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Abstract. A microscopic magnetic model for the spin-1/2 Heisenberg chain
compound CuSe2O5 is developed based on the results of a joint experimental and
theoretical study. Magnetic susceptibility and specific heat data give evidence
for quasi-one-dimensional (1D) magnetism with leading antiferromagnetic
(AFM) couplings and an AFM ordering temperature of 17 K. For microscopic
insight, full-potential density functional theory (DFT) calculations within the
local density approximation (LDA) were performed. Using the resulting band
structure, a consistent set of transfer integrals for an effective one-band tight-
binding model was obtained. Electronic correlations were treated on a mean-field
level starting from LDA (LSDA + U method) and on a model level (Hubbard
model). With excellent agreement between experiment and theory, we find that
only two couplings in CuSe2O5 are relevant: the nearest-neighbour intra-chain
interaction of 165 K and a non-frustrated inter-chain (IC) coupling of 20 K. From
a comparison with structurally related systems (Sr2Cu(PO4)2, Bi2CuO4), general
implications for a magnetic ordering in presence of IC frustration are made.
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1. Introduction

Low-dimensional spin-1/2 systems attract much interest due to a variety of ground states
(GSs) found in these systems which originates from an interplay between different exchange
interactions and strong quantum fluctuations. There are, for instance, the spin-Peierls GS
in CuGeO3 [1], the helical GS in LiCuVO4 [2], and the quantum critical behaviour
in Li2ZrCuO4 [3, 4] etc. Besides, many of these materials (mostly cuprates, vanadates
and titanates) appeared to be realizations of theoretically long-studied models to a good
approximation. One of the most prominent models is the spin-1/2 nearest-neighbour (NN) chain
described by the Heisenberg Hamiltonian, for which the exact solution has been derived by
Bethe [5]. The first compounds proposed to be good material realizations of this model were
Sr2CuO3 and Ca2CuO3 [6, 7]. Recently, Sr2Cu(PO4)2 and Ba2Cu(PO4)2 were suggested as even
better realizations [8]–[12], followed by a study of K2CuP2O7 [13] that qualified this compound
to be the best realization of the spin-1/2 NN Heisenberg chain to date. As a natural consequence
of its simplicity, this model poorly describes one-dimensional (1D) and quasi-1D systems where
additional interactions, like longer range couplings or anisotropies, are present. Thus, extensions
of this model are required to allow an accurate description of real materials.

The simplest extension of the model is the inclusion of a next-nearest-neighbour (NNN)
coupling J2 leading to the so-called zigzag chain model. In case of an antiferromagnetic (AFM)
J2 both NN and NNN couplings cannot be simultaneously satisfied; in other words, the system
is magnetically frustrated. Here, the intra-chain frustration enriches the phase diagram with the
spiral GS, the gapped AFM GS and a quantum critical point at J2/J1 = −0.25 [14]–[17]. The
evaluation of the two parameters in the zigzag chain model allows one to estimate quantities
which can be directly measured or derived from experiments, namely spin–spin correlation
functions, thermodynamic properties and the response in high magnetic fields. Nevertheless, this
model fails to describe phenomena like long-range magnetic ordering, since 1D or 2D systems
do not order collinearly at finite temperatures according to the Mermin–Wagner theorem [18].
Thus, to account for magnetic ordering, the inter-chain (IC) coupling has to be included in
the model. This problem has been addressed in a series of theoretical works [19]–[26], but
the simplifications that had to be made to keep the models solvable (at least approximately)
impede an accurate description of complex situations. The spin-1/2 Heisenberg chain system
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Sr2Cu(PO4)2 is the most prominent example for a huge discrepancy (two orders of magnitude)
between the theoretical (adopting a simple NN IC coupling) and the experimentally observed
ordering temperature. The origin of this discrepancy is hidden in the effects of magnetic
frustration and anisotropy, and the disentanglement of the effects is difficult. Thus, a reliable
theoretical description of this phenomenon is still lacking.

A natural way towards a deeper understanding is the search for real material realizations
of ‘easy’ models. For such systems, the experimental data can be supplemented by reliable
microscopic models. In this way, joint experimental and theoretical studies can challenge and
improve the existing theoretical approaches.

Cu2+ phosphates are to date the best realizations of the NN spin-1/2 Heisenberg chain
model [8, 10, 13] and have a great potential for the discovery of further low-dimensional
systems. Unfortunately, the experimental information about these materials is rather limited
since they are up to now available as powders only, although several attempts have been made
to grow single crystals required for advanced experimental studies.

In this paper, the structurally closely related compound, CuSe2O5, is investigated. Since
selenites are often susceptible to chemical transport, the advantage of this material is the
potential to grow large single crystals of high quality. Previous studies on a powder sample [27]
may hint at a 1D character of its magnetic properties, but the low-temperature data are strongly
affected by impurities (figure 3 in [27]). Therefore, to probe the 1D nature of the system, a new
detailed study on high quality samples with lower defect concentration is desirable.

Though the chain-like arrangement of CuO4 squares in CuSe2O5 is topologically similar to
that in Cu2+ phosphates, the geometry of magnetic coupling paths between the structural chains
is essentially different. Thus, the role of magnetic frustration, which is ruled by the IC coupling,
can be evaluated in a comparative study.

The paper is organized as follows. In section 2, we describe the synthesis, sample
characterization and experimental as well as theoretical methods used in this work. In section 3,
we discuss the crystal structure of CuSe2O5 in comparison to related systems. Section 4
reports the results of our measurements and theoretical calculations and proposes an appropriate
microscopic model. A brief summary and an outlook are given in section 5.

2. Method and sample characterization

Single crystals of CuSe2O5 were grown by chemical vapour transport using TeCl4 as a transport
agent. Using a micro-crystalline powder of CuSe2O5 (obtained from a mixture of CuO and SeO2

at 723 K) as a source, the transport experiments were carried out in an endothermic reaction
of T2 (source) 653 K to T1 (sink) 553 K.

