1,840 research outputs found
AC Loss and Contact Resistance In Copper-Stabilized Nb3Al Rutherford Cables with and without a Stainless Steel Core
Calorimetric measurements of AC loss and hence interstrand contact resistance
(ICR), were measured on three samples of Rutherford cable wound with
Cu-stabilized jelly-roll type unplated Nb3Al strand. One of the cable types was
furnished with a thin core of AISI 316L stainless steel and the other two were
both uncored but insulated in different ways. The cables were subjected to a
room-temperature-applied uniaxial pressure of 12 MPa that was maintained during
the reaction heat treatment (RHT), then vacuum impregnated with CTD 101 epoxy,
and repressurized to 100 MPa during AC-loss measurement. The measurements were
performed at 4.2 K in a sinusoidal field of amplitude 400 mT at frequencies of
1 to 90 mHz (no DC-bias field) that was applied both perpendicular and parallel
to the face of the cable (the face-on, FO, and edge-on, EO, directions,
respectively). For the cored cable the FO-measured effective ICR (FO-ICR), was
5.27 . Those for the uncored cables were less than 0.08
. As shown previously for NbTi- and Nb3Sn-based Rutherford
cables, the FO-ICR can be significantly increased by the insertion of a core,
although in this case it is still below the range recommended for
accelerator-magnet use. Post-measurement dissection of one of the cables showed
that the impregnating resin had permeated between the strands and coated the
core with a thin, insulating layer excepting for some sintered points of
contact. In the uncored cables the strands were coated with resin except for
the points of interstrand contact. It is suggested that in the latter case this
tendency for partial coating leads to a processing-sensitive FO-ICR.Comment: Four pages, with two figure
Development of design allowable data for Celion 6000/LARC-160, graphite/polyimide composite laminates
A design allowables test program was conducted on Celion 6000/LARC-160 graphite polyimide composite to establish material performance over a 116 K (-250 F) to 589 K (600 F) temperature range. Tension, compression, in-plane shear and short beam shear properties were determined for uniaxial, quasi-isotropic and + or - 45 deg laminates. Effects of thermal aging and moisture saturation on mechanical properties were also evaluated. Celion 6000/LARC-160 graphite/polyimide can be considered an acceptable material system for structural applications to 589 K (600 F)
Unexpected evolutionary proximity of eukaryotic and cyanobacterial enzymes responsible for biosynthesis of retinoic acid and its oxidation
Biosynthesis of retinoic acid from retinaldehyde (retinal) is catalysed by an aldehyde dehydrogenase (ALDH) and its oxidation by cytochrome P450 enzymes (CYPs). Herein we show by phylogenetic analysis that the ALDHs and CYPs in the retinoic acid pathway in animals are much closer in evolutionary terms to cyanobacterial orthologs than would be expected from the standard models of evolution
Performance Analysis of Improved Methodology for Incorporation of Spatial/Spectral Variability in Synthetic Hyperspectral Imagery
Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of ground truthed images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three performance metrics that have been derived from spatial Gray Level Co-Occunence Matrix (GLCM) analysis, hyperspectral Signalto- Clutter Ratio (5CR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing ofhyperspectral algorithms in synthetic imagery
Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis
<p>Abstract</p> <p>Background</p> <p>The incidence and diversity of human methanogens are insufficiently characterised in the gastrointestinal tract of both health and disease. A PCR and clone library methodology targeting the <it>mcrA </it>gene was adopted to facilitate the two-fold aim of surveying the relative incidence of methanogens in health and disease groups and also to provide an overview of methanogen diversity in the human gastrointestinal tract.</p> <p>Results</p> <p>DNA faecal extracts (207 in total) from a group of healthy controls and five gastrointestinal disease groups were investigated. Colorectal cancer, polypectomised, irritable bowel syndrome and the control group had largely equivalent numbers of individuals positive for methanogens (range 45–50%). Methanogen incidence in the inflammatory bowel disease groups was reduced, 24% for ulcerative colitis and 30% for Crohn's disease. Four unique <it>mcrA </it>gene restriction fragment length polymorphism profiles were identified and bioinformatic analyses revealed that the majority of all sequences (94%) retrieved from libraries were 100% identical to <it>Methanobrevibacter smithii mcrA </it>gene. In addition, <it>mcrA </it>gene sequences most closely related to <it>Methanobrevibacter oralis </it>and members of the order <it>Methanosarcinales </it>were also recovered.</p> <p>Conclusion</p> <p>The <it>mcrA </it>gene serves as a useful biomarker for methanogen detection in the human gut and the varying trends of methanogen incidence in the human gut could serve as important indicators of intestinal function. Although <it>Methanobrevibacter smithii </it>is the dominant methanogen in both the distal colon of individuals in health and disease, the diversity of methanogens is greater than previously reported. In conclusion, the low incidence of methanogens in Inflammatory Bowel Disease, the functionality of the methanogens and impact of methane production in addition to competitive interactions between methanogens and other microbial groups in the human gastrointestinal tract warrants further investigation.</p
Scaling results up from a plot and paddock scale to a property - a case study from a long-term grazing experiment in northern Australia
Grazing experiments are usually used to quantify and demonstrate the biophysical impact of grazing strategies, with the Wambiana grazing experiment being one of the longest running such experiments in northern Australia. Previous economic analyses of this experiment suggest that there is a major advantage in stocking at a fixed, moderate stocking rate or in using decision rules allowing flexible stocking to match available feed supply. The present study developed and applied a modelling procedure to use data collected at the small plot, land type and paddock scales at the experimental site to simulate the property-level implications of a range of stocking rates for a breeding-finishing cattle enterprise. The greatest economic performance was achieved at a moderate stocking rate of 10.5 adult equivalents 100 ha(-1). For the same stocking rate over time, the fixed stocking strategy gave a greater economic performance than strategies that involved moderate changes to stocking rates each year in response to feed supply. Model outcomes were consistent with previous economic analyses using experimental data. Further modelling of the experimental data is warranted and similar analyses could be applied to other major grazing experiments to allow the scaling of results to greater scales
- …