435 research outputs found

    Engineering Disulfide Cross‐Links in RNA Via Air Oxidation

    Full text link
    This unit presents protocols for the synthesis of alkylthiol‐modified ribonucleosides, their incorporation into synthetic RNA, and the formation of intramolecular disulfide bonds in RNA by air oxidation. The disulfide bonds can be formed in quantitative yields between thiols positioned in close proximity by virtue of either the secondary or tertiary structure of the RNA. Disulfide cross‐links are useful tools to probe solution structures of RNA, to monitor dynamic motion, to stabilize folded RNAs, and to study the process of tertiary structure folding.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143806/1/cpnc0504.pd

    NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins

    Get PDF
    NCBI's reference sequence (RefSeq) database () is a curated non-redundant collection of sequences representing genomes, transcripts and proteins. The database includes 3774 organisms spanning prokaryotes, eukaryotes and viruses, and has records for 2 879 860 proteins (RefSeq release 19). RefSeq records integrate information from multiple sources, when additional data are available from those sources and therefore represent a current description of the sequence and its features. Annotations include coding regions, conserved domains, tRNAs, sequence tagged sites (STS), variation, references, gene and protein product names, and database cross-references. Sequence is reviewed and features are added using a combined approach of collaboration and other input from the scientific community, prediction, propagation from GenBank and curation by NCBI staff. The format of all RefSeq records is validated, and an increasing number of tests are being applied to evaluate the quality of sequence and annotation, especially in the context of complete genomic sequence

    Entrez Gene: gene-centered information at NCBI

    Get PDF
    Entrez Gene () is NCBI's database for gene-specific information. Entrez Gene includes records from genomes that have been completely sequenced, that have an active research community to contribute gene-specific information or that are scheduled for intense sequence analysis. The content of Entrez Gene represents the result of both curation and automated integration of data from NCBI's Reference Sequence project (RefSeq), from collaborating model organism databases and from other databases within NCBI. Records in Entrez Gene are assigned unique, stable and tracked integers as identifiers. The content (nomenclature, map location, gene products and their attributes, markers, phenotypes and links to citations, sequences, variation details, maps, expression, homologs, protein domains and external databases) is provided via interactive browsing through NCBI's Entrez system, via NCBI's Entrez programing utilities (E-Utilities), and for bulk transfer by ftp

    Entrez Gene: gene-centered information at NCBI

    Get PDF
    Entrez Gene (http://www.ncbi.nlm.nih.gov/gene) is National Center for Biotechnology Information (NCBI)’s database for gene-specific information. Entrez Gene maintains records from genomes which have been completely sequenced, which have an active research community to submit gene-specific information, or which are scheduled for intense sequence analysis. The content represents the integration of curation and automated processing from NCBI’s Reference Sequence project (RefSeq), collaborating model organism databases, consortia such as Gene Ontology and other databases within NCBI. Records in Entrez Gene are assigned unique, stable and tracked integers as identifiers. The content (nomenclature, genomic location, gene products and their attributes, markers, phenotypes and links to citations, sequences, variation details, maps, expression, homologs, protein domains and external databases) is available via interactive browsing through NCBI’s Entrez system, via NCBI’s Entrez programming utilities (E-Utilities) and for bulk transfer by FTP

    A gene signature for post-infectious chronic fatigue syndrome

    Get PDF
    Background: At present, there are no clinically reliable disease markers for chronic fatigue syndrome. DNA chip microarray technology provides a method for examining the differential expression of mRNA from a large number of genes. Our hypothesis was that a gene expression signature, generated by microarray assays, could help identify genes which are dysregulated in patients with post-infectious CFS and so help identify biomarkers for the condition. Methods: Human genome-wide Affymetrix GeneChip arrays (39,000 transcripts derived from 33,000 gene sequences) were used to compare the levels of gene expression in the peripheral blood mononuclear cells of male patients with post-infectious chronic fatigue (n = 8) and male healthy control subjects (n = 7). Results: Patients and healthy subjects differed significantly in the level of expression of 366 genes. Analysis of the differentially expressed genes indicated functional implications in immune modulation, oxidative stress and apoptosis. Prototype biomarkers were identified on the basis of differential levels of gene expression and possible biological significance Conclusion: Differential expression of key genes identified in this study offer an insight into the possible mechanism of chronic fatigue following infection. The representative biomarkers identified in this research appear promising as potential biomarkers for diagnosis and treatment

    Methylation of HOXA9 and ISL1 predicts patient outcome in high-grade non-invasive bladder cancer