The obtained crystals have a green colour and form strongly elongated (along [001]) plates,
which macroscopically look like needles. The typical length of a needle is 5–10 mm and the
width does not exceed 1 mm and for most crystallites it is considerably smaller. The slight
disorientation of plates forming a needle necessitates a precise x-ray diffraction measurement
on single crystals. Thus, the samples were characterized by x-ray powder diffraction and energy-
dispersive x-ray spectroscopy (EDXS) experiments. The lattice parameters of the synthesized
crystals are similar to those reported for CuSe2O5 (table 1). The results of the EDXS analysis
(Cu32.78 ± 0.31, Se67.14 ± 0.23) for 13 points (2 crystals) yield Cu : Se ≈ 0.488 ± 0.006,
close to the ideal ratio of 0.5. Thus, the obtained single crystals represent an almost pure
CuSe2O5 phase.

New Journal of Physics 11 (2009) 113034 (http://www.njp.org/)

http://www.njp.org/


4

Table 1. Comparison of measured lattice parameters a, b, c, the monoclinic angle
β and the unit cell volume V of CuSe2O5 with previously published data.

Parameter Ref. [38] Ref. [37] This work

a (Å) 12.3869 12.254 12.272
b (Å) 4.8699 4.858 4.856
c (Å) 7.9917 7.960 7.975
β (◦) 109.53 110.70 110.91
V (Å3) 447.13 443.27 443.95

Magnetization was measured in a SQUID magnetometer (1.8–350 K) in magnetic fields up
to 1 T. Heat capacity (1.8–100 K) was determined by a relaxation method up to µ0 H = 9 T.

Density functional theory (DFT) calculations were carried out using the full potential
local orbital code (FPLO) version 7.00-27 [28] for the experimental structural parameters [38].
The standard basis set and the Perdew–Wang parameterization of the exchange-correlation
potential were used [29]. Strong on-site Coulomb interaction in the Cu 3d orbitals, insufficiently
described in the LDA, was taken into account independently (i) by mapping the local
density approximation (LDA) antibonding Cu–O dpσ bands onto a tight-binding (TB) model
(Ĥ =

∑
i εi +

∑
〈i j〉σ ti j(c

†
i,σ c j,σ + H.c.)) and subsequently via a Hubbard model (Ĥ =

∑
i εi +∑

〈i j〉σ ti j(ĉi,σ ĉ†
j,σ + H.c.) + Ueff

∑
i n̂i ,↑ n̂i ,↓) onto a Heisenberg model (Ĥ =

∑
〈i j〉 Ji j ÊSi ÊS j ) (the

procedure is well justified for spin excitations in the strongly correlated limit (Ueff � ti j ) at half-
filling (〈ni〉 = 1)) and (ii) using the LSDA + U method [30] (Ud = 6.5 eV, Jd = 1 eV). For the
LDA calculations, we used a k-mesh of 1296 k-points (355 points in the irreducible wedge); for
LSDA + U calculations of supercells irreducible k-meshes of 226, 242, 147 and 126 k-points
were used. All k-meshes are well converged.

Quantum Monte Carlo (QMC) simulations were performed on N = 1200 sites clusters of
S = 1/2 spins (30 coupled chains of 40 sites each) using the ALPS software package [31].

3. Crystal structure and empirical magnetic models

Crystal structures of cuprates are often subdivided into four large groups according to their
dimensionality, which reflects how their elementary building blocks—CuO4 plaquettes (planar
or distorted)—are connected: they can be isolated (0D) or form chains (1D), layers (2D) or
frameworks (3D). Although it is true for many systems that the magnetic dimensionality follows
the dimensionality of the crystal structure, real situations are often more complex, especially for
0D cases. There, the magnetic dimensionality is ruled by (i) the orientation of neighbouring
plaquettes and (ii) the position of anion groups formed by non-magnetic atoms that bridge
the magnetic plaquettes. In most cases, the connection between structural peculiarities and the
appropriate magnetic model cannot be accounted for by applying simple empirical rules (for
instance, Goodenough–Kanamori–Anderson rules [32]–[34]).

Therefore, an almost complete understanding of the macroscopic magnetic behaviour for
a certain system of this class can be achieved only based on a relevant microscopic model.
The latter can be constructed either by using advanced experimental techniques (for instance,
inelastic neutron scattering) or theoretical (DFT) calculations. Naturally, the most reliable
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Sr2Cu(PO4)2

CuSe2O5

Bi2CuO4

φ

Figure 1. Left panel: the crystal structure of CuSe2O5. Isolated CuO4 plaquettes
(yellow) are bridged by SeO3 pyramids (grey) and form chains running along c.
The chains are closely stacked in b direction, and well separated in the a
direction. Right panel: geometry of ‘chains’ formed by isolated CuO4 plaquettes.
Neighbouring plaquettes are stacked and twisted with respect to each other
in Bi2CuO4 (top), tilted in CuSe2O5 (middle) and form planar edge-sharing
chains with every second plaquette cut out in Sr2Cu(PO4)2 (bottom). The non-
magnetic groups (BiO4, SeO3 and PO4 for Bi2CuO4, CuSe2O5 and Sr2Cu(PO4)2,
respectively) bridging the neighbouring plaquettes are not shown.

approach is the combination of such a theory and experiment. Due to the complexity of such an
analysis, it has been accomplished only for a rather limited number of real systems.

