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In response to the ultra-fast laser pulses single-phase metals have been classified as ”fast” (with magneti-

zation quenching on the timescale below 100 fs and recovery in the timescale of several ps and below) and

”slow” (with longer characteristic time scales). The disordered ferrimagnetic alloys consisted of a combination

of ”fast” transition (TM) and ”slow” rare earth (RE) metals have been shown to exhibit the ultra-fast all-optical

switching mediated by the heat mechanism. The behavior of characteristic timescales of coupled alloys is more

complicated and is influenced by many parameters such as the inter-sublattice exchange, doping (RE) concen-

tration and the temperature. Here the longitudinal relaxation times of each sublattice are analyzed within the

Landau-Lifshitz-Bloch framework. We show that for moderate inter-sublattice coupling strength both materials

slow down as a function of ”slow” (RE) material concentration. For larger coupling the ”fast” (TM) material

may fasten while the ”slow” (RE) one is still slower. These conclusions may have important implications in the

switching time of disordered ferrimagnets such as GdFeCo with partial clustering. Using the atomistic modeling

we show that in the moderately coupled case the reversal would start in Gd-rich region, while the situation may

be reversed if the coupling strength is larger.

PACS numbers: 75.78.Jp, 75.40.Mg, 75.40.Gb

I. INTRODUCTION

The possibility to switch magnetization at the ultra-fast

timescale with laser pulses has been fascinating the scientific

community for already more than 15 years.1 This discovery

could potentially have important technological implications

since it promises much faster magnetic recording without the

need of any recording head.2 The future applications also re-

quire an accurate understanding and design of the correspond-

ing materials. Until now, the ultra-fast heat-mediated switch-

ing with linearly polarised laser pulses has been observed only

in the antiferromagnetically coupled materials such as dis-

ordered ferrimagnets GdFeCo,3 TbCo4 and TbFe.5 In addi-

tion, by using the circularly-polarized lasers, another switch-

ing mechanism, based on the inverse Faraday effect, may be

also feasible.7 Recently, the all-optical switching by circular-

polarised lasers has been also reported in other multilayers

and heterostructures, including the ferromagnetic ones.6 How-

ever, the pure thermal switching mechanism8 under linearly

polarised laser pulses seems to occur in antiferromagnetically-

coupled materials only.

These materials consist of sublattices with different re-

sponses to ultra-fast laser excitation in terms of the demag-

netization speeds: fast transition metal (TM) slow rare earth

(RE) material. The notion of ”fast” and ”slow” materials has

been introduced in Ref.9 and is based on the classification of

materials according to their responses to the laser pulse: the

TM typically demagnetize in the timescale of 100 fs and re-

cover the magnetisation in several ps timescale while the RE

materials have two-stage demagnetisation process and recover

the magnetization in the timescale above 100ps. The classifi-

cation is based on the parameter λJ/µ, describing the longi-

tudinal relaxation rate,10 where J is the exchange parameter

(proportional to the Curie temperature TC), µ is the magnetic

moment and λ is the coupling to the bath parameter (pro-

portional to the spin-flip probability and coinciding with the

atomic damping parameter). This parameter is clearly smaller

for rare earth materials than for transition metals and thus,

the first are classiffied as ”slow” materials (with picosecond

timescale longitudinal relaxation) and the second - as ”fast”

materials (with femtosecond timescale relaxation).

The magnetization dynamics in ferrimanetic materials is

more complicated due to the presence of two sublattices with

intrinsically non-equivalent ”speeds” which are exchangely

coupled. The switching involves the angular momentum

transfer from the ferromagnetic precessional mode to the an-

tiferromagnetic one.11 Under the influence of the laser pulse

the fast material arrives at almost zero magnetization. At this

moment the magnetization of the slow material has a non-

zero value and provides an exchange field acting on the fast

material. The switching is fast due to the fact that it oc-

curs in a strong exchange field. Therefore, one could ex-

pect that the most efficient switching would correspond to

the situation where the difference in the speed in two mate-

rials is the highest. The XMCD studies3 confirmed the dif-

ferent demagnetization speeds in each material of the alloy.

