16,767 research outputs found

    Spherical orbit closures in simple projective spaces and their normalizations

    Full text link
    Let G be a simply connected semisimple algebraic group over an algebraically closed field k of characteristic 0 and let V be a rational simple G-module of finite dimension. If G/H \subset P(V) is a spherical orbit and if X is its closure, then we describe the orbits of X and those of its normalization. If moreover the wonderful completion of G/H is strict, then we give necessary and sufficient combinatorial conditions so that the normalization morphism is a homeomorphism. Such conditions are trivially fulfilled if G is simply laced or if H is a symmetric subgroup.Comment: 24 pages, LaTeX. v4: Final version, to appear in Transformation Groups. Simplified some proofs and corrected minor mistakes, added references. v3: major changes due to a mistake in previous version

    Massive young stellar object W42-MME: The discovery of an infrared jet using VLT/NACO near-infrared images

    Full text link
    We report on the discovery of an infrared jet from a deeply embedded infrared counterpart of 6.7 GHz methanol maser emission (MME) in W42 (i.e. W42-MME). We also investigate that W42-MME drives a parsec-scale H2 outflow, with detection of bow shock feature at ~0.52 pc to the north. The inner ~0.4 pc part of the H2 outflow has a position angle of ~18 deg and the position angle of ~40 deg is found farther away on either side of outflow from W42-MME. W42-MME is detected at wavelengths longer than 2.2 microns and is a massive young stellar object, with the estimated stellar mass of 19+-4 Msun. We map the inner circumstellar environment of W42-MME using VLT/NACO adaptive optics Ks and L' observations at resolutions ~0.2 arcsec and ~0.1 arcsec, respectively. We discover a collimated jet in the inner 4500 AU using the L' band, which contains prominent Br alpha line emission. The jet is located inside an envelope/cavity (extent ~10640 AU) that is tapered at both ends and is oriented along the north-south direction. Such observed morphology of outflow cavity around massive star is scarcely known and is very crucial for understanding the jet-outflow formation process in massive star formation. Along the flow axis, which is parallel to the previously known magnetic field, two blobs are found in both the NACO images at distances of ~11800 AU, located symmetrically from W42-MME. The observed W42-MME jet-outflow configuration can be used to constrain the jet launching and jet collimation models in massive star formation.Comment: 6 pages, 5 figures, Accepted for publication in The Astrophysical Journa

    A conjecture on the infrared structure of the vacuum Schrodinger wave functional of QCD

    Get PDF
    The Schrodinger wave functional for the d=3+1 SU(N) vacuum is a partition function constructed in d=4; the exponent 2S in the square of the wave functional plays the role of a d=3 Euclidean action. We start from a gauge-invariant conjecture for the infrared-dominant part of S, based on dynamical generation of a gluon mass M in d=4. We argue that the exact leading term, of O(M), in an expansion of S in inverse powers of M is a d=3 gauge-invariant mass term (gauged non-linear sigma model); the next leading term, of O(1/M), is a conventional Yang-Mills action. The d=3 action that is the sum of these two terms has center vortices as classical solutions. The d=3 gluon mass, which we constrain to be the same as M, and d=3 coupling are related through the conjecture to the d=4 coupling strength, but at the same time the dimensionless ratio in d=3 of mass to coupling squared can be estimated from d=3 dynamics. This allows us to estimate the QCD coupling αs(M2)\alpha_s(M^2) in terms of this strictly d=3 ratio; we find a value of about 0.4, in good agreement with an earlier theoretical value but a little low compared to QCD phenomenology. The wave functional for d=2+1 QCD has an exponent that is a d=2 infrared-effective action having both the gauge-invariant mass term and the field strength squared term, and so differs from the conventional QCD action in two dimensions, which has no mass term. This conventional d=2 QCD would lead in d=3 to confinement of all color-group representations. But with the mass term (again leading to center vortices), N-ality = 0 mod N representations are not confined.Comment: 15 pages, no figures, revtex

    Formal deduction of the Saint-Venant-Exner model including arbitrarily sloping sediment beds and associated energy