Two well studied systems of this class—Bi2CuO4 [35] and Sr2Cu(PO4)2 [8]—are both
structurally 0D cuprates, but antipodes with respect to their magnetic behaviour. A drastic
change of the magnetic coupling regime originates from the arrangement of neighbouring
plaquettes (figure 1, right panel: top and bottom): stacking (accompanied by additional twisting)
of neighbouring plaquettes on top of each other makes Bi2CuO4 a 3D magnet with TN ≈

47 K [36] while in Sr2Cu(PO4)2 the plaquettes are arranged in a planar fashion (formally
reminiscent of an edge-sharing chain with every second plaquette cut out), leading to a
pronounced 1D behaviour and a very low Néel temperature TN = 0.085 K [9]. In this context we
mention that the magnetic dimensionality of these systems is controlled by the dihedral angle
φ between neighbouring plaquettes (figure 1, right panel, middle). In CuSe2O5, the magnetic
plaquettes are isolated (like in Bi2CuO4 and Sr2Cu(PO4)2) but tilted with respect to each other
forming a dihedral angle φ of about 64◦, i.e. in between φ = 0◦ for the 3D Bi2CuO4 and φ =

180◦ for the 1D Sr2Cu(PO4)2 (figure 1, right panel). Another controlling parameter is the direct
Cu–Cu distance d . Again, CuSe2O5 with d close to 4 Å lies in between d = 2.9 Å for Bi2CuO4

and d = 5.1 Å for Sr2Cu(PO4)2. Thus, CuSe2O5 is structurally in between the two closely related
systems: the 3D magnet Bi2CuO4 and the 1D magnet SrCu2(PO4)2. Does this analogy hold also
for the magnetism? To answer this question, additional arguments have to be addressed.
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Besides φ and d, further structural features provide a deeper insight into the crystal
chemical aspects relevant for the magnetism. In CuSe2O5, two SeO3 pyramids sharing an
oxygen atom (forming Se2O5 polyanions) bridge neighbouring CuO4 plaquettes (see figure 1).
This structural peculiarity is reflected in the morphology of the synthesized crystals (section 2):
the needle-like shape with an elongation along [001] fits perfectly to structural chains along
c (figure 1) formed by alternation of CuO4 plaquettes and Se2O5 polyanion groups. From
the topological similarity of this structural chain to the one in the structure of Sr2Cu(PO4)2

(there, neighbouring plaquettes are bridged by two PO4 tetrahedra) a 1D behaviour of CuSe2O5

might be expected. A second argument supports this proposition: in CuSe2O5, the structural
chains are not connected by covalent bonds, making a strong IC coupling unlikely, similar
to Sr2Cu(PO4)2, where the neighbouring chains are well separated by Sr cations. These
similarities of CuSe2O5 and Sr2Cu(PO4)2 may lead to the conclusion that both systems imply
essentially the same physics. However, a closer inspection of more subtle crystal chemical
aspects immediately reveals an important difference related to the IC coupling. As follows from
the microscopic model [8], in Sr2Cu(PO4)2 there are two relevant NN IC couplings (2.7 K),
which are equivalent by symmetry. Together with an intra-chain NN coupling (187 K), they
induce magnetic frustration which commonly leads to a considerable decrease of the ordering
temperature (TN = 0.085 K). In CuSe2O5, these two IC couplings are not symmetry-equivalent.
Therefore, by reducing the strength of one of them, the frustration can be lifted.

So far, crystal chemical considerations provided us with a qualitative insight. For a
quantitative model, a microscopic analysis is required. Thus, in the next section a microscopic
model based on the results of DFT calculations is constructed.

A prerequisite for an accurate modelling based on a band structure code is reliable
structural information. For CuSe2O5, two refinements of the same structural model (space group
C2/c with four formula units per cell) have been proposed so far [37, 38]. Both structural data
sets agree quite well with each other and with the lattice parameters of the synthesized samples
(see table 1).5 The reliability of the structural data has been indirectly confirmed a posteriori by
the good agreement of calculated and experimentally measured quantities.

4. Results and discussion

4.1. Thermodynamical measurements

The first probe for the magnetic properties of a certain system is the measurement of
magnetization (M) at various temperatures in a constant field (H ) yielding the temperature
dependence of magnetic susceptibility (χ(T ) = M(T )/H ). This measurement already yields
valuable information on the magnetic dimensionality, the sign and the energy scale of leading
couplings, the presence of a spin gap, the spin anisotropy and the quality (defects, purity) of a
sample.

For CuSe2O5, the magnetic susceptibility curves for both field orientations (figure 2,
left panel) have a broad maximum at Tmax ≈ 101 K and a finite value of χ at the lowest
temperature measured (1.8 K), indicating the low-dimensional behaviour and the absence of a

5 It is well known, that x-ray diffraction analyses may result in considerable inaccuracies for internal coordinates
of light elements (especially hydrogen). These inaccuracies can have a large impact on the magnetic properties [39].
Since there are no light atoms in CuSe2O5, we rely on the diffraction analysis and therefore, no structural relaxation
has been performed.
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Figure 2. Left panel: magnetic susceptibility of CuSe2O5 as a function of
temperature. The magnetizing field is 10 kOe. For the graphic presentation, we
show only one of each five measured points. The Bethe ansatz fits are shown
with dashed (J = 157.1 K, g = 2.14) and solid (J = 157.6 K, g = 2.00) lines.
Inset: the region around the magnetic ordering temperature is shown enlarged.
Right panel: inverse magnetic susceptibility as a function of temperature.
Curie–Weiss fits (for T > 230 K) are shown with lines. The temperature-
independent contribution χ0 in the Curie–Weiss fits was set to zero.

spin gap. The high-temperature parts of the curves obey the Curie–Weiss law χ(T ) = C/(T + θ)

(figure 2, right panel; T > 220 K, H‖: θ = 165 K, C = 0.51 emu mol−1, g = 2.32; H⊥: θ =

170 K, C = 0.43 emu mol−1, g = 2.15). The positive Curie–Weiss temperature evidences that
the dominating couplings in CuSe2O5 are AFM. The shape of the experimental curve reveals a
close similarity to a spin-1/2 Heisenberg chain model. This model has an exact solution given
by Bethe ansatz [5] and parameterized by Johnston et al ([40] see table 1, fit 2). We have fitted
the experimental curves using the parameterized solution (figure 2, left panel).