Recent experiment12 using novel synchrotron radiation tech-

niques have shown that in GdFeCo a partial clustering of Gd

occurs and the switching starts in Gd-rich regions.

In this article we analyze the demagnetization speed and

the switching time of the two materials constituting a generic

ferrimagnetic alloy as a function of their concentration. The

main features of the ultra-fast dynamics in these materials

are very well described by the atomistic simulations based

on the Heisenberg model with Langevin dynamics.3,11 How-

ever, the Landau-Lifshitz-Bloch (LLB) approach,13 based on

the thermal averaged dynamics, is very convenient for analyt-
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ical treatment and provides a general picture of the problem.

This paper is organized as follows. In Sec. II we describe

our theoretical model, whereas in Sec. III we present the re-

sults and discussion. Finally, the conclusions are summarized

in Sec. IV.

II. THEORETICAL MODEL

The recently derived Landau-Lifshitz-Bloch equation

(LLB)13 for classical ferrimagnets valid up to the Curie tem-

perature, it is a suitable tool to rapidly understand the dif-

ference in demagnetization speeds of two-component cou-

pled materials within an analytical framework. Neglecting the

transverse components, i.e., assuming that the magnetization

of each sublattice is parallel to the effective field, this equation

is given by13

dmν

dτ
=

[
1

2Λνκ

(
m2

κ

m2
e,κ

− 1

)
−

1

2Λνν

(
m2

ν

m2
e,ν

− 1

)]
mν, (1)

where τ = γναν
‖t is the reduced time, mν and mκ are the sub-

lattice magnetizations, γν is the gyromagnetic ratio, αν
‖ =

(2λνme,ν)/(βµνHex
ν,e) is longitudinal damping parameter, λν

is the (atomistic) coupling to the bath parameter, β = 1/kBT ,

kB is the Boltzmann constant, T is the temperature, µν is the

magnetic moment and the sub-index e denotes the equilibrium

values. The exchange field acting on the sublatice ν in the

mean-field approximation (MFA) has the following form:

µνHex
ν = J0,νmν + |J0,νκ|mκ (2)

with J0,ν = xνzJνν, J0,νκ = xκzJνκ, z is the number of nearest

neighbours in the ordered lattice, xν is the concentration of

the material ν (xν + xκ = 1), Jνν, Jνκ, are the Heisenberg in-

tra and inter-sublattice exchange interaction parameters. The

quantities Λνν and Λνκ are given by13,15
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where χ̃ν,|| is the longitudinal susceptibility which in the MFA

is given by

χ̃ν,|| =
µκβL′

νJ0,νκβL′
κ + µνβL′

ν (1− J0,κβL′
κ)

(1− J0,νβL′
ν)(1− J0,κβL′

κ)− J0,κνβL′
νJ0,νκβL′

κ

, (4)

where L′
ν(ξ) = dLν/dξ is the derivative of the Langevin func-

tion L(ξ) = coth(ξ)−1/ξ evaluated at ξ= ξe,ν = βµνHex
ν,e. The

quantity me,ν can be evaluated in the MFA solving the system

of the Curie-Weiss equations: mν = L(ξν).
Recently,14 the ferrimagnetic LLB equation has been also

extended for temperatures above the Curie temperature where

it coincides with the linearized form of Eq. (1). Namely, close

and above to TC the longitudinal and the transverse damping

parameters coincide and are equal to

αν
‖ ≃

2λνT

3TC

(5)

Additionally, the longitudinal susceptibility given by Eq. (4)

becomes

χ̃ν,|| =
µκJ0,νκβ2 + µνβ(3− J0,κβ)

(3− J0,νβ)(3− J0,κβ)− J0,κνJ0,νκβ2
, T > TC. (6)

Particularly, it is been shown that the presence of two non-

equivalent sublattices removes the true critical slowing down

at the Curie temperature since all the parameters in Eq. (1)

are finite. This could be understood as following from the fact

that the sublattices dynamics occurs in the field coming from

the other sublattice.

