341 research outputs found

    Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis

    Get PDF
    National Institutes of Health grants GM-38765 and P50-DE016191 (C.N.S.), Welcome Trust Programme grant 086867/Z/08/Z (R.J.F. and M.P.) and Project grant 085903/Z/08 (R.J.F.) and Arthritis Research Campaign UK fellowships 18445 and 18103 (to L.V.N. and D.C., respectively). M.S. received a National Research Service Award from the NHLBI (HL087526)

    The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signaling

    Get PDF
    The kinases MSK1 and MSK2 are activated 'downstream' of the p38 and Erk1/2 mitogen-activated protein kinases. Here we found that MSK1 and MSK2 were needed to limit the production of proinflammatory cytokines in response to stimulation of primary macrophages with lipopolysaccharide. By inducing transcription of the mitogen-activated protein kinase phosphatase DUSP1 and the anti-inflammatory cytokine interleukin 10, MSK1 and MSK2 exerted many negative feedback mechanisms. Deficiency in MSK1 and MSK2 prevented the binding of phosphorylated transcription factors CREB and ATF1 to the promoters of the genes encoding interleukin 10 and DUSP1. Mice doubly deficient in MSK1 and MSK2 were hypersensitive to lipopolysaccharide-induced endotoxic shock and showed prolonged inflammation in a model of toxic contact eczema induced by phorbol 12-myristate 13-acetate. Our results establish MSK1 and MSK2 as key components of negative feedback mechanisms needed to limit Toll-like receptor-driven inflammation.</p

    Antimicrobial activity of apple cider vinegar against Escherichia coli, Staphylococcus aureus and Candida albicans; downregulating cytokine and microbial protein expression

    Get PDF
    The global escalation in antibiotic resistance cases means alternative antimicrobials are essential. The aim of this study was to investigate the antimicrobial capacity of apple cider vinegar (ACV) against E. coli, S. aureus and C. albicans. The minimum dilution of ACV required for growth inhibition varied for each microbial species. For C. albicans, a 1/2 ACV had the strongest effect, S. aureus, a 1/25 dilution ACV was required, whereas for E-coli cultures, a 1/50 ACV dilution was required (p < 0.05). Monocyte co-culture with microbes alongside ACV resulted in dose dependent downregulation of inflammatory cytokines (TNFα, IL-6). Results are expressed as percentage decreases in cytokine secretion comparing ACV treated with non-ACV treated monocytes cultured with E-coli (TNFα, 99.2%; IL-6, 98%), S. aureus (TNFα, 90%; IL-6, 83%) and C. albicans (TNFα, 83.3%; IL-6, 90.1%) respectively. Proteomic analyses of microbes demonstrated that ACV impaired cell integrity, organelles and protein expression. ACV treatment resulted in an absence in expression of DNA starvation protein, citrate synthase, isocitrate and malate dehydrogenases in E-coli; chaperone protein DNak and ftsz in S. aureus and pyruvate kinase, 6-phosphogluconate dehydrogenase, fructose bisphosphate were among the enzymes absent in C.albican cultures. The results demonstrate ACV has multiple antimicrobial potential with clinical therapeutic implications

    Estudo da formação de aderências e da cicatrização de anastomoses colônicas em ratos com sepse peritoneal induzida