To account for the deviation of the fitted curves from experimental ones we have fitted
both curves independently6 and varied the temperature window. As a result, the magnetic
susceptibility measured perpendicular to needle-like crystallites can be perfectly fitted by a
consistent set of parameters (J = 157.6 K, g = 2.00) in the whole temperature range down
to the ordering temperature, while the fit to the susceptibility measured parallel to the chains
(J = 157.1 K, g = 2.14) shows deviations at low temperatures (below Tmax). This difference
likely originates from a slight misalignment of microscopic plates in the needle-like crystallites.

A phase transition is observed at 17 K for both orientations of the magnetizing field. The
nature of this magnetic transition can be understood by examination of the low-temperature part
of the curve (below the transition). The interpretation is straightforward as soon as we account
for (i) impurity effects and (ii) effects of misalignment of the sample (relevant especially for

6 A simultaneous fit of both curves implying the same J value in the whole temperature range down to the phase
transition yields considerable deviations from experiment. The origin of this deviation is discussed below in the
text.
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EH ‖, as shown above). Due to the high quality of samples, the temperature region between the
kink at 17 K down to 10 K is practically unaffected by defects (no Curie tail). In this range, χ⊥

decreases very slightly, while χ‖ drops distinctly on cooling, following the theoretical result for
ordered collinear antiferromagnets [34]. We attribute the slight decrease of χ⊥ (theory predicts
it to be constant) to a small misalignment of crystallites, in agreement with the deviations of the
Bethe ansatz fit. The small upturn in χ‖ at about 6 K (a zero susceptibility at zero temperature
follows from theory) is likely related to defects and paramagnetic impurities.

To obtain an additional information about the magnetic properties, we measured the
temperature dependence of the specific heat. The clear anomaly at 17 K (figure 3) and the
linear behaviour of C p/T 2(T ) below this temperature are typical for antiferromagnets [41].
Thus, we interpret this as a transition to an AFM ordered state (TN = 17 K). Remarkably, the
anomaly neither shifts nor decreases in amplitude in magnetic fields up to µ0 H = 9 T. Prior
to the analysis of the magnetic behaviour above TN, the specific heat should be decomposed
into the magnetic contribution (which reflects the spectrum of magnetic excitations) and the
phonon contribution (the spectrum of lattice vibrations). This decomposition is reliable only if
the overlap of the two spectra (magnetic excitations and phonons) is relatively small (see [42]
for an example). As the phonon contribution increases on temperature, the decomposition is
possible for systems with weak magnetic couplings (Ji j < 10 K). As we obtained from our
susceptibility data, the energy scale of J in CuSe2O5 is about 165 K. Thus, for a 1D Heisenberg
chain we expect the maximum of the magnetic specific heat at 0.48J [40], i.e. close to 80 K.
At this temperature, the phonon contribution to the specific heat strongly dominates over the
magnetic contribution. As a result, the experimental curve has no visible features in the vicinity
of 80 K. For systems with large couplings (Ji j > 10 K), the most accurate way to account for
the phonon part is to measure an isostructural non-magnetic reference system (see [43] for an
example). In case of CuSe2O5, it is not possible, as ZnSe2O5 has a different crystal structure [44],
and thus a different phonon spectrum. Therefore, the specific heat data provide clear evidence
of an AFM ordering at 17 K but do not allow an independent justification of the temperature
scale for the leading magnetic interactions.

The last remark concerns a pronounced kink at 7 K (figure 3, inset), i.e. the region of the
ordered phase. The kink is stable at least up to µ0 H = 9 T and thus not related to defects.
Intriguingly, a similar feature has been observed for a related system Bi2CuO4 (figure 3 in [45])
favouring the intrinsic nature of the kink rather than a sample dependent effect. For the magnetic
contribution to the specific heat, such features have been proposed to mark a dying out of high
frequency spin wave modes [46]. To elucidate this unusual feature, further experimental studies
on CuSe2O5 and similar systems as well as a careful theoretical analysis should be carried out.

4.2. Microscopic model

We start in our microscopic analysis with band structure calculations performed in the LDA.
LDA yields a valence band of about 9 eV width formed mainly by Cu 3d, O 2p and Se 4p
states (figure 4, right panel). The well-separated double-peak at the Fermi level εF contains two
narrow, half-filled bands (figure 4, left panel). The width of this antibonding band complex
(0.85 eV) is in between the widths of the same complex in Bi2CuO4 (1.05 eV [35]) and
Sr2Cu(PO4)2 (0.65 eV [8]). The LDA yields a metallic GS, contrary to the experimentally
observed insulating behaviour. This discrepancy is caused by the underestimate of strong
on-site Coulomb interactions of the Cu 3d electrons. Nevertheless, LDA reliably yields the
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Figure 3. Cp/T 2 of CuSe2O5 as a function of temperature and magnetic
field. The Néel temperature is marked with a dashed line. Inset (ordered phase
region): the Cp ∼ T 3 behaviour predicted by theory is complicated by a clear
kink at 7 K.

relevant orbitals and dispersions. Thus, we have a closer look to the band complex at εF. The two
bands, relevant for the low-lying magnetic excitations, are related to the antibonding dpσ orbital
of a CuO4 plaquette, i.e. the antibonding combination of Cu 3dx2−y2 and O 2pσ states (orbitals
are denoted with respect to the local coordinate system). The antibonding dpσ orbital is well
separated (1E ∼ 0.5 eV) from the lower lying Cu 3d and O 2p states. Thus, the most efficient
way to describe the electronic structure is to construct an effective one-band TB model (one band
per plaquette), parameterized by a set of electron transfer integrals ti j . The correlation effects,
insufficiently described by LDA and thus by the TB model, are accounted for by adopting a
corresponding Hubbard model mapped subsequently onto a Heisenberg model (this mapping is
valid for spin excitations in the strongly correlated limit at half-filling, both well justified for
undoped cuprates with small magnetic exchange).

