723 research outputs found
WFIRST Ultra-Precise Astrometry II: Asteroseismology
WFIRST microlensing observations will return high-precision parallaxes,
sigma(pi) < 0.3 microarcsec, for the roughly 1 million stars with H<14 in its
2.8 deg^2 field toward the Galactic bulge. Combined with its 40,000 epochs of
high precision photometry (~0.7 mmag at H_vega=14 and ~0.1 mmag at H=8), this
will yield a wealth of asteroseismic data of giant stars, primarily in the
Galactic bulge but including a substantial fraction of disk stars at all
Galactocentric radii interior to the Sun. For brighter stars, the astrometric
data will yield an external check on the radii derived from the two
asteroseismic parameters, and nu_max, while for the fainter ones, it
will enable a mass measurement from the single measurable asteroseismic
parameter nu_max. Simulations based on Kepler data indicate that WFIRST will be
capable of detecting oscillations in stars from slightly less luminous than the
red clump to the tip of the red giant branch, yielding roughly 1 million
detections.Comment: 13 pages, 6 figures, submitted to JKA
A search for solar-like oscillations in K giants in the globular cluster M4
To expand the range in the colour-magnitude diagram where asteroseismology
can be applied, we organized a photometry campaign to find evidence for
solar-like oscillations in giant stars in the globular cluster M4. The aim was
to detect the comb-like p-mode structure characteristic for solar-like
oscillations in the amplitude spectra. The two dozen main target stars are in
the region of the bump stars and have luminosities in the range 50-140 Lsun. We
collected 6160 CCD frames and light curves for about 14000 stars were
extracted. We obtain high quality light curves for the K giants, but no clear
oscillation signal is detected. High precision differential photometry is
possible even in very crowded regions like the core of M4. Solar-like
oscillations are probably present in K giants, but the amplitudes are lower
than classical scaling laws predict.Comment: 14 pages, 16 figures, accepted for publication in A&
- …