    Get PDF
    Introduction Inappropriate DNA methylation is frequently associated with human tumour development, and in specific cases, is associated with clinical outcomes. Previous reports of DNA methylation in low/intermediate grade non-muscle invasive bladder cancer (NMIBC) have suggested that specific patterns of DNA methylation may have a role as diagnostic or prognostic biomarkers. In view of the aggressive and clinically unpredictable nature of high-grade (HG) NMIBC, and the current shortage of the preferred treatment option (Bacillus:Calmette-Guerin), novel methylation analyses may similarly reveal biomarkers of disease outcome that could risk-stratify patients and guide clinical management at initial diagnosis. Methods Promoter-associated CpG island methylation was determined in primary tumour tissue of 36 initial presentation high-grade NMIBCs, 12 low/intermediate-grade NMIBCs and 3 normal bladder controls. The genes HOXA9, ISL1, NKX6-2, SPAG6, ZIC1 and ZNF154 were selected for investigation on the basis of previous reports and/or prognostic utility in low/intermediate-grade NMIBC. Methylation was determined by Pyrosequencing of sodium-bisulphite converted DNA, and then correlated with gene expression using RT-qPCR. Methylation was additionally correlated with tumour behaviour, including tumour recurrence and progression to muscle invasive bladder cancer or metastases. Results The ISL1 genes’ promoter-associated island was more frequently methylated in recurrent and progressive high-grade tumours than their non-recurrent counterparts (60.0% vs. 18.2%, p = 0.008). ISL1 and HOXA9 showed significantly higher mean methylation in recurrent and progressive tumours compared to non-recurrent tumours (43.3% vs. 20.9%, p = 0.016 and 34.5% vs 17.6%, p = 0.017, respectively). Concurrent ISL1/HOXA9 methylation in HG-NMIBC reliably predicted tumour recurrence and progression within one year (Positive Predictive Value 91.7%), and was associated with disease-specific mortality (DSM). Conclusions In this study we report methylation differences and similarities between clinical sub-types of high-grade NMIBC. We report the potential ability of methylation biomarkers, at initial diagnosis, to predict tumour recurrence and progression within one year of diagnosis. We found that specific biomarkers reliably predict disease outcome and therefore may help guide patient treatment despite the unpredictable clinical course and heterogeneity of high-grade NMIBC. Further investigation is required, including validation in a larger patient cohort, to confirm the clinical utility of methylation biomarkers in high-grade NMIBC

    The completion of the Mammalian Gene Collection (MGC)

    Get PDF
    Since its start, the Mammalian Gene Collection (MGC) has sought to provide at least one full-protein-coding sequence cDNA clone for every human and mouse gene with a RefSeq transcript, and at least 6200 rat genes. The MGC cloning effort initially relied on random expressed sequence tag screening of cDNA libraries. Here, we summarize our recent progress using directed RT-PCR cloning and DNA synthesis. The MGC now contains clones with the entire protein-coding sequence for 92% of human and 89% of mouse genes with curated RefSeq (NM-accession) transcripts, and for 97% of human and 96% of mouse genes with curated RefSeq transcripts that have one or more PubMed publications, in addition to clones for more than 6300 rat genes. These high-quality MGC clones and their sequences are accessible without restriction to researchers worldwide

    NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy

    Get PDF
    The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database is a collection of genomic, transcript and protein sequence records. These records are selected and curated from public sequence archives and represent a significant reduction in redundancy compared to the volume of data archived by the International Nucleotide Sequence Database Collaboration. The database includes over 16 000 organisms, 2.4 × 106 genomic records, 13 × 106 proteins and 2 × 106 RNA records spanning prokaryotes, eukaryotes and viruses (RefSeq release 49, September 2011). The RefSeq database is maintained by a combined approach of automated analyses, collaboration and manual curation to generate an up-to-date representation of the sequence, its features, names and cross-links to related sources of information. We report here on recent growth, the status of curating the human RefSeq data set, more extensive feature annotation and current policy for eukaryotic genome annotation via the NCBI annotation pipeline. More information about the resource is available online (see http://www.ncbi.nlm.nih.gov/RefSeq/)

    NCBI Reference Sequences: current status, policy and new initiatives

    Get PDF
    NCBI's Reference Sequence (RefSeq) database (http://www.ncbi.nlm.nih.gov/RefSeq/) is a curated non-redundant collection of sequences representing genomes, transcripts and proteins. RefSeq records integrate information from multiple sources and represent a current description of the sequence, the gene and sequence features. The database includes over 5300 organisms spanning prokaryotes, eukaryotes and viruses, with records for more than 5.5 × 106 proteins (RefSeq release 30). Feature annotation is applied by a combination of curation, collaboration, propagation from other sources and computation. We report here on the recent growth of the database, recent changes to feature annotations and record types for eukaryotic (primarily vertebrate) species and policies regarding species inclusion and genome annotation. In addition, we introduce RefSeqGene, a new initiative to support reporting variation data on a stable genomic coordinate system

    Human immunodeficiency virus type 1, human protein interaction database at NCBI

    Get PDF
    The ‘Human Immunodeficiency Virus Type 1 (HIV-1), Human Protein Interaction Database’, available through the National Library of Medicine at www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions, was created to catalog all interactions between HIV-1 and human proteins published in the peer-reviewed literature. The database serves the scientific community exploring the discovery of novel HIV vaccine candidates and therapeutic targets. To facilitate this discovery approach, the following information for each HIV-1 human protein interaction is provided and can be retrieved without restriction by web-based downloads and ftp protocols: Reference Sequence (RefSeq) protein accession numbers, Entrez Gene identification numbers, brief descriptions of the interactions, searchable keywords for interactions and PubMed identification numbers (PMIDs) of journal articles describing the interactions. Currently, 2589 unique HIV-1 to human protein interactions and 5135 brief descriptions of the interactions, with a total of 14 312 PMID references to the original articles reporting the interactions, are stored in this growing database. In addition, all protein–protein interactions documented in the database are integrated into Entrez Gene records and listed in the ‘HIV-1 protein interactions’ section of Entrez Gene reports. The database is also tightly linked to other databases through Entrez Gene, enabling users to search for an abundance of information related to HIV pathogenesis and replication
    corecore