Prior to numerical calculations, we compare the dispersions of the two well separated bands
at εF (figure 5) to dispersions of the corresponding antibonding dpσ complexes of Sr2Cu(PO4)2

(figure 2 in [8]) and Bi2CuO4 (figure 5 in [35]). Here, a close similarity of CuSe2O5 and
Sr2Cu(PO4)2 is revealed: both band structures have a dominating dispersion along the chain
direction (for CuSe2O5, this is the c-axis in figure 1 and 0–Z region in figure 4) and a weaker
dispersion in other directions, unlike Bi2CuO4, where the dispersions along different directions
in the k-space are comparable, indicating a 3D behaviour.

For a quantitative analysis, we constructed an effective one-band TB Hamiltonian and
determined the set of transfer integrals ti j in order to obtain the best least-squares fit to
the two LDA bands crossing εF. As an alternative approach, we used a Wannier functions
(WF) technique which implies the construction of WF for the Cu 3dx2−y2 antibonding state,
relevant for the magnetism, and the calculation of the overlap of the WF. The results of the
latter method are affected by the overlap of the relevant 3dx2−y2 antibonding state with other
states. Therefore, for perfectly separated bands as in CuSe2O5, both methods should yield the
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transfer integrals. The projection of the structure is the same as in figure 1.

same results within numerical accuracy. The numerical evaluation supports this statement: the
difference between the transfer integrals obtained by the WF method and by the TB fit is tiny
and does not exceed 2 meV for individual ti j values (the mean value for all ti j is 0.2 meV). This
deviation can be considered as an error margin for the mapping procedure. Thus, for isolated
bands the WF method should not be regarded more accurate than a direct TB fit, but rather
as an independent alternative procedure [10]–[12]. The agreement of the results using the two
independent mapping methods reflects the applicability of an effective one-band approach.

The resulting set of the transfer integrals (table 2, first column) yields perfect agreement
with the LDA bands (figure 5).7 The hopping paths corresponding to the leading terms are
shown in figure 5 (right panel).

7 To check the results for consistency, we have neglected all ti j smaller than 10 meV and repeated the fitting. The
difference of leading terms in both approaches did not exceed 10%.
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Table 2. Leading transfer (first column) and exchange integrals (last column) of
CuSe2O5. The AFM exchange (second column) is calculated via mapping the
transfer integrals onto an extended Hubbard (Ueff = 4.5 eV) and subsequently
onto a Heisenberg model. The total exchange is taken from LSDA + U total
energy calculations of supercells. The FM exchange J FM

i j is evaluated as the
difference between Ji j and J AFM

i j .

Path ti j (meV) J AFM
i j (K) J FM

i j (K) Ji j (K)

Xc 166 285 −120 165
Xab 51 27 −7 20
X2c

b 11 1.5 0 1.5
Xc

ab 10 1 0 1
Xc

b 10 1 0 <1
X2c

ab 7 0.5 0 <1

We find that the leading couplings in CuSe2O5 are the NN intra-chain coupling tc =

165 meV and one of the short IC couplings tab ≈ 45 meV (table 2). The corresponding WFs are
pictured in figure 6. The value of the largest (NN intra-chain) coupling in CuSe2O5 is slightly
larger than the corresponding coupling in Sr2Cu(PO4)2 (135 meV [8]). The difference in the
largest IC term is more pronounced: the size of the IC coupling in CuSe2O5 (45 meV, table 2) is
considerably higher than in Sr2Cu(PO4)2 (16 meV [8]). Even more important is the difference
in the specific coupling geometry—whether it is constructive towards the long-range ordering
or not. As we stated while comparing the crystal structures of CuSe2O5 and Sr2Cu(PO4)2 (see
section 3), in both systems there are two short IC coupling paths. The corresponding couplings
are identical (symmetry-related) in Sr2Cu(PO4)2, but independent (and in fact, considerably
different) in CuSe2O5. The TB analysis reveals that only one (tab) of the two NN IC couplings is
relevant for CuSe2O5 (table 2). Consequently, the essential difference between the two systems
can be best understood in terms of the spin lattices that are formed by the strongest intra-chain
and IC couplings, as depicted in figure 7. In Sr2Cu(PO4)2, three relevant couplings (the intra-
chain NN coupling and two identical IC couplings) are arranged on an anisotropic triangular
lattice (figure 7, left panel). By switching off one of the IC couplings, the topology of the
relevant couplings changes, and the system is described by two couplings forming an anisotropic
square lattice (figure 7, right panel). The main difference between the two topologies is that in
Sr2Cu(PO4)2 the competition of relevant couplings, which cannot be simultaneously satisfied,
leads to strong magnetic frustration, while in CuSe2O5 the IC couplings are not frustrated. The
lifting of frustration in CuSe2O5 has a remarkable influence on the physical properties as will
be discussed below.

The calculated transfer integrals provide valuable information on the coupling regime. To
include the missing Coulomb interaction Ueff, as described in section 2, we can use the TB
model to construct a Hubbard model and map the latter onto a Heisenberg model to obtain
the AFM exchange from J AFM

i j = 4t2
i j/Ueff. Using the same representative Ueff = 4.5 eV as for

Sr2Cu(PO4)2 [8], we obtain J AFM
c = 285 K for the NN intra-chain exchange and J AFM

ab = 27 K
for the largest IC exchange. Other couplings yield values of AFM exchange less than 1.5 K
(table 2, second column) and will be neglected in further discussion.
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Figure 6. WF for the Cu 3dx2−y2 orbital. Colours represent the sign of a
WF. Left panel: the Cu 3dx2−y2 WF plotted on top of a CuO4 plaquette,
visualizing the antibonding combination of Cu 3dx2−y2 and O 2pσ states,
relevant for the magnetism. Central panel: the overlap of two WF centred on
the neighbouring Cu atoms (corresponds to the NN intra-chain coupling tc).
Note that the neighbouring plaquettes are tilted which leads to a sizable
π -overlap of the WF, and hence O 2p wavefunctions of the neighbouring
plaquettes, allowing for a considerable ferromagnetic (FM) contribution to the
magnetic exchange. Right panel: the overlap of the WF corresponding to the
leading IC coupling tab.