In what follows we will call the ”fast” material - transition

metal (denoted by TM ) and the slow material- rare earth (de-

noted by RE). The ”fast” character of TM will be defined by

larger exchange parameter and smaller magnetic moment as

the usual case in the TM-RE alloys. Furthermore, for sim-

plicity in notation, we denote the intra and inter-sublattice

coupling parameters as: JT M−T M = JT T , JRE−RE = JRR and

JT M−RE = JTR. The concentration of the RE and TM materi-

als are xRE and xT M, respectively.

To calculate the relaxation rates of each sublattice, the sys-

tem of coupled LLB equations (1) is linearized. This gives

a characteristic matrix, A‖, which drives the dynamics of the

linearized equation ∂(δm)/∂t = A‖δm. The matrix A‖ reads

A‖=

(
−γTMαTM

‖ /ΛTT γTMαTM

‖ J0,TR/µT

γREαRE

‖ J0,RT/µR −γREα
RE

‖ /ΛRR

)
=

(
−ΓTT ΓTR

ΓRT −ΓRR

)
.

(7)

It is important to note that the matrix elements in Eq. (7) are

temperature and material parameter dependent. The general

solution of the characteristic equation, |A‖−Γ±
I | = 0, gives

two different eigenvalues

Γ± =
−(ΓTT +ΓRR)±

√
(ΓTT −ΓRR)2 + 4ΓRTΓTR

2
. (8)

In ferromagnets, relaxation can usually be described well

by only one relaxation rate, at least in the linear regime. By

contrast, in two sublattice ferrimagnets, in the most general

case one cannot describe the relaxation with a single expo-

nential decay.

To be more specific, we consider a GdFeCo alloy mate-

rial with the sublattices {RE, TM }={Gd, FeCo}. We as-

sume a model of GdxRE
(FeCo)xTM

alloy with typical atom-

istic Heisenberg parameters from Ref.:11 Jatom
TT

= 6.92 ·10−21

J, Jatom
RR

= 2.78 · 10−21 J and Jatom
TR

= −2.41 · 10−21 J. The

magnetic moments used are µT M = 1.92µB and µRE = 7.63µB

where µB is the Bohr magneton. Furthermore, the relaxation

rates are just proportional to the atomistic coupling to the bath

parameter. This parameter is normally extracted from the ex-

periment. For simplicity we have fixed it for each sublattice

to the value, λTM = λRE = 0.1 used previously.13 Since the

LLB equation uses the MFA, the exchange parameters were

renormalized using the standard procedure16 to obtain the

same Curie temperature as in the atomistic simulations and

experiments. Furthermore, the generic character of the fer-

rimagnet is simulated by varying the antiferromagnetic cou-

pling strength, JT R. In what follows we will denote the typ-

ical value of the atomistic exchange strength for GdFeCo as



3

FIG. 1. (Color online) The matrix elements of A‖ and Γ± as a func-

tion of the temperature using a rare-earth concentration of xRE = 0.25

for typical GdFeCo parameters.

Jatom
1 ≡ Jatom

TR
and its normalized for MFA value as J1. Note

that the two-sublattices have a shared Curie temperature ex-

cept for a very small inter-sublattice coupling.

III. RESULTS AND DISCUSSION

In this section we present our results of the relaxation rates

for ferrimagnetic alloys obtained within the framework of the

Landau-Lifshitz- Bloch model. We begin showing in Fig.

1 the matrix elements of A‖ and the combined rates Γ± as

a function of the reduced temperature T/TC using the con-

centration xRE = 0.25. The temperature where ΓT T = ΓRR is

called the coupling temperature Tco.15 For relatively low tem-

peratures, T/TC < Tco,1 and for temperatures T/TC > Tco,2,

we have ΓT R,ΓRT ≪ ΓT T ,ΓRR. Therefore, the longitudinal

relaxation time of each sublattice in these temperature regions

can be written as τ
||
ν ≃ 1/Γνν. Thus each subsystem could be

characterized by the corresponding longitudinal time τ
||
T M,RE ,

although we should stress that the rates ΓRR,ΓT T depend on

parameters of both subsystems. Taking into account that the

exchange field is large, one can estimate the longitudinal re-

laxation time of each sublattice in this region as

τ
||
ν ≈

1

2γνλνmν,eHex
ν,e

. (9)

In the region Tco,1 < T/TC < Tco,2, i.e. near TC, the lin-

earized relaxation dynamics of each subsystem should be

characterized by two characteristic exponents Γ±. We called

this regime ”coupled” dynamics. One can also obtain from

Eq. (4) that close to TC the susceptibilities diverge, namely

χν,|| ∝ 1/|T − TC| which is the main source for the critical

slowing down of the longitudinal relaxation times for single-

specie materials near the Curie temperature. As we mentioned

above, the true critical slowing down (infinite relaxation time)

does not occur for two-component materials. However, the

relaxation time still show an increment at the Curie tempera-

tures.

The temperature dependence of τ
‖
T M,RE (obtained from the

evaluation of 1/ΓTT,RR given by Eq. (7)) varying the inter-

sublattice exchange strength are presented in Fig. 2 (a and b)

for xRE = 0.25, and in Fig. 2 (c and d), varying the RE concen-

tration and fixing the inter-sublattice exchange. For large tem-

peratures, the TM material experiences critical slowing down

although, differently to pure ferromagnetic materials, the re-

laxation time remains finite. The behavior of the RE material

is more complicated. Namely, only for very large coupling

the critical slowing down at common Curie temperature oc-

curs. In all other cases, one more peak appears, correspond-

ing to the slowing down at temperatures roughly equal to the

individual Curie temperature of the RE material.

The functional dependence of relaxation times can be un-

derstood taken into account that it is inversely proportional

to the exchange field through Eq. (9), which in turn is pro-

portional to the inter-sublattice exchange field. As the cou-

pling strength increases, the MFA exchange field increases,

and thus, both RE and TM become slower. At the same time,

the dependence of the exchange field on the RE concentra-

tion via Eq. (2) is more complicated. Effectively, on the MFA

level, small RE concentration means large coupling for the RE

since the effective field from the TM sublattice is large in this

case. On the contrary, small RE concentration means small

coupling for the TM. It follows from Eqs. (9) and (2) that

for JTMmT M > |JTR|mRE the exchange field acting on the TM

decreases with the rare earth concentration and the TM ma-

terial becomes slower in agreement with Fig. 2c). The same

happens for the RE elements if |JT R|mT M > JREmRE , in agree-

ment with Fig. 2d). At the same time it is clear that for larger

inter-sublattice exchange coupling the above inequality for the

TM metal can be violated, while for the RE it always holds.

Thus, we can have situation in which TM fastens with concen-

tration while the RE still slows down. The transition between

the two behaviors is depicted in Fig. 3, where we present

only concentration values typical for the experiment and cor-

responding to the window where the magnetization switching

could take place. The decrease of the TM relaxation time with

concentration for large inter-sublattice exchange strength in-

dicates that one can expect a non-trivial behavior as a function

of the concentration.

At temperatures close to the Curie temperature, i.e. Tco,1 <
T/TC < Tco,2 the estimation of the relaxation rates based on

only one eigenvalue is not valid. Besides, the system dy-

namics becomes highly nonlinear. However, frequently the

magnetization quenching at ultra-fast timescale is character-

ized experimentally by one characteristic time τM . To com-

ply with this procedure, we fit the numerically integrated re-

laxation time at high temperatures to one exponential func-

tion for each sub-lattice. The integration of the original LLB

equation (1) is performed with initial conditions taken as a

small deviations of each sublattice from its equilibrium, i.e.,

mν(0) = me,ν + δme,ν. The results for three temperatures in

the coupling regime, in