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FOR GEOMETRIC NONLINEAR ANALYSIS OF STRUCTURES

By
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Principal Investigator: Ramamurthy Prabhakaran2

ABSTRACT

An algorithm for vectorized computation of stiffness matrices of an 8-

noded isoparametric hexahedron element for geometric nonlinear analysis was

developed. This was used in conjunction with the earlier 2-D program GAMNAS

to develop the new program NAS3D for geometric nonlinear analysis. A con-

ventional, modified Newton-Raphson process is used for the nonlinear analy-

sis. New schemes for the computation of stiffness and strain energy release

rates is presented. The organization of the program is explained and some

results on four sample problems are given. The study of CPU times showed

that savings by a factor of 11-13 were achieved when vectorized computation

was used for the stiffness instead of the conventional scalar one. Finally,

the scheme of inputting data is explained in the Appendix.
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1. INTRODUCTION

Many problems in the study of the behavior of composites require geo-

metric nonlinear analyses due to large strains and displacements involved.

Examples of these are the behavior of laminated composites under compression

(buckling), with or without delamination, and deformation of lap shear geo-

metries. Often, the two-dimensional (2-D) analysis is used successfully to

study stress states and estimate fracture mechanics parameters in these

problems. However, such an analysis proves inadequate in many cases where

there exist complexities in the composite lay-up, geometry or form of delam-

ination. A full three-dimensional (3-D) analysis is then required. Such an

analysis, and particularly the nonlinear one, involves extensive computa-

tions and is normally prohibitively time-consuming with conventional comput-

ers and algorithms. The advent of vector processor computers, like the VPS-

32 system at NASA Langley, has provided an economically feasible solution to

the time-consuming operations of 3-D analyses. However, to fully utilize

the fast processing capability of these computers in the vector form, new

algorithms are required. These algorithms should be aimed specifically at

taking advantage of vector processing by carrying out computations by build-

ing long vectors.

The two important time-consuming stages in the Finite Element (FE)

analysis of structures are the computation of stiffness matrix and solution

of resulting system of equations. The development of solution routines has

received considerable attention in the past and already efficient vectorized

solution routines are in operation on the VPS-32 system (Refs. 1, 2). Com-

putation of stiffness in the vector form was studied by Noor and Hartley

(Ref. 3) who developed an algorithm which builds and uses long vectors.

Savings by a factor of 5 to 6 were obtained in CPU time when routines based



on these algorithms were used. Stiffness calculations based on these algo-

rithms were effectively used in linear 3-D analysis by Raju et al. (Ref. 4).

However, this has not been applied in the case of nonlinear analysis so far.

Since the nonlinear stiffness calculation involves many more computations

than the linear one, and since the nonlinear solution process requires

repeated calculation of stiffnesses, the vectorization in this segment

should lead to decreasing computation time. The present effort is directed

towards this goal.

Development of a capability for general nonlinear analysis of struc-

tures with cracks or discontinuities is a complex, but worthwile exercise.

The present work is a step in this exercise and is basically aimed at ana-

lyzing laminated composites with del ami nations under compression and lap

shear geometries which involve large rotations during deformation. A good

review of many efforts to estimate stresses and fracture mechanics param-

eters in these problems can be found in references 5-7. Almost all of this

work except Lof's (Ref. 7) is based on 2-D FE analysis with plane stress or

plane strain. It is now generally recognized that cracked lap-shear geom-

etries have large rotations and require a geometric nonlinear analysis to

get accurate estimates of strain energy release rate in various modes of

fracture [6]. A 2-D nonlinear analysis was developed in an earlier effort

at NASA Langley (Ref. 6) and resulted in the program GAMNAS for the case of

plane stress and plain strain idealization (Ref. 8). Subsequently, a quasi-

3-D linear analysis was developed for the case of a symmetric double cracked

lap shear specimen (Ref. 9). This proved to be a good compromise between

the accuracy of the results and the cost of the solution for the 3-D nature

of the problem. However, this analysis involved superpositions and thus

could not be extended to the case of nonlinear behavior.



In the present work, the program GAMNAS and the vectorized algorithm

for linear stiffness computation used in earlier 3-D linear analysis are

taken as the starting points. Routines are developed for vectorized compu-

tation of nonlinear stiffness using 8-noded isoparametric hexahedron ele-

ment. These are used to develop a code for the 3-D geometric nonlinear

analysis. The overall flow of the program follows closely that of GAMNAS.

Some theoretical aspects which served as the basis for the development of

the present program are presented. First, the general formulation of the

nonlinear analysis is presented. Next, schemes of computation of stiffness

and of extracting strain energy release rates are discussed. Then, the

description and organization of the program NAS3D is given along with the

study of computational times involved in various stages. Finally, the

results of some simple problems are presented as test cases and examples.

The details of input data required are given in the Appendix.

2. THEORY

A displacement based FE formulation is used in the present work. Such

a formulation of a geometric nonlinear problem is given in Ref. 10. The

salient features are given in this section. Further, schemes for computa-

tion of stiffness and strain energy release rates are also discussed.

2.1 Formulation

(i) Strain-Displacement Relations

A general definition of strains using Green's strain tensor is used to

take into account the large displacements and rotations. This defines the

strains as follows:
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other components being obtained by suitable permutation of subscripts. It

may be noted that if the displacements are small, the general first order

strain approximation is obtained by neglecting the quadratic terms.

(ii) Stress-Strain Relations

For small strains the stress-strain relations can be written in general

form as

{cr} = [D] ({e} - {£}„ ) + (a}0 (2)

in which [D] is the usual set of the elastic constants and the subscript 0

refers to initial values. When the strains are large, a nonlinear stress-

strain relationship for the material has to be used. This is not considered

in the present formulation.

(ii) Equilibrium Equations

Equilibrium conditions have to be satisfied between internal and

external generalized forces. If the displacements are prescribed in the

usual manner of an FE analysis by a finite number of nodal parameters {a},

the necessary equilibrium conditions can be obtained by using principle of

virtual work as when { } represents the sum of internal and external

generalized forces and [B] is defined from the strain-displacement relations

of Eq. (1) as



OK a)} = / [B]T {a} dV - {f} = 0. (3)

Since the strains depend nonlinearly on displacements, the matrix B is now

dependent on {a} . Also, the quadratic nature of Eq. (1) implies that [B] is

linear with {a}. The stresses {CT} are linearly related to the strains.

Hence, Eq. (3) results in cubic simultaneous equations.

( iv) Iterative Solution

The governing equations resulting from Eq. (3) are solved iteratively

using modified Newton-Raphson process (Ref. 10). The basic Newton-Raphson

method for the first load step may be outlined as follows:

1. Obtain a linear solution using the linear stiffness matrix [K0]:

(ao> = [Kfl]'1 {f}; (4)

2. Calculate residuals {<|>} with Eq. (3);

3. Check for convergence. Stop if {t|»} is sufficiently small;

4. Calculate tangential stiffness matrix [K_] as defined by the

equation

dW = [KT] d{a} ; (5)

5. Solve for correction to displacements:

{Aa} = -CKy]-1 {A*} ; (6)

6. Update the displacements:



{a} = {a} + {Aa} ; (7)

7. Go to step 2.

When multiple load steps are used, only step 1 changes. After obtaining a

converged solution for load step "i," the initial solution for the next load

step is

{a>i+1 = {ai> + [K̂ -1 (Af}. (8)

where { A f } ^ is the load increment after the i-th step.

In actual practice a modified Newton-Raphson process is used. In this

process, the tangential stiffness is not calculated after every iteration

but after a predetermined number of iterations. This saves considerable

computation time.

2.2 Computation of Stiffness

A linear FE analysis requires the computation of stiffness matrix [K0]

for an element in the following form (Ref. 10):

[K0] = / [B]T [D] [B] dV (9)

where [B] is the matrix of strain-displacement relations obtained from Eq.

(1) neglecting the nonlinear terms. In a nonlinear analysis one needs to

evaluate a tangent stiffness matrix [KT] as defined by Eq. (6). On taking

differentials from Eq. (3), [K,.] can be obtained as



where

and

[KT] = [K0] + [KL] + [Ka] = [K] + [Ka]

[K] = [K0] + [KL] = /v [B]
T [0] [B] dv

[Kff] = /v [G]T [M] [6] dv.

(10)

(11)

(12)

Here, [B], as defined in Eq. (3), incorporates the nonlinear strain-dis-

placement relationship, [G] contains the derivatives of the shape functions,

and [M] contains the stresses in the element. The matrix [B] is obtained

as

and

[B] - [B] + [BL]

[BL] = [A] • [G]

where [A] contains the derivatives of displacements. Thus,

and

r D T —ID ] ~

N v 0 0 0 N ,
A Z

0 N 0 Nz 0

0 0 N N N
z y x

U N U N U N U N + U N U N + U N
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where N's are vectors of the shape functions for the isoparametric 8-noded

hexahedron and subscripts denote the derivatives. On carrying out multi-

plications in Eq. (13), it can be shown that [K J has the following struc-

ture:

where [H] is defined by

[S3
[0]

where

[H] = Jv [Bi]
1 [S]

= [Nx, Ny Nz] and [S]

dv

x xy xz

yz
xz

(17)

(18)

(19/20)

The integrals are evaluated by numerical integration using Gaussian quad-

rature so that Eq. (12), for example, is evaluated as

[K] = (21)

Note that the right-hand sides of Eqs. (10), (12), and (19) have the same

form, and similar logic can, therefore, be used in their evaluation. Hence,

the algorithm given by Noor and Hartley (Ref. 3) for linear stiffness compu-

tation is also applicable in the case of the nonlinear stiffness computa-

tion. The method used in the present work follows very closely the algo-

rithm of Noor and Hartley, and Ref. 3 can be seen for the details. The



computation of [K] proceeds as follows:

1. Long vectors of length m.n containing values of derivatives of m

shape functions (N , N , etc.) at n integration points and productsx y

of these witn derivatives of displacements (u N , u N , etc.) are
A A A J

formed. These vectors are stored in arrays BV and BLV as shown in

Fig. 1. These now contain all the values required for matrices [B]

and [B. ] in Eqs. (16, 17). In the present program, the number of

shape functions is m=8 and 3-point integration in each coordinate

direction is used which gives n=27. Thus, vectors in BV and BLV

have a length of 216.

2. The long vectors formed in step 1 are multiplied by the vector of

weights and |J|.

3. Array SU is formed which contains the vectors in the product [B]

[D]. The j-th column vector in SU is formed as the sum given by

{SU}.. = z (BV) . * [D] .1 Jij u £J

where the index 1 takes the values required by the strain-displace-

ment matrix. A pointer matrix containing applicable values of 1 is

formed for this purpose. The array SU has the same structure as BV

and BLV and contains vectors of length mn. (See Fig. 2).

4. The nodal stiffness coefficients are now evaluated. For this pur-

pose the element stiffness matrix is partitioned as shown in Fig.

3. The independent blocks of the element stiffness matrix that

occupy each column are formed simultaneously. The operations
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involved in the evaluation of the stiffness coefficients of the j-

th column blocks (i.e. [K. .], [K . . ..] - - - [K. ]) are as
i j j jj"1"! j >ni

follows:

1. Array SUM is formed from the array SU by replicating j times

the elements corresponding to the j-th shape function as shown

in Fig. 2. The length of vectors in SUM is nm(m+l)/2.

2. Arrays BVJ and BLVJ are formed from BV and BLV, respectively,

by replicating the values corresponding to j-th shape function

(m-j+1) times. Thus, the length of vectors in BVJ and BLVJ is

now nm(m+l)/2. Array BV is used for the linear case. The sum

of appropriate columns of BV and BLV as dictated by the strain-

displacement relations is used for the nonlinear case.

3. The matrices (K .] (l=j to m) are formed by taking the products*j
of vectors in SUM and BVJ or BLVJ. The elements of [K..] are

vectors of length (m-j+l)n. Once again, as in forming SU

above, the strain-displacement relations decide which vectors

from SUM would multiply each vector from BVJ or BLVJ. The same

pointer matrix can be used for this purpose.

4. Stiffness coefficients K . are then obtained by summing the n

coefficients IT, 1C --- 1C which occupy contiguous loca-

tions in memory.

Calculation of [K j proceeds in the same manner with proper definitions

of the [B] and [D] matrices. As seen from Eq. (18), only a smaller matrix

[H] needs to be calculated which then can be replicated to get [K ].

To make the element suitable for analyzing bending deformation use is

made of reduced integration techniques (Ref. 10). In this technique, one or

13



more of shear strains are integrated by taking a lower order representation.

For the present case of the isoparametric hexahedron, the lower order ap-

proximation makes the shear strains have a constant value in the element and

can be easily incorporated in the computation of the stiffness matrix. For

this purpose, the elements of the strain-displacement matrix which

correspond to the strain being reduced-integrated are changed to their

values at the centroid prior to the calculation of the stiffness. Simi-

larly, to evaluate [K ], the elements which multiply the shear stress cor-

responding to the shear strain being reduced-integrated are changed to their

values at the centroid.

2.3 Computation of Strain Energy Release Rates

The strain energy release rates are calculated using a virtual crack

extension technique similar to that reported in Ref. 11 and used in GAMNAS

(Ref. 6, 8). This technique uses the forces transmitted across the crack

tip to determine the energy release rates. The technique assumes that the

change in geometry caused by a very small crack increment does not change

the forces and displacements near the crack tip. The use of the technique

requires that the mesh near the crack tip be uniform and symmetric about the

crack plane. Because of the large displacements and rotations involved, the

orientation of the crack plane is calculated in the deformed configuration

in terms of the direction cosines of the normal to the crack increment

plane, and the modes of fracture are redefined for this local system. The

strain energy release rates are calculated for these modes of fracture. In

calculating the energy, first the forces at the relevant nodes are reduced

to force per unit length of the crack front (traction) using a strain energy

equivalence. This is equivalent to inverting the process of obtaining the

14



consistent load vector for a given stress distribution. The energy obtained

by multiplying these tractions by corresponding displacements is then di-

vided by the length of the crack increment to get the strain energy release

rates.

3. DESCRIPTION AND ORGANIZATION OF PROGRAM NAS3D

The program NAS3D is basically developed for 3-D geometric nonlinear

analysis of lap shear geometries with cracks. An example of such a geometry

would be a cracked lap shear specimen used for study of del ami nations in

composites or debonds in adhesively bonded joints. The program is written

in FORTRAN VERSION 2 operating on CYBER 200 and VPS-32 systems at NASA

Langley. It relies heavily on the vector processing capabilities of these

machines for its speed and efficiency, NAS3D uses a simple 8-noded isopara-

metric hexahedron element. The iterative scheme for the nonlinear solution

is a modified Newton Raphson process. It outputs the nodal displacements,

stresses at the centroids of the elements, and reactions at the nodes. For

the cracked configuration, it outputs the strain energy release rates along

the crackfront in all the three modes as well as the total mean strain

energy release rate.

The overall flow of NAS3D is similar to that of GAMNAS (Ref. 8). Even

the material nonlinearity features of the GAMNAS are retained in the 3-D

program, although this part has not been tested so far. This is done with a

view to incorporate the material nonlinearity in the future. The flowchart

of the program is shown in Fig. 4. Only one proportional load vector is

input. The different load numbers (LOADNUM) refer to the scale factor by

which the load vector is multiplied. For each new load, a linear incre-

mental solution is obtained in the main program and then iterated in the

15
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routine ITERATE to obtain the incremental nonlinear solution. A restart

option is included to facilitate the starting of the program from a solution

to an itermediate load step. A description of the input data required for

the program is given in the Appendix.

Table 1 gives the computation times obtained for various computations

with NAS3D. Comparative times using conventional scalar algorithsm are also

given. The vector version of calculating stiffness matrix reduces the CPU

time required by a factor 11 to 13 depending upon the choice of selective

reduced integration. It may be noted here that the calculation of residuals

and stresses is as time consuming as the stiffness calculation. Future

efforts may be directed towards reducing the computations or computational

times for the residuals.

4. SAMPLE PROBLEMS

In this section, some results obtainedon four sample problems using

NAS3D are given. These were used as test cases for the program and serve as

useful examples.

4.1 Slender Beam

A slender beam of width 1", thickness .2" and length 20" is analyzed.

The beam is supported at one end (see Fig. 5) and a transverse displacement

w is applied at the center of the other end. The mesh and the configuration

are shown in Fig. 5a. Although, the beam has no transverse stiffness ini-

tially (at no load), the geometric nonlinear effects stiffen the system as

the transverse displacement increases. Figure 5b shows the calculated axial

stress at the supported end of the rod at the mid-width and the edge. The

results of 3-D FE analysis are shown by symbols and an exact solution ob-

tained by the use of simple trigonometry for a rod with no bending stiffness

17



Table 1. CPU Times for Various Stages in the Nonlinear Analysis

Nodes = 8418, Elements = 6520, Bandwidth = 456, DOF = 25254

1.

2.

3.

4.

5.

6.

Operation

Data Input

Linear Stiffness and Assembly

(Scalar)
(Vector)

Stiffness Time/Element (Vector)

Nonlinear Tangent Stiffness and Assembly

Stiffness Time/Element

Stresses and Reactions

Residuals

Solution of Equations

(Scalar)
(Vector)
(Scalar)
(Vector)

(Vector)

(Vector)

(Scalar)
(Vector)

Time (seconds)

16.77

71.00
.0096

2180.00
171.00

0.3200
0.0251

140.0

115.0

3933.0
57.0
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is shown by the solid line. As seen from the figure, the FE results predict

the nonlinearity very well. The 3-D results are close to the exact at the

mid-width and only slightly lower at the edge. Table 2 gives the comparison

of the stresses obtained with full and reduced integration. It is observed

that at the low loads the reduced integration indicates some error. This

shows that the reduced integration should be used judiciously and only where

bending is involved.

4.2 Double Cantilever Beam (DCB)

Double cantilever beamgeometries are extensively used in the study of

fracture of fracture of composites and adhesive bonded joints. Figure 6

shows a symmetric DCB specimen with the FE mesh for the upper half which was

analyzed. A load of 40 Ib uniformly distributed over the 1" width was

applied. The linear and nonlinear solutions were found to1 differ by an

insignificant amount; for example, the error in tip deflection in the linear

solution was less than 1%. The analysis was conducted using full integra-

tion, reduced integration of one shear strain (IREDIM), and reduced inte-

gration of all shear strains (IREDU=3). The tip deflection w and average

strain energy release rate G are compared with the strength of materials

solution in Table 3. It is observed that the full integration performs

poorly when bending is involved. The selective reduced integration allows

the user to choose the proper reduced integration scheme suitable for a

given problem. The difference in the two cases of reduced integration is

not large here (Table 3) but it could be significant if the beam deforms in

the width direction as well. In such a case, reduced integration of all

shear strains may prove beneficial and necessary.

Figure 6b indicates the distribution of the strain energy release rate

20



Table 2. Example of Slender Beam Axial Stress in the Beam at Various
Deflections.

Deflection
w in

1

2

3

5

7

Axial stress (ps i )

Reduced Integration

Elm. 1 E lm. 2

9.322 9.373

44.66 44.89

105.77 106.49

299.96 303.35

589.13 596.16

F u l l Integration

Elm. 1 E lm. 2

12.45 12.41

49.72 49.54

111.49 111.06

307.36 306.02

598.8 595.9

Theory

12.49

49.88

111.87

307.76

594.81
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Table 3. Example of Double Cantilever Beam. Comparison of Full and
Reduced Integration Results for P = 40 B/in.

Total Average
Tip Deflection strain energy release rate

Case w, in 6 Ib. in/in2

1. Full Integration .0323 1.129

2. Reduced Integration 0.06416 4.780
of T only (IREDU=1)

3. Reduced Integration 0.06595 4.928
of all Shear Strains
(IREDU=3)

4. Beam Theory 0.06540 4.915
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along the crack-front. As should be expected the strain energy release rate

has maximum value at the center and becomes negligibly small at the edge.

Since the strain energy release rate decays to zero only in a small portion

of the width at the edge, a finer mesh is necessary to get the accurate

distribution of G. A finer mesh would result in a flatter curve in the

central portion and a steeper decay at the edge.

4.3 Double Cracked Lap Shear Specimen

A symmetric double cracked lap shear specimen made of laminated com-

posite is shown in Fig. 7a. A through-the-thickness delamination of length

a=l" exists symmetrically on either side of the specimen. Since the geom-

etry is symmetric, not much of bending deformation is expected. Also,

because of the symmetry, only one (upper) half of the specimen needs to be

analyzed. NAS3D was used to carry out the 3-D analysis of this specimen.

The mesh in the Y-Z plane used for the FE analysis is shown in Fig. 7b. The

3-D mesh is generated by repeating this mesh in every Y-Z plane for the

subdivision in X-direction. Full integration was used. The results of the

linear solution were compared with those obtained earlier by Raju (Ref. 9).

The results of displacements and stresses were identical with Raju's for the

identical meshes. The strain energy release rates along the crack-front

obtained in these solutions are compared in Fig. 7b. Although the average

values in the two solutions match some difference is observed in the actual

distribution. This is due to the different techniques adopted to get energy

per unit area from nodal forces and displacement. The present method of

calculating consistent tractions and using them in G-calculation is expected

to be more accurate than the earlier one.

24



O-

<£>
O

U3 O O
O

en -i- r- II II
O) </>
•/- Q. X ro <T>

CM CM
i-VO i— >
O) O •a. i— CM i; n
o
i- x n to
O. i—

O
fD CM LjJ
C II II
•r- II II
E CM CM
rtj i— C\J i— i

LU > C3

O
O
VO
ro

•a:inun

0)
-o
o

-C
(/)
Ol

O)

<D

Q.

N

•r- CU

10 Q

£ co

LU +J
U. CO

-O CO
£T C
rt3 OS

-'a.
c
o </>

03 4->

3 O

•4- i—
c co
o i—
u <—

<a
10 ro

c c
cu <a

cu :̂
a. o

cu
c:
o

M- CO
O 4J

ro
CO CU

<— a.
O. CO
e i-
ro
X 10

C7>

25



4.4 Cracked Lap Shear (CLS) Specimen

Cracked lap shear specimens are widely used in the study of mixed mode

fracture related to debonds in adhesively bonded joints or delaminations in

composites. One such specimen used for adhesive bond study is shown in Fig.

9a. The adherends are of equal thickness and made of aluminum with Young's

modulus of 10500 ksi and Poisson ratio of .33. The adhesive Young's modulus

is 280 ksi and Poisson ratio is 0.4. This specimen is one of the specimens

used in a recent ASTM round robin effort on the analysis of CLS specimen

(Ref. 7). The analysis was conducted using NAS3D for the case of debond

length of 1". Reduced integration was used. The linear solution for P=2500

Ib. was obtained. The distribution of strain energy release rates in

various modes along the crackfront is shown in Fig. 9b. These results agree

well with the results of an earlier 3-D analysis by Lof for the ASTM round

robin (Ref. 7). However, the total average strain energy release rate is

much higher than those obtained in nonlinear and linear 2-D analyses. This

is surprising; but, it is expected that the nonlinear analysis will give the

strain energy release rate comparable to the 2-D solutions. Further, to

check the 3-D program plan strain conditions were simulated in the 3-D

analysis by restraining the normal displacements of the edges of the speci-

men. The results of this analysis were within 2% of the 2-D plan strain

linear analysis.

During the course of nonlinear analysis of this specimen, it was found

that the initial load and the incremental load values required to obtain

convergence were very small. Thus, nonlinear solutions for any load values

of practical significance would require large computation time.

5. CONCLUDING REMARKS

An algorithm for computation of stiffnesses required in geometric
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nonlinear analysis was developed and used to generate the computer program

NAS3D. Selective reduced integration of shear strains was incorporated to

make the element suitable for bending. Strain energy release rate calcula-

tions were based on consistent tractions along the crack front. A provision

for restarting the solution from an intermediate solution is also made. The

code was tested by solving some simple problems having known solutions.

Comparison of various computation times showed that savings by a factor of

11-13 were obtained in vectorized computation of stiffness over the conven-

tional scalar computation. Calculation of residuals was found to be another

time consuming step and future efforts may be directed to make this more

efficient.

Successful use of any FE program for the structural analysis depends

significantly on the ability of the analyst to predict qualitatively the

response of the configuration. This insight, generally based on experience

and simpler analyses, is particularly important for nonlinear analyses in

which questions of convergence and uniqueness of solution and solution

strategy have to be addressed. It is hoped that the present program coupled

with some of this insight will prove to be a useful tool for the geometric

nonlinear analysis.
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APPENDIX

INPUT DATA

The required input data is described in this section. Where

applicable, the maximum allowable values of the input parameters are noted.

No. of
Card Set Parameters Cards Format

1. TITLE(I), I = 1,60 3 20A4

TITLE = TITLE OF PROBLEM

2. OUTPUT, ANALYS, QUADRAT, ENERGY 1 5A8

OUTPUT = Output option

= XLONG for long output

= SHORT for output (the nodal coordinates, element

connectivity, and boundary conditions are not in the

output)

ANALYS = Type of analysis

= XLINEAR for linear analysis

= GNONLIN for geometrically nonlinear analysis

= PNONLIN for materially nonlinear analysis

= CNONLIN for combined geometric and material nonlinear

analysis

QUADRAT = Integration option

= REDUC for reduced integration

= XFULL for full integration

ENERGY = Option for strain-energy release rate calculations
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No. of
Card Set Parameters Cards Format

= DO-G for G calculation

= DONOJG for no G calculation

3. IREDUO 1 1615

IREDUO = Number of shear strains to be reduced integrated

(1 for Tyz, 2 for Tyz and TZX , 3 for ryz, TZX and rxy)

4. ITSTEP, NCYCLE, IMAX . 1 315

ITSTEP = Number of steps in the incremental loading minimum = 1,

maximum = 30

NCYCLE = Number of iterations between updates of stiffness

matrix

IMAX = Maximum number of iterations allowed before terminating

5. ACCURACY 1 F10.3

ACCURACY = Maximum residual allowed in converged solution as a

fraction of applied load

6. NN, NE, NRN, NLX 1 1615

NN = Number of nodes in the FE model

NE = Number of elements in the FE model

NRN = Number of nodes with a restrained degree of freedom

NLX = Number of nodes in the X-direction (direction normal to

the 2-D mesh) (minimum = 1, maximum = 10)

7. X(I), I = l.NLX NLX/81" 8F10.5

X( ) = Coordinates in X direction for mesh division

8. Nodal Coordinates

x-coordinate
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No. of
Card Set Parameters Cards Format

XX, N(I) = 1,13 * E10.4, 1315

XX = coordinate

XX = coordinate

N( ) = list of nodes with coordinate XX

*Input until all x-coordinates are

specified. End x-coordinate data

with a blank card.

y-coordinate

XX, N(I), I = 1.13 * £10.4, 1315

*Similar to input of x-coordinates

9. I, IN(I), JN(I), KN(I), LN(I) NE 515

I,IN,JN,KN,LN = Element number, four node numbers for element I.

Nodes must be specified in a counterclockwise

direction.

10. K, NRL (3*K-2), NRL (3*K-1), NRL (3*K) NRN 415

K = Node number

NRL (3*K-2), NRL (3*K-1), NRL (3*K) = Constraints in X, Y

and Z directions,

respectively, at node

K. 0 indicates no

constraint

1 indicates

constraint

Note: Do not include degrees of freedom involved in

33



No. of
Card Set Parameters Cards Format

multipoint constraints. Do include degrees of

freedom with specified displacements.

11. IANC 1 1615

IANC = Number of additional nodal constraints on planes or

lines.

12. XMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX 3* 2F20.8

XMIN, XMAX = Range of x-coordinate

YMIN, YMAX = Range of y-coordinates

ZMIN, ZMAX = Range of z-coordinates

13. ICONX, ICONY, ICONZ 1* 1615

ICONX = Restraint in x-direction

ICONY = Restraint in y-direction

ICONZ = Restraint in z-direction

(=1, restrained j = 0, free)

SKIP 14-17 IF ENERGY = DONOJG

14. INP 1 15

INP = Number of node sets used in virtual crack extension

calculation (maximum = 15)

15. NEGCAL(I), I = 1, (INP+1) (INP+D/ie1" 1615

NEGCAL = Element numbers for elements in 2-D mesh contributing

to the nodal forces required for virtual crack

extension. (See example in sketch below. Element

numbers are circled.)

Round off to next higher integer.
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Card Set Parameters
No. of
Cards Format

Crack

Crack Tip

IF INP = 3,

NEGCAL (1 to 4) = 2, 3, 4, 5

NFGCAL (1 to 3) = 14, 13, 12

NDGCAL (1 to 6) = 15, 19, 16, 20, 17, 21

16. NFGCAL(I), I = 1, INP INP/161" 1615

NGGCAL(I) = Node numbers for nodes along which virtual crack

extension forces are calculated.

List according to distance from crack tip, with the

crack tip node as the first one.

17. N D G C A L ( I ) , I = 1, (2*INP) 2*INP/16f 1615

NDGCAL(I) = Node numers for the nodes used to calculate cracking

opening and sliding displacements

Repeat card sets 13-16 for each material group.

Maximum number of material groups = 10

End last group with blank card.

18. J, XMATER(J), ELASOPT 1 15, A8

J = Material group number

XMATER = Material type

= ELASTIC for linear stress-strain curve

= ELPLAST for elastic-perfectly plastic stress-strain

Round off to next higher integer.
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No. of
Card Set Parameters Cards Format

curve

= BLINEAR for bilinear stress-strain curve

= RAMOSGO for Ramberg-Osgood stress-strain curve

ELASOPT = YUNGMOD, when elastic constants of the material are

input

= FULDMAT, when [Dj is input columnwise

(Use ELASOPT = YUNGMOD with the present version)

19. EPROP(I), I = 1, 10 2 8E10.3

EPROP = Contains the material elastic constants in the

following order

EI, E2, E3, G23 , G 3 l s G32, V 2 3 » V 3 i » v i2» and 9 where

0 = Ply angle with respect to x-axis

20. YIELDS, ET, RO, ANM 1 5E10.3

YIELDS = Yield stress

ET = Tangent modulus for yielded bilinear material

RO, ANM = Parameters defining Ramberg-Osgood stress-strain

relation, e = 1 + (^-)ANM

E RO

(a) If XMATER = ELASTIC, input YIELDS = ET = RO = 1.0 x

1021, ANM = 10

(b) If XMATER = BLINEAR, input proper YIELDS and ET and

set RO = ANM = 0.0

(c) If XMATER = RAMOSGO, input proper YIELDS, RO and

ANM and set ET = 0.0
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No. of
Card Set Parameters Cards Format

21. NEL1, NEL2, NELINC * 315

NEL1, NEL2, NELINC = Loop parameters used to define elements in

material group

NEL1 = First element

NEL2 = Last element

NELINC = Loop increment

e.g., 1, 50, 20 defines elements 1, 21, and

31 to be in material group

*Repeat until all elements in group are defined.

End card set 16 by specifying NEL1 = NEL2 = NELINC = 0

22. OELLOAD(I) = 1, ITSTEP ITSTEP/8f 8F10.3

DELLOAD(I) = Scale factor for proportional load vector for load

step I. Always specify DELLOAD(I) =1.0

23. NLN, NCD, NED 1 315

NLN = Number of nodes with applied loads

NCD = Number of multipoint constraints, max = 15

NED = Number of specified displacements, max = 30

24. K, FX, FY, FZ NLN 15, 3F10.3

K = Node number

FX, FY, FZ = Loads in x, y, and z directions, respectively

25. K, KDF, URD NED 215, F10.3

K = Node number

KDF = Displacement direction, specify 1 for x direction

specify 2 for y direction

Round off to next higher integer.

37



No. of
Card Set Parameters Cards Format

specify 3 for z direction

URD = Magnitude of displacement

SKIP 21-24 IF NCD = 0

26. NMPR(I), I = 1, NCO NCD/16 1615

NMPR(I) = Number of degrees of freedom involved in the Ith

multipoint constraint, max = 20

27. ((ICDN(I,J),J=1, NMPR(I)), I = 1, NCD) NCD sets 1615

(ICDN(I,J) = Jth degree of freedom involved in the Ith multipoint

constraint

28. NZKV . 1 15

NZKV = Number of multipoint constraints for which there is

an applied load

29. NKV, ATOT .

NKV, ATOT: ATOT is the non-zero load associated with the NKV

set of constrained nodes

30. NPANS 1 15

NPANS = Number of planes/lines with applied uniform normal

stress

SKIP 31 if NPANS = 0

Repeat 31-33 NPANS times.

31. NDIR, ASTR 1 15, F20.8

NDIR = Direction of applied stress

(1 = x, 2 = 4, 3 = z)

ASTR = Value of applied stress
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No. of
Card Set Parameters Cards Format

32. XMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX 3 2F20.8

XMIN, XMAX = Range of x coordinate for the plane/line

YMIN, YMAX = Range of y coordinate for the plane/line

ZMIN, ZMAX = Range of z coordinate for the plane/line

33. NI, NF, NPCHX, NPCHY, NPCH2 1 1615

NI = Lowest node nunber in the plane/line

NF = Highest node number in the plane/line

NPCHX = Pitch in x-direction of node numbers

NPCHY = Pitch in y-direction of node numbers

NPCHZ = Pitch in z-direction for node numbers

34. IREDO 1 15

IREDO = Restart parameter

(0 = regular job, 1 = restart job)

Note: The information required for restarting a job from an

intermediate load step is written on TAPE7. This file should

be saved and used for restarting the job. Thus, in the first

run of the job IREDO is given as 0 and file on TAPE7 is saved.

In the next run (for restarting at the point where the first

run was over), IREDO is given as 1 and an earlier solution is

read from TAPE7.
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