?

Sr2Cu(PO4)2 CuSe2O5

Figure 7. Topology of IC couplings in Sr2Cu(PO4)2 (left panel) and CuSe2O5

(right panel). Red lines denote the AFM coupling. Bold red lines highlight the
chains. In Sr2Cu(PO4)2, the intra-chain and the two equivalent IC couplings
form an anisotropic triangular lattice. In CuSe2O5, there is only one relevant IC
coupling resulting in an anisotropic square lattice geometry of intra-chain and IC
couplings. The former geometry leads to magnetic frustration, while the latter is
not frustrated (see insets).

The calculated leading magnetic exchange J AFM
c = 285 K is considerably larger than our

estimate from the Bethe ansatz fit (≈ 155 K) based on experimental χ(T ) data. Moreover, it
is larger than the corresponding exchange integral in Sr2Cu(PO4)2 (187 K). This discrepancy
originates from FM contributions to the total magnetic exchange, which are neglected in
the mapping procedure. For the NN exchange Jc, we expect a considerable FM contribution
originating from the overlap of O 2p wave functions of neighbouring plaquettes. Due to
a dihedral angle φ = 64◦ between the neighbouring plaquettes, this overlap has a sizable
π contribution (this can be seen in the WF in figure 6, central panel) leading to a Hund’s rule
(FM) coupling. For the leading IC coupling, the FM contribution is expected to be small due to
a predominantly σ overlap of O 2p wavefunctions (figure 6, right panel).

To obtain a numerical estimate for the FM contribution, we perform total energy
calculations for various spin patterns of magnetic supercells using the LSDA + U method.
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The method is rather sensitive to the Ud value. As Ud = 6.5 eV yields agreement between the
calculated and experimentally measured exchange integrals of the well studied La2CuO4 and
CuGeO3, we adopted this value in the calculations for CuSe2O5.8 The supercell method has
limitations set by numerical accuracy for the small exchange integrals (Ji j < 1 K) and the size
of the required supercells. In our case, we constructed supercells and spin patterns that yield all
exchange couplings which were found to be relevant from the TB analysis. The resulting total
energies are mapped onto a Heisenberg model, which is parameterized by the total exchange
integrals (table 2, last column) containing both AFM and FM contributions. Thus, by subtracting
the AFM part J AFM

i j from the total exchange Ji j , the FM contribution J FM
i j can be estimated

(table 2, fourth column).
In general, LSDA + U calculations yield a reliable estimate for exchange integrals

[8, 13, 35, 42]. This reliability holds for CuSe2O5: we obtain Jc = 165 K and Jab = 20 K, in
almost perfect agreement with the estimates from magnetic susceptibility. In accordance with
our expectations, J FM

c = −120 K has a considerable contribution to the total exchange Jc, while
J FM

ab = −7 K yields a smaller correction to the Jab value. We should note that the large FM
contribution J FM

c = −120 K may originate, in addition to the mentioned π -overlap of O 2p
wavefunctions, from a destructive interference of coupling paths [47] or by a strong coupling to
ligands [48]. Which of these mechanisms plays a leading role in CuSe2O5 is an open question.
This issue is, however, beyond the scope of the present paper and needs further theoretical
investigation.

Though the calculated Jc value (165 K) is very close to the estimate from the Bethe
ansatz (157 K), we decided to check the exchange integrals for consistency by performing
additional calculations for Ud = 6.0 eV and Ud = 7.0 eV. Besides the expected change of
exchange integrals (0.5 eV increase of the Ud results in about 20% decrease of Ji j and vice
versa), we found that the ratio α ≡ Jab/Jc of the leading exchange integrals (α = 0.121 for
Ud = 6.0 eV, α = 0.129 for Ud = 6.5 eV and α = 0.136 for Ud = 7.0 eV) is rather stable with
respect to the Ud value.

Thus, the consideration of the FM contribution yielded a valuable improvement of the
energy scale comparing to the AFM exchange values J AFM

c and J AFM
ab , but the ratio α of

the two couplings, that is the most relevant for the magnetic GS, stays almost unchanged.
Moreover, this ratio is stable with respect to the model parameters Ueff and Ud, leading to
a very reliable physical picture: CuSe2O5 can be described as a quasi-1D system with AFM
chains characterized by an NN intra-chain exchange of 165 K. Each chain is coupled to two
neighbouring chains by the non-frustrated IC exchange of 20 K (one order of magnitude smaller
that the intra-chain coupling).

One of the main characteristics of the magnetically ordered state is the value of the
magnetic moment. Though the corresponding theoretical values can be calculated by LDA or
LSDA + U , these values are usually strongly overestimated compared to the experimentally
observed magnetic moments. This discrepancy originates from strong quantum fluctuations,
which are relevant especially for 1D and quasi-1D systems, and are not taken into account
properly by present-day DFT approximations like LDA or LSDA + U . Therefore, to estimate
the ordered magnetic moment, using the formula 19 from [6] we obtain the magnetic moment

8 It is worth noting that the Ud parameter is not universal and depends on a calculational scheme and consequently
on the basis set implemented in a code. Thus, different Ud values adopted in this work for CuSe2O5 (Ud = 6.5 eV,
the code fplo version 7.00-27) and for Sr2Cu(PO4)2 (Ud = 8.0 eV [8], the code fplo version 5.00-18) originate from
the different basis used in the codes.