    Get PDF
    OBJETIVO: Avaliar os efeitos da sepse abdominal sobre a formação de aderências e a cicatrização de anastomoses colônicas em ratos. MÉTODOS: 40 ratos distribuídos em dois grupos contendo 20 animais, para anastomose do cólon esquerdo na presença (grupo S) ou ausência (grupo N) de indução de sepse por ligadura e punção do ceco (CLP). Cada grupo foi dividido em subgrupos para eutanásia no terceiro (N3 e S3) ou sétimo (N7 e S7) dia de pós-operatório (DPO). Foi avaliada a quantidade de aderências e removido um segmento colônico contendo a anastomose para análise histopatológica, força de ruptura, hidroxiprolina e conteúdo de colágeno tecidual. RESULTADOS: Os animais submetidos à CLP apresentaram maior quantidade de aderências intra-abdominais tanto no 3° DPO (p=0,00) quanto no 7° DPO (p=0,00). Tiveram menores valores de força de ruptura no 3° DPO (p=0,00), porém maiores valores no 7° DPO (p=0,00). Não houve diferença na variação da concentração de hidroxiprolina, conteúdo de colágeno e histopatologia. CONCLUSÕES: A infecção peritoneal desencadeada por CLP aumentou a quantidade de aderências intra-cavitárias. Houve diminuição da resistência de anastomoses cólicas no 3° DPO, com posterior aumento no 7° DPO, sem efeito sobre os outros parâmetros da cicatrização. ________________________________________________________________________________ ABSTRACTPURPOSE: To evaluate the effects of abdominal sepsis on adhesion formation and colon anastomosis healing in rats. METHODS: Forty rats were distributed in two groups containing 20 rats each for left colon anastomosis in the presence (Group S) or absence (Group N) of induced sepsis by cecal ligation and puncture. Each group was divided into subgroups for euthanasia on the third (N3 and S3) or seventh (N7 or S7) post-operative day. The amount of adhesions was evaluated and a segment of the colon was removed for histopathologic analysis, bursting strength assessment, hydroxyproline and the determination of tissue collagen. RESULTS: The subjects which underwent cecal ligation and puncture presented a higher amount of intra-abdominal adherences in both third (p=0,00) and seventh (p=0,00) post-operatory days. Smaller bursting strengths were found in the S3 subgroup, and greater bursting strengths were found in the S7 subgroup. There was no difference in the variations on the concentrations of hydroxyproline, tissue collagen and histopathology. CONCLUSIONS: The peritoneal infection which was developed by cecal ligation and puncture raised the amount of intra-cavitary adhesions. There was a decrease in the amount of colonic anastomosis on the third post-operatory day with a following raise on the seventh without any effects on other healing parameters

    IκBβ acts to inhibit and activate gene expression during the inflammatory response

    Get PDF
    The activation of pro-inflammatory gene programs by nuclear factor-κB (NF-κB) is primarily regulated through cytoplasmic sequestration of NF-κB by the inhibitor of κB (IκB) family of proteins1. IκBβ, a major isoform of IκB, can sequester NF-κB in the cytoplasm2, although its biological role remains unclear. Although cells lacking IκBβ have been reported3, 4, in vivo studies have been limited and suggested redundancy between IκBα and IκBβ5. Like IκBα, IκBβ is also inducibly degraded; however, upon stimulation by lipopolysaccharide (LPS), it is degraded slowly and re-synthesized as a hypophosphorylated form that can be detected in the nucleus6, 7, 8, 9, 10, 11. The crystal structure of IκBβ bound to p65 suggested this complex might bind DNA12. In vitro, hypophosphorylated IκBβ can bind DNA with p65 and c-Rel, and the DNA-bound NF-κB:IκBβ complexes are resistant to IκBα, suggesting hypophosphorylated, nuclear IκBβ may prolong the expression of certain genes9, 10, 11. Here we report that in vivo IκBβ serves both to inhibit and facilitate the inflammatory response. IκBβ degradation releases NF-κB dimers which upregulate pro-inflammatory target genes such as tumour necrosis factor-α (TNF-α). Surprisingly, absence of IκBβ results in a dramatic reduction of TNF-α in response to LPS even though activation of NF-κB is normal. The inhibition of TNF-α messenger RNA (mRNA) expression correlates with the absence of nuclear, hypophosphorylated-IκBβ bound to p65:c-Rel heterodimers at a specific κB site on the TNF-α promoter. Therefore IκBβ acts through p65:c-Rel dimers to maintain prolonged expression of TNF-α. As a result, IκBβ^(−/−) mice are resistant to LPS-induced septic shock and collagen-induced arthritis. Blocking IκBβ might be a promising new strategy for selectively inhibiting the chronic phase of TNF-α production during the inflammatory response

    Deletion of Nlrp3 protects from inflammation-induced skeletal muscle atrophy

    Get PDF
    BACKGROUND: Critically ill patients develop atrophic muscle failure, which increases morbidity and mortality. Interleukin-1β (IL-1β) is activated early in sepsis. Whether IL-1β acts directly on muscle cells and whether its inhibition prevents atrophy is unknown. We aimed to investigate if IL-1β activation via the Nlrp3 inflammasome is involved in inflammation-induced atrophy. METHODS: We performed an experimental study and prospective animal trial. The effect of IL-1β on differentiated C2C12 muscle cells was investigated by analyzing gene-and-protein expression, and atrophy response. Polymicrobial sepsis was induced by cecum ligation and puncture surgery in Nlrp3 knockout and wild type mice. Skeletal muscle morphology, gene and protein expression, and atrophy markers were used to analyze the atrophy response. Immunostaining and reporter-gene assays showed that IL-1β signaling is contained and active in myocytes. RESULTS: Immunostaining and reporter gene assays showed that IL-1β signaling is contained and active in myocytes. IL-1β increased Il6 and atrogene gene expression resulting in myocyte atrophy. Nlrp3 knockout mice showed reduced IL-1β serum levels in sepsis. As determined by muscle morphology, organ weights, gene expression, and protein content, muscle atrophy was attenuated in septic Nlrp3 knockout mice, compared to septic wild-type mice 96 h after surgery. CONCLUSIONS: IL-1β directly acts on myocytes to cause atrophy in sepsis. Inhibition of IL-1β activation by targeting Nlrp3 could be useful to prevent inflammation-induced muscle failure in critically ill patients

    Complement C5a Functions as a Master Switch for the pH Balance in Neutrophils Exerting Fundamental Immunometabolic Effects

    Full text link
    During sepsis, excessive activation of the complement system with generation of the anaphylatoxin C5a results in profound disturbances in crucial neutrophil functions. Moreover, because neutrophil activity is highly dependent on intracellular pH (pHi), we propose a direct mechanistic link between complement activation and neutrophil pHi In this article, we demonstrate that in vitro exposure of human neutrophils to C5a significantly increased pHi by selective activation of the sodium/hydrogen exchanger. Upstream signaling of C5a-mediated intracellular alkalinization was dependent on C5aR1, intracellular calcium, protein kinase C, and calmodulin, and downstream signaling regulated the release of antibacterial myeloperoxidase and lactoferrin. Notably, the pH shift caused by C5a increased the glucose uptake and activated glycolytic flux in neutrophils, resulting in a significant release of lactate. Furthermore, C5a induced acidification of the extracellular micromilieu. In experimental murine sepsis, pHi of blood neutrophils was analogously alkalinized, which could be normalized by C5aR1 inhibition. In the clinical setting of sepsis, neutrophils from patients with septic shock likewise exhibited a significantly increased pHi These data suggest a novel role for the anaphylatoxin C5a as a master switch of the delicate pHi balance in neutrophils resulting in profound inflammatory and metabolic changes that contribute to hyperlactatemia during sepsis

    The response of the host microcirculation to bacterial sepsis: Does the pathogen matter?

    Get PDF
    Sepsis results from the interaction between a host and an invading pathogen. The microcirculatory dysfunction is now considered central in the development of the often deadly multiple organ dysfunction syndrome in septic shock patients. The microcirculatory flow shutdown and flow shunting leading to oxygen demand and supply mismatch at the cellular level and the local activation of inflammatory pathways resulting from the leukocyte-endothelium interactions are both features of the sepsis-induced microcirculatory dysfunction. Although the host response through the inflammatory and immunologic response appears to be critical, there are also evidences that Gram-positive and Gram-negative bacteria can exert different effects at the microcirculatory level. In this review we discuss available data on the potential bacterial-specific microcirculatory alterations observed during sepsis
    corecore