation in conformal cosmological models and
discuss the problem of the observed number density of photons in the cosmic
microwave background radiation. As other example, the self-consistent evolution
of scalar fields with non-monotonic self-interaction potentials (the
W-potential and Witten - Di Vecchia - Veneziano model) is considered. In
particular, conditions for appearance of tachyonic modes and a problem of the
relevant definition of a vacuum state are considered.Comment: 51 pages, 18 figures, submitted to PEPAN (JINR, Dubna); v2: added
reference
- …