New Journal of Physics 11 (2009) 113034 (http://www.njp.org/)

http://www.njp.org/


14

3002001000
T (K) 

0

0.5

1.0

1.5

χ  
(1

0–3
 e

m
u 

m
ol

–1
)

exp., H || [001]

exp., H ⊥ [001]

Bethe ansatz (J = 157.1 K, g = 2.14)

Bethe ansatz (J = 157.6 K, g = 2.00)

QMC (J = 152.7 K, g = 2.16)

QMC (J = 154.3 K, g = 2.02)
1401201008060

1.3

1.4

1.5

1.6

Figure 8. Comparison of Bethe ansatz and QMC fits to the experimental
magnetic susceptibility. The temperature-independent contribution χ0 in both fits
was set to zero.

m0 = γ
√

Jab/Jc ≈ 0.25 ± 0.05 µB at zero temperature. This prediction should be challenged
by future experiments.

4.3. Simulations

Turning back to the discussion about the ordering temperature (section 1), it is reasonable to
point out the advantages of CuSe2O5 as a model system. Firstly, we have evidence from both
theory and experiment that the system is mainly 1D. Secondly, the microscopic analysis revealed
that the NNN intra-chain coupling is practically absent leading to a valuable simplification
for a theoretical analysis. Finally, there is only one relevant IC coupling. The fact that this
latter coupling is not frustrated allows us to use the powerful QMC method for a simulation
of thermodynamical data with a subsequent comparison to the experimentally measured
curves. The results of the simulations are given in figure 8 in comparison with the Bethe
ansatz fits (where the IC coupling is neglected). Obviously, the inclusion of the IC coupling
yields only a tiny improvement with respect to the Bethe ansatz fits. This fact demonstrates
a posteriori the importance of a microscopic model for systems like CuSe2O5: apart from the
microscopic modelling, there is no reliable way to account for the small IC coupling directly
from measurements of the paramagnetic susceptibility.

4.4. Estimation of the Néel temperature

To benefit from the unique combination of the simple microscopic picture and the
experimentally well-determined AFM ordering temperature TN, we make an attempt to estimate
TN from an available simplified theory using the calculated exchange integrals. Still, there are
three problems, intrinsic for quasi-1D systems, to be accounted for. The first is the spatial
anisotropy of exchange couplings present in a system. This problem is resolved in CuSe2O5 only
partially. On one hand, there is only one relevant IC coupling for every pair of neighbouring
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Table 3. Exchange integrals (columns 2 and 3) together with experimental
(column 5) and theoretically calculated (columns 7–10) ordering temperatures
TN for quasi-1D cuprates (3D magnet Bi2CuO4 has a similar structural motive
and was added for completeness). The ordering temperatures TN were calculated
using formulae from references [20, 22, 24] and the exchange integrals from
columns 2 (NN intra-chain coupling J1) and 3 (leading IC coupling J⊥). Note
that the first four systems are frustrated due to IC couplings, while in the last two
the IC couplings are not frustrated.

TN calc. (K)

Compound J1(K) J⊥(K) Ref. TN exp. (K) Ref. [20] [22] [24] [35]

Sr2CuO3 2200 9 [6] 5 [49] 28 22 21
Ca2CuO3 1850 42 [6] 9 [49] 115 91 85
Sr2Cu(PO4)2 187 3 [8] 0.085 [50] 8.5 6.7 6.3
K2CuP2O7 196 0.25 [13] < 2 [13] 0.9 0.7 0.6
CuSe2O5 165 20 17 23 18 17
Bi2CuO4 10 6 [35] 42 [36] 47

chains, but on the other hand, it couples a certain chain with only two of four neighbouring
chains. Thus, the couplings to the other two chains are considerably smaller, resulting in the
(spatial) exchange anisotropy. The second problem is the anisotropy in the spin space. In
our microscopic approach, we used the isotropic Heisenberg model where this anisotropy is
neglected. Although we observe a remarkable agreement between the microscopic model and
the macroscopic behaviour, the spin anisotropy is present, as evidenced for instance by the
strong dependence of the g-factor on the orientation of a magnetizing field (figure 2). In a
common sense approach, the (spatial) exchange anisotropy is expected to lower TN, while the
spin anisotropy raises it. In each system, these two effects are balanced. Attempts to find a
suitable description for this balance were made in a number of advanced theoretical studies
based on a mean-field formalism [19, 20], [22]–[25]. Still, the problem seems not to be resolved,
since a considerable disagreement remains between the numerical results yielded by different
theories (none of which is generally accepted) and, even more important, due to the third
problem—the problem of IC magnetic frustration, which has not been addressed so far.

Here, we make an empirical attempt to estimate how the frustration influences the magnetic
ordering. For that purpose, we compare several quasi-1D magnetic compounds in a systematic
way. The two well studied quasi-1D cuprates Sr2CuO3 and Ca2CuO3 are commonly referred
to as model systems in most theoretical studies regarding the TN problem. We should note that
these two systems are essentially different from CuSe2O5 due to the presence of corner-sharing
chains of CuO4 plaquettes, which results in one order of magnitude larger NN coupling. In
addition, the NNN coupling is not negligible [6]. Nevertheless, they are referred here for the sake
of completeness. In both, Sr2CuO3 and Ca2CuO3, one of the relevant IC couplings is frustrated.
To calculate TN, we use formulae given by Schulz [20], Irkhin and Katanin [22] and Yasuda
et al [24]. The calculated TN are given in the three last columns of (table 3). Disregarding the
method used, the calculated TN considerably overestimate the experimental values for Sr2CuO3

and Ca2CuO3 (table 3, fifth column).
A theoretical approach is expected to work better for systems with more pronounced 1D

nature—e.g. Sr2Cu(PO4)2 and K2CuP2O7. The structural peculiarities of these systems were
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discussed in section 3. The main issue here is the frustration caused by the leading IC coupling.
For Sr2Cu(PO4)2, theory predicts an ordering temperature TN two orders of magnitude larger
than the experimentally observed value. (Unfortunately, experimental low-temperature data are
not available for K2CuP2O7.) This huge discrepancy is in sharp contrast with the situation for
the 3D magnet Bi2CuO4, for which the theoretical estimate coincides with the experimental
value within the error bars (table 3, last row).9

In CuSe2O5, each chain is strongly coupled only with two of four neighbouring chains
(unlike Sr2CuO3, Ca2CuO3, Sr2Cu(PO4)2 and K2CuP2O7 with coupling to four neighbouring
chains). There is no unique way to take this feature into account. A simple approximation is to
take the arithmetic average, which yields an effective IC coupling value J⊥ = Jab/2.10 Using
this value, theory yields a perfect agreement with experimental value (table 3, fifth row).

Obviously, the existing models describe the magnetic ordering in CuSe2O5 much better
than in Sr2CuO3 and Ca2CuO3, and especially in Sr2Cu(PO4)2. Despite our crude way of
accounting for spatial exchange anisotropy and the neglect of spin anisotropy, the theoretical
estimate of TN for CuSe2O5 is in surprisingly good agreement with the experimental value.
Though in general the magnetic ordering is affected by the spin anisotropy, CuSe2O5 yields
empirical evidence that for systems with a small spin anisotropy the isotropic model provides
a rather accurate estimate of TN. Thus, it is unlikely that the disagreement between theoretical
and experimentally observed TN values for Sr2Cu(PO4)2 originates from the neglect of spin
anisotropy effects.

Finally, only the magnetic frustration is left to be a possible reason for a huge discrepancy
between theory and experiment. Our analysis reveals that frustrated IC couplings play a crucial
role for the magnetic ordering. This fact explains why theoretical schemes fail to predict TN for
frustrated systems.

To illustrate the influence of frustration, we use a simple formula from the spin wave theory
in a random phase approximation, which connects Néel temperatures for two compounds A and
B with the values of exchange integrals: T A

N /T B
N ≈

√
J A

1 J A
⊥

/√
J B

1 J B
⊥

[6]. Using the values of
exchange integrals for Sr2Cu(PO4)2 and CuSe2O5 and the experimental Néel temperature for
Sr2Cu(PO4)2 (table 3), we obtain TN ≈ 0.146 K for CuSe2O5, almost 120 times smaller than the
experimental value.

In the existing theoretical approaches, a parameter controlling the frustration caused by
IC couplings is missing. Therefore, new theories which would treat magnetic frustration as
one of the key issues for the magnetic ordering, are needed. On the other hand, there is a
lack of information from the experimental side, resulting in a very limited number of systems
that challenge the theoretical predictions. Besides CuSe2O5, an almost perfect model system,
synthesis and investigation of new systems with similar crystal chemistry are highly desirable.

5. Summary and outlook

The class of quasi-1D magnets attracts much attention as a field of search for prominent models
and a playground for modern theories. Recently, by studying the magnetic properties of Cu2+

9 For the theoretical estimation of TN, the formula (7) from [35] was used.
10 Alternatively, the geometrical averaging can be used. This approach yields a correct limit with respect to
the Mermin–Wagner theorem (zero ordering temperature for 1D and 2D systems). Then, calculational schemes
from [20], [22] and [24] yield TN values of 14, 11 and 10 K, respectively.
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phosphates, several systems of this class were found to exhibit the physics of a Heisenberg
chain model. In these materials, the remarkable one-dimensionality and the absence of long-
range intra-chain interactions are ruled by a unique arrangement of magnetically active CuO4

plaquettes: they form edge-sharing chains where every second plaquette is cut out. The chains
are well separated by alkaline or alkaline earth cations (K, Sr). The magnetic susceptibility of
these systems is perfectly described by the Bethe ansatz, which provides an exact solution for
the NN AFM spin-1/2 Heisenberg chain. At the same time, the ordering temperature TN of the
systems reveals a fundamental disagreement between theory and experiment. Unfortunately, the
range of available experimental studies of these systems is rather limited, as the materials are
currently available only as powders.

Therefore, we have synthesized CuSe2O5—a system implying a similar, isolated
arrangement of neighbouring CuO4 plaquettes (but tilted with respect to each other, unlike
Cu2+ phosphates) and allowing for a growth of high quality single crystals. Thermodynamic
measurements reveal a quasi-1D behaviour with a leading AFM coupling of about 160 K
(obtained from the Bethe ansatz fit for the magnetic susceptibility). The system orders
antiferromagnetically at 17 K, as evidenced by magnetic susceptibility and specific heat data.
A microscopic analysis based on the results of DFT calculations reveals that CuSe2O5 can
be described in good approximation by only two relevant exchange integrals: NN intra-chain
(Jc = 165 K) and the leading IC coupling (Jab = 20 K). The theoretical estimate of the ordering
temperature TN is in perfect agreement with experimental value. This remarkable agreement
is in sharp contrast with a huge overestimate of TN for Cu2+ phosphates yielded by a formal
application of the same theory. To reveal the origin of this difference on empirical grounds we
analysed systematically the factors affecting TN. Beyond the influence of the spatial exchange
anisotropy and the spin anisotropy, we emphasize the role of the magnetic frustration due to
equivalent IC interactions in the latter compounds. Comparing theoretical and experimental
data for related systems, we show that IC frustrations have a crucial influence on TN and are
likely the main cause for the failure of any theory which ignores them.

For an outlook, we propose further experimental studies (for instance, Raman spectroscopy
and inelastic neutron scattering) in order to benefit from the availability of single crystals of
CuSe2O5. In particular, additional experimental data are required in order to understand the
nature of the specific heat anomaly at 7 K. Secondly, we hope that our work will inspire a
directed search for new quasi-1D model systems. Last, but not least, we want to stimulate
the development of more sophisticated theories for the estimation of TN. In particular, such
theories should explicitly take into account the magnetic frustration arising from complex
IC interactions. The well understood system CuSe2O5 could give valuable support for these
theories.
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