    Get PDF
    In this work we present a deduction of the Saint-Venant-Exner model through an asymptotic analysis of the Navier-Stokes equations. A multi-scale analysis is performed in order to take into account that the velocity of the sediment layer is smaller than the one of the fluid layer. This leads us to consider a shallow water type system for the fluid layer and a lubrication Reynolds equation for the sediment one. This deduction provides some improvements with respect to the classical Saint-Venant-Exner model: (i) the deduced model has an associated energy. Moreover, it allows us to explain why classical models do not have an associated energy and how to modify them in order to recover a model with this property. (ii) The model incorporates naturally a necessary modification that must be taken into account in order to be applied to arbitrarily sloping beds. Furthermore, we show that this modification is different of the ones considered classically, and that it coincides with a classical one only if the solution has a constant free surface. (iii) The deduced solid transport discharge naturally depends on the thickness of the moving sediment layer, what allows to ensure sediment mass conservation. Moreover, we include a simplified version of the model for the case of quasi-stationary regimes. Some of these simplified models correspond to the generalization of classical ones such as Meyer-Peter&\&M\"uller and Ashida-Michiue models. Three numerical tests are presented to study the evolution of a dune for several definition of the repose angle, to see the influence of the proposed definition of the effective shear stress in comparison with the classical one, and by comparing with experimental data.Comment: 44 pages, sumbitted to Advances in Water Resources 17 july 201

    Proton-proton forward scattering at the LHC

    Get PDF
    Recently the TOTEM experiment at the LHC has released measurements at s=13\sqrt{s} = 13 TeV of the proton-proton total cross section, σtot\sigma_{tot}, and the ratio of the real to imaginary parts of the forward elastic amplitude, ρ\rho. Since then an intense debate on the CC-parity asymptotic nature of the scattering amplitude was initiated. We examine the proton-proton and the antiproton-proton forward data above 10 GeV in the context of an eikonal QCD-based model, where nonperturbative effects are readily included via a QCD effective charge. We show that, despite an overall satisfactory description of the forward data is obtained by a model in which the scattering amplitude is dominated by only crossing-even elastic terms, there is evidence that the introduction of a crossing-odd term may improve the agreement with the measurements of ρ\rho at s=13\sqrt{s} = 13 TeV. In the Regge language the dominant even(odd)-under-crossing object is the so called Pomeron (Odderon).Comment: 5 pages, 2 figures, 1 table. Phenomenological approach revised, results and conclusions changed, suggesting now the presence of Odderon effects in forward scattering (once confirmed the TOTEM data at 13 TeV

    Study of a colliding laser-produced plasma by analysis of time and space-resolved image spectra

    Get PDF
    The interaction of two counter-propagating laser-produced plasmas was studied using simultaneous imaging and spectroscopic techniques. Spectrally-filtered time-gated ICCD imaging was used to obtain information about the spatial dynamics and temporal evolution of the collision process. While, time-resolved imaging spectroscopy was used to determine the spatial and temporal distributions of electron temperature and density within the interaction region. We examine specifically the interaction of plasmas whose parameters match those typically used in pulsed laser deposition of thin films. These low temperature plasmas are highly collisional leading to the creation of a pronounced stagnation layer in the interaction region

    Aspects of thick brane worlds: 4D gravity localization, smoothness, and mass gap

    Full text link
    We review some interrelated aspects of thick brane worlds constructed within the framework of 5D gravity coupled to a scalar field depending on the extra dimension. It turns out that when analyzing localization of 4D gravity in this smooth version of the Randall-Sundrum model, a kind of dichotomy emerges. In the first case the geometry is completely smooth and the spectrum of metric fluctuations shows a single massless bound state, corresponding to the 4D graviton, and a tower of massive states described by a continuous spectrum of Kaluza-Klein excitations starting from zero mass, indicating the lack of a mass gap. In the second case, there are two bound states, a massless 4D graviton and a massive excitation, separated by a mass gap from a continuous spectrum of massive modes; nevertheless, the presence of a mass gap in the graviton spectrum of the theory is responsible for a naked singularity at the boundaries (or spatial infinity) of the Riemannian manifold. However, the imposition of unitary boundary conditions, which is equivalent to eliminating the continuous spectrum of gravitational massive modes, renders these singularities harmless from the physical point of view, providing the viability of the model.Comment: 10 pages in latex, references added and update

    Derivation of a multilayer approach to model suspended sediment transport: application to hyperpycnal and hypopycnal plumes

    Full text link
    We propose a multi-layer approach to simulate hyperpycnal and hypopycnal plumes in flows with free surface. The model allows to compute the vertical profile of the horizontal and the vertical components of the velocity of the fluid flow. The model can describe as well the vertical profile of the sediment concentration and the velocity components of each one of the sediment species that form the turbidity current. To do so, it takes into account the settling velocity of the particles and their interaction with the fluid. This allows to better describe the phenomena than a single layer approach. It is in better agreement with the physics of the problem and gives promising results. The numerical simulation is carried out by rewriting the multi-layer approach in a compact formulation, which corresponds to a system with non-conservative products, and using path-conservative numerical scheme. Numerical results are presented in order to show the potential of the model
    corecore