148 research outputs found

    Thermal convection in a nonlinear non-Newtonian magnetic fluid

    Get PDF
    We report theoretical and numerical results on thermal convection of a magnetic fluid in a viscoelastic carrier liquid. The viscoelastic properties are described by a general nonlinear viscoelastic model that contains as special cases the standard phenomenological constitutive equations for the stress tensor. In order to explore numerically the system we perform a truncated Galerkin expansion obtaining a generalized Lorenz system with ten modes. We find numerically that the system has stationary, periodic and chaotic regimes. We establish phase diagrams to identify the different dynamical regimes as a function of the Rayleigh number and the viscoelastic material parameters

    Thermodynamics of Two Dimensional Magnetic Nanoparticles

    Full text link
    A two dimensional magnetic particle in the presence of an external magnetic field is studied. Equilibrium thermodynamical properties are derived by evaluating analytically the partition function. When the external field is applied perpendicular to the anisotropy axis the system exhibits a second order phase transition with order parameter being the magnetization parallel to the field. In this case the system is isomorph to a mechanical system consisting in a particle moving without friction in a circle rotating about its vertical diameter. Contrary to a paramagnetic particle, equilibrium magnetization shows a maximum at finite temperature. We also show that uniaxial anisotropy in a system of noninteracting particles can be missinterpreted as a ferromagnetic or antiferromagnetic coupling among the magnetic particles depending on the angle between anisotropy axis and magnetic field.Comment: 4 pages 6 figures 19 reference

    Advantage of four-electrode over two-electrode defibrillators

    Get PDF
    Defibrillation is the standard clinical treatment used to stop ventricular fibrillation. An electrical device delivers a controlled amount of electrical energy via a pair of electrodes in order to reestablish the normal heart rate. We propose a new technique that is a combination of biphasic shocks applied with a four-electrode system rather than the standard two-electrode system. We use a numerical model of a one-dimensional ring of cardiac tissue in order to test and evaluate the benefit of such a new technique. We compare three different shock protocols, namely, a monophasic and two types of biphasic shocks. The results obtained by using a four-electrode system are compared quantitatively with those obtained with the standard two-electrode system. We find that a huge reduction in defibrillation threshold is achieved with the four-electrode system. For the most efficient protocol (asymmetric biphasic), we obtain a reduction in excess of 80 % in the energy required for a defibrillation success rate of 90 %. The mechanisms of successful defibrillation are also analyzed. This reveals that the advantage of asymmetric biphasic shocks with four electrodes lies in the duration of the cathodal and anodal phase of the shock

    Ultrafast relaxation rates and reversal time in disordered ferrimagnets

    Get PDF
    In response to ultrafast laser pulses, single-phase metals have been classified as “fast” (with magnetization quenching on the time scale of the order of 100 fs and recovery in the time scale of several picoseconds and below) and “slow” (with longer characteristic time scales). Disordered ferrimagnetic alloys consisting of a combination of “fast” transition (TM) and “slow” rare-earth (RE) metals have been shown to exhibit an ultrafast all-optical switching mediated by the heat mechanism. The behavior of the characteristic time scales of coupled alloys is more complicated and is influenced by many parameters such as the intersublattice exchange, doping (RE) concentration, and the temperature. Here, the longitudinal relaxation times of each sublattice are analyzed within the Landau-Lifshitz-Bloch framework. We show that for moderate intersublattice coupling strength both materials slow down as a function of slow (RE) material concentration. For larger coupling, the fast (TM) material may become faster, while the slow (RE) one is still slower. These conclusions may have important implications in the switching time of disordered ferrimagnets such as GdFeCo with partial clustering. Using atomistic modeling, we show that in the moderately coupled case, the reversal would start in the Gd-rich region, while the situation may be reversed if the coupling strength is larger

    Hyper-chaotic magnetisation dynamics of two interacting dipoles

    Get PDF
    The present work is a numerical study of the deterministic spin dynamics of two interacting anisotropic magnetic particles in the presence of a time-dependent external magnetic field using the Landau–Lifshitz equation. Particles are coupled through the dipole–dipole interaction. The applied magnetic field is made of a constant longitudinal amplitude component and a time-dependent transversal amplitude component. Dynamical states obtained are represented by their Lyapunov exponents and bifurcation diagrams. The dependence on the largest and the second largest Lyapunov exponents, as a function of the magnitude and frequency of the applied magnetic field, and the relative distance between particles, is studied. The system presents multiple transitions between regular and chaotic behaviour depending on the control parameters. In particular, the system presents consistent hyper-chaotic states

    Impurity-related intraband absorption in coupled quantum dot-ring structure under lateral electric field

    Get PDF
    The effects of a lateral electric field on intraband absorption in GaAs/GaAlAs two-dimensional coupled quantum dot-ring structure with an on-centre hydrogenic donor impurity is investigated. The confining potential of the system consists of two parabolas with various confinement energies. The calculations are made using the exact diagonalization technique. A selection rule for intraband transitions was found for x-polarized incident light. The absorption spectrum mainly exhibits a redshift with the increment of electric field strength. On the other hand, the absorption spectrum can exhibit either a blue- or redshift depending on the values of confinement energies of dot and ring. Additionally, electric field changes the energetic shift direction influenced by the variation of barrier thickness of the structure

    Chaotic convection in a ferrofluid

    Get PDF
    We report theoretical and numerical results on thermally driven convection of a magnetic suspension. The magnetic properties can be modeled as those of electrically non-conducting superparamagnets. We perform a truncated Galerkin expansion finding that the system can be described by a generalized Lorenz model. We characterize the dynamical system using different criteria such as Fourier power spectrum, bifurcation diagrams, and Lyapunov exponents. We find that the system exhibits multiple transitions between regular and chaotic behaviors in the parameter space. Transient chaotic behavior in time can be found slightly below their linear instability threshold of the stationary state. © 2013 Elsevier B.V
    • …
    corecore