2,891 research outputs found
Pre-encounter observations of 951 Gaspra
Photometry and colorimetry of 951 Gaspra were obtained on nine nights during the 1990 opposition. A composite lightcurve constructed using data from eight of those nights yielded a synodic rotational period of 7.04346 +/- 0.00006 hours, a mean absolute V magnitude of 11.8026 +/- 0.0025, and a slope parameter of 0.285 +/- 0.005. The apparent discrepancy can be easily resolved by realizing that their determination is based primarily on data obtained after opposition. Different phase functions pre- and post-opposition are a natural consequence of a changing aspect during an opposition. If the sub-Earth latitude on Gaspra is at a less equatorial aspect after opposition than it was before opposition, then we would expect to see a shallower phase function (corresponding to a larger numerical value of the slope parameter). Adding weight to this hypothesis is the last observation of the opposition, made in May after Gaspra had passed post opposition quadrature, which is displaced toward brighter absolute magnitudes relative to the rest of our data, indicating an even more poleward sub-Earth latitude than earlier in the opposition. Because the orbits of Earth and Gaspra are nearly coplanar, a substantial change in sub-Earth latitude during the opposition would not have been possible unless the obliquity of the asteroid's rotational axis is not small
NEOWISE Studies of Spectrophotometrically Classified Asteroids: Preliminary Results
The NEOWISE dataset offers the opportunity to study the variations in albedo
for asteroid classification schemes based on visible and near-infrared
observations for a large sample of minor planets. We have determined the
albedos for nearly 1900 asteroids classified by the Tholen, Bus and Bus-DeMeo
taxonomic classification schemes. We find that the S-complex spans a broad
range of bright albedos, partially overlapping the low albedo C-complex at
small sizes. As expected, the X-complex covers a wide range of albedos. The
multi-wavelength infrared coverage provided by NEOWISE allows determination of
the reflectivity at 3.4 and 4.6 m relative to the visible albedo. The
direct computation of the reflectivity at 3.4 and 4.6 m enables a new
means of comparing the various taxonomic classes. Although C, B, D and T
asteroids all have similarly low visible albedos, the D and T types can be
distinguished from the C and B types by examining their relative reflectance at
3.4 and 4.6 m. All of the albedo distributions are strongly affected by
selection biases against small, low albedo objects, as all objects selected for
taxonomic classification were chosen according to their visible light
brightness. Due to these strong selection biases, we are unable to determine
whether or not there are correlations between size, albedo and space
weathering. We argue that the current set of classified asteroids makes any
such correlations difficult to verify. A sample of taxonomically classified
asteroids drawn without significant albedo bias is needed in order to perform
such an analysis.Comment: Accepted to Ap
Extreme Kuiper Belt Object 2001 QG298 and the Fraction of Contact Binaries
Extensive time-resolved observations of Kuiper Belt object 2001 QG298 show a
lightcurve with a peak-to-peak variation of 1.14 +-0.04 magnitudes and
single-peaked period of 6.8872 +- 0.0002 hr. The mean absolute magnitude is
6.85 magnitudes which corresponds to a mean effective radius of 122 (77) km if
an albedo of 0.04 (0.10) is assumed. This is the first known Kuiper Belt object
and only the third minor planet with a radius > 25 km to display a lightcurve
with a range in excess of 1 magnitude. We find the colors to be typical for a
Kuiper Belt object (B-V = 1.00 +- 0.04, V-R = 0.60 +- 0.02) with no variation
in color between minimum and maximum light. The large light variation,
relatively long double-peaked period and absence of rotational color change
argue against explanations due to albedo markings or elongation due to high
angular momentum. Instead, we suggest that 2001 QG298 may be a very close or
contact binary similar in structure to what has been independently proposed for
the Trojan asteroid 624 Hektor. If so, its rotational period would be twice the
lightcurve period or 13.7744 +- 0.0004 hr. By correcting for the effects of
projection, we estimate that the fraction of similar objects in the Kuiper Belt
is at least 10% to 20% with the true fraction probably much higher. A high
abundance of close and contact binaries is expected in some scenarios for the
evolution of binary Kuiper Belt objects.Comment: 15 text pages,6 figures(Color),5 Tables, Accepted to AJ for May 200
Constraining multiple systems with GAIA
GAIA will provide observations of some multiple asteroid and dwarf systems.
These observations are a way to determine and improve the quantification of
dynamical parameters, such as the masses and the gravity fields, in these
multiple systems. Here we investigate this problem in the cases of Pluto's and
Eugenia's system. We simulate observations reproducing an approximate planning
of the GAIA observations for both systems, as well as the New Horizons
observations of Pluto. We have developed a numerical model reproducing the
specific behavior of multiple asteroid system around the Sun and fit it to the
simulated observations using least-square method, giving the uncertainties on
the fitted parameters. We found that GAIA will improve significantly the
precision of Pluto's and Charon's mass, as well as Petit Prince's orbital
elements and Eugenia's polar oblateness.Comment: 5 pages, accepted by Planetary and Space Science, Gaia GREAT-SSO-Pis
A revised asteroid polarization-albedo relationship using WISE/NEOWISE data
We present a reanalysis of the relationship between asteroid albedo and
polarization properties using the albedos derived from the Wide-field Infrared
Survey Explorer. We find that the function that best describes this relation is
a three-dimensional linear fit in the space of log(albedo)-log(polarization
slope)-log(minimum polarization). When projected to two dimensions the
parameters of the fit are consistent with those found in previous work. We also
define p* as the quantity of maximal polarization variation when compared with
albedo and present the best fitting albedo-p* relation. Some asteroid taxonomic
types stand out in this three-dimensional space, notably the E, B, and M Tholen
types, while others cluster in clumps coincident with the S- and C-complex
bodies. We note that both low albedo and small (D<30 km) asteroids are
under-represented in the polarimetric sample, and we encourage future
polarimetric surveys to focus on these bodies.Comment: 16 pages, Accepted to Ap
Charon's radius and density from the combined data sets of the 2005 July 11 occultation
The 2005 July 11 C313.2 stellar occultation by Charon was observed by three
separate research groups, including our own, at observatories throughout South
America. Here, the published timings from the three data sets have been
combined to more accurately determine the mean radius of Charon: 606.0 +/- 1.5
km. Our analysis indicates that a slight oblateness in the body (0.006 +/-
0.003) best matches the data, with a confidence level of 86%. The oblateness
has a pole position angle of 71.4 deg +/- 10.4 deg and is consistent with
Charon's pole position angle of 67 deg. Charon's mean radius corresponds to a
bulk density of 1.63 +/- 0.07 g/cm3, which is significantly less than Pluto's
(1.92 +/- 0.12 g/cm3). This density differential favors an impact formation
scenario for the system in which at least one of the impactors was
differentiated. Finally, unexplained differences between chord timings measured
at Cerro Pachon and the rest of the data set could be indicative of a
depression as deep as 7 km on Charon's limb.Comment: 25 pages including 4 tables and 2 figures. Submitted to the
Astronomical Journal on 2006 Feb 0
- …