2,760 research outputs found
Development of computer program NAS3D using Vector processing for geometric nonlinear analysis of structures
An algorithm for vectorized computation of stiffness matrices of an 8 noded isoparametric hexahedron element for geometric nonlinear analysis was developed. This was used in conjunction with the earlier 2-D program GAMNAS to develop the new program NAS3D for geometric nonlinear analysis. A conventional, modified Newton-Raphson process is used for the nonlinear analysis. New schemes for the computation of stiffness and strain energy release rates is presented. The organization the program is explained and some results on four sample problems are given. The study of CPU times showed that savings by a factor of 11 to 13 were achieved when vectorized computation was used for the stiffness instead of the conventional scalar one. Finally, the scheme of inputting data is explained
Approaching the quantum critical point in a highly-correlated all-in-all-out antiferromagnet
Continuous quantum phase transition involving all-in–all-out (AIAO) antiferromagnetic order in strongly spin-orbit-coupled 5d compounds could give rise to various exotic electronic phases and strongly-coupled quantum critical phenomena. Here we experimentally trace the AIAO spin order in Sm₂Ir₂O₇ using direct resonant x-ray magnetic diffraction techniques under high pressure. The magnetic order is suppressed at a critical pressure P_c=6.30GPa, while the lattice symmetry remains in the cubic Fd−3m space group across the quantum critical point. Comparing pressure tuning and the chemical series R₂Ir₂O₇ reveals that the approach to the AIAO quantum phase transition is characterized by contrasting evolutions of the pyrochlore lattice constant a and the trigonal distortion surrounding individual Ir moments, which affects the 5d bandwidth and the Ising anisotropy, respectively. We posit that the opposite effects of pressure and chemical tuning lead to spin fluctuations with different Ising and Heisenberg character in the quantum critical region. Finally, the observed low pressure scale of the AIAO quantum phase transition in Sm₂Ir₂O₇ identifies a circumscribed region of P-T space for investigating the putative magnetic Weyl semimetal state
Development of the Magnetic Excitations of Charge-Stripe Ordered La(2-x)Sr(x)NiO(4) on Doping Towards Checkerboard Charge Order
The magnetic excitation spectrums of charge stripe ordered La(2-x)Sr(x)NiO(4)
x = 0.45 and x = 0.4 were studied by inelastic neutron scattering. We found the
magnetic excitation spectrum of x = 0.45 from the ordered Ni^2+ S = 1 spins to
match that of checkerboard charge ordered La(1.5)Sr(0.5)NiO(4). The distinctive
asymmetry in the magnetic excitations above 40 meV was observed for both doping
levels, but an additional ferromagnetic mode was observed in x = 0.45 and not
in the x = 0.4. We discuss the origin of crossover in the excitation spectrum
between x = 0.45 and x = 0.4 with respect to discommensurations in the charge
stripe structure.Comment: 4 Figures. To be appear in the J. Kor. Phys. Soc. as a proceedings
paper from the ICM 2012 conferenc
Orbital and Spin Excitations in Cobalt Oxide
By means of neutron scattering we have determined new branches of magnetic
excitations in orbitally active CoO (TN=290 K) up to 15 THz and for
temperatures from 6 K to 450 K. Data were taken in the (111) direction in six
single-crystal zones. From the dependence on temperature and Q we have
identified several branches of magnetic excitation. We describe a model for the
coupled orbital and spin states of Co2+ subject to a crystal field and
tetragonal distortion.Comment: To be published in Physica B (Proceedings of SCES07 conference in
Houston
Polarization memory in the nonpolar magnetic ground state of multiferroic CuFeO2
We investigate polarization memory effects in single-crystal CuFeO2, which
has a magnetically-induced ferroelectric phase at low temperatures and applied
B fields between 7.5 and 13 T. Following electrical poling of the ferroelectric
phase, we find that the nonpolar collinear antiferromagnetic ground state at B
= 0 T retains a strong memory of the polarization magnitude and direction, such
that upon re-entering the ferroelectric phase a net polarization of comparable
magnitude to the initial polarization is recovered in the absence of external
bias. This memory effect is very robust: in pulsed-magnetic-field measurements,
several pulses into the ferroelectric phase with reverse bias are required to
switch the polarization direction, with significant switching only seen after
the system is driven out of the ferroelectric phase and ground state either
magnetically (by application of B > 13 T) or thermally. The memory effect is
also largely insensitive to the magnetoelastic domain composition, since no
change in the memory effect is observed for a sample driven into a
single-domain state by application of stress in the [1-10] direction. On the
basis of Monte Carlo simulations of the ground state spin configurations, we
propose that the memory effect is due to the existence of helical domain walls
within the nonpolar collinear antiferromagnetic ground state, which would
retain the helicity of the polar phase for certain magnetothermal histories.Comment: 9 pages, 7 figure
High temperature onset of field-induced transitions in the spin-ice compound Dy2Ti2O7
We have studied the field-dependent ac magnetic susceptibility of single
crystals of Dy2Ti2O7 spin ice along the [111] direction in the temperature
range 1.8 K - 7 K. Our data reflect the onset of local spin ice order in the
appearance of different field regimes. In particular, we observe a prominent
feature at approximately 1.0 T that is a precursor of the low-temperature
metamagnetic transition out of field-induced kagome ice, below which the
kinetic constraints imposed by the ice rules manifest themselves in a
substantial frequency-dependence of the susceptibility. Despite the relatively
high temperatures, our results are consistent with a monopole picture, and they
demonstrate that such a picture can give physical insight to the spin ice
systems even outside the low-temperature, low-density limit where monopole
excitations are well-defined quasiparticles
- …
