493 research outputs found

    Global climate-driven trade-offs between the water retention and cooling benefits of urban greening

    Get PDF
    Urban greening can potentially help mitigate heat-related mortality and flooding facing the >4 billion urban population worldwide. However, the geographical variation of the relative combined hydrological and thermal performance benefits of such interventions are unknown. Here we quantify globally, using a hydrological model, how climate-driven trade-offs exist between hydrological retention and cooling potential of urban greening such as green roofs and parks. Using a Budyko framework, we show that water retention generally increases with aridity in water-limited environments, while cooling potential favors energy-limited climates. Our models suggest that common urban greening strategies cannot yield high performance simultaneously for addressing both urban heat-island and urban flooding problems in most cities globally. Irrigation, if sustainable, may enhance cooling while maintaining retention performance in more arid locations. Increased precipitation variability with climate change may reduce performance of thinner green-infrastructure more quickly compared to greened areas with thicker soils and root systems. Our results provide a conceptual framework and first-order quantitative guide for urban development, renewal and policymaking

    β-Phase Morphology in Ordered Poly(9,9-dioctylfluorene) Nanopillars by Template Wetting Method

    Get PDF
    An efficient method based in template wetting is applied for fabrication of ordered Poly(9,9-dioctylfluorene) (PFO) nanopillars with β-phase morphology. In this process, nanoporous alumina obtained by anodization process is used as template. PFO nanostructures are prepared under ambient conditions via infiltration of the polymeric solution into the pores of the alumina with an average pore diameter of 225 nm and a pore depth of 500 nm. The geometric features of the resulting structures are characterized with environmental scanning electron microscopy (ESEM), luminescence fluorimeter (PL) and micro μ-X-ray diffractometer (μ-XRD). The characterization demonstrates the β-phase of the PFO in the nanopillars fabricated. Furthermore, the PFO nanopillars are characterized by Raman spectroscopy to study the polymer conformation. These ordered nanostructures can be used in optoelectronic applications such as polymer light-emitting diodes, sensors and organic solar cells

    Argonaute 2 in dopamine 2 receptor–expressing neurons regulates cocaine addiction

    Get PDF
    Cocaine is a highly addictive drug that exerts its effects by increasing the levels of released dopamine in the striatum, followed by stable changes in gene transcription, mRNA translation, and metabolism within medium spiny neurons in the striatum. The multiple changes in gene and protein expression associated with cocaine addiction suggest the existence of a mechanism that facilitates a coordinated cellular response to cocaine. Here, we provide evidence for a key role of miRNAs in cocaine addiction. We show that Argonaute 2 (Ago2), which plays an important role in miRNA generation and execution of miRNA-mediated gene silencing, is involved in regulation of cocaine addiction. Deficiency of Ago2 in dopamine 2 receptor (Drd2)–expressing neurons greatly reduces the motivation to self-administer cocaine in mice. We identified a distinct group of miRNAs that is specifically regulated by Ago2 in the striatum. Comparison of miRNAs affected by Ago2 deficiency with miRNAs that are enriched and/or up-regulated in Drd2-neurons in response to cocaine identified a set of miRNAs that are likely to play a role in cocaine addiction

    Health behaviors and their relationship with disease control in people attending genetic clinics with a family history of breast or colorectal cancer

    Get PDF
    The current work aimed to assess health behaviors, perceived risk and control over breast/colorectal cancer risk and views on lifestyle advice amongst attendees at cancer family history clinics. Participants attending the East of Scotland Genetics Service were invited to complete a questionnaire (demographic data, weight and height, health behaviors and psycho-social measures of risk and perceived control) and to participate in an in-depth interview. The questionnaire was completed by 237 (49%) of attendees, ranging from 18 to 77years (mean age 46 (±10) years). Reported smoking rates (11%) were modest, most (54%) had a BMI>25kg/m2, 55% had low levels of physical activity, 58% reported inappropriate alcohol intakes and 90% had fiber intakes indicative of a low plant diet. Regression analysis indicated that belief in health professional control was associated with higher, and belief in fatalism with poorer health behavior. Qualitative findings highlighted doubts about the link between lifestyle and cancer, and few were familiar with the current evidence. Whilst lifestyle advice was considered interesting in general there was little appetite for non-tailored guidance. In conclusion, current health behaviors are incongruent with cancer risk reduction guidance amongst patients who have actively sought advice on disease risk. There are some indications that lifestyle advice would be welcomed but endorsement requires a sensitive and flexible approach, and the acceptability of lifestyle interventions remains to be explored

    Optical Injection-Locked Directly-Modulated Lasers for Dispersion Pre-compensated Direct-Detection Transmission

    Get PDF
    The growing traffic demand in inter-data center and metro communications requires high-speed and low-cost transceivers that can flexibly adapt to different transmission distances of up to a few hundred km. Ultimately low-cost transceivers will use the simplest optical hardware: namely a directly-modulated transmitter and direct detection receiver. Using optical injection-locked directly-modulated lasers (OIL-DML), we propose a transmitter that can control the full field of the optical signal and achieve error-free transmission over up to 300 km of dispersion uncompensated SMF-28. We demonstrate such a transmission system and discuss its potential for short and medium reach communication systems

    The miR-144/451 locus is required for erythroid homeostasis.

    Get PDF
    The process of erythropoiesis must be efficient and robust to supply the organism with red bloods cells both under condition of homeostasis and stress. The microRNA (miRNA) pathway was recently shown to regulate erythroid development. Here, we show that expression of the locus encoding miR-144 and miR-451 is strictly dependent on Argonaute 2 and is required for erythroid homeostasis. Mice deficient for the miR-144/451 cluster display a cell autonomous impairment of late erythroblast maturation, resulting in erythroid hyperplasia, splenomegaly, and a mild anemia. Analysis of gene expression profiles from wild-type and miR-144/451-deficient erythroblasts revealed that the miR-144/451 cluster acts as a "tuner" of gene expression, influencing the expression of many genes. MiR-451 imparts a greater impact on target gene expression than miR-144. Accordingly, mice deficient in miR-451 alone exhibited a phenotype indistinguishable from miR-144/451-deficient mice. Thus, the miR-144/451 cluster tunes gene expression to impart a robustness to erythropoiesis that is critical under conditions of stress

    Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation

    Get PDF
    Acute myeloid leukemia (AML) involves a block in terminal differentiation of the myeloid lineage and uncontrolled proliferation of a progenitor state. Using phorbol myristate acetate (PMA), it is possible to overcome this block in THP-1 cells (an M5-AML containing the MLL-MLLT3 fusion), resulting in differentiation to an adherent monocytic phenotype. As part of FANTOM4, we used microarrays to identify 23 microRNAs that are regulated by PMA. We identify four PMA-induced micro- RNAs (mir-155, mir-222, mir-424 and mir-503) that when overexpressed cause cell-cycle arrest and partial differentiation and when used in combination induce additional changes not seen by any individual microRNA. We further characterize these prodifferentiative microRNAs and show that mir-155 and mir-222 induce G2 arrest and apoptosis, respectively. We find mir-424 and mir-503 are derived from a polycistronic precursor mir-424-503 that is under repression by the MLL-MLLT3 leukemogenic fusion. Both of these microRNAs directly target cell-cycle regulators and induce G1 cell-cycle arrest when overexpressed in THP-1. We also find that the pro-differentiative mir-424 and mir-503 downregulate the anti-differentiative mir-9 by targeting a site in its primary transcript. Our study highlights the combinatorial effects of multiple microRNAs within cellular systems.Comment: 45 pages 5 figure
    • …
    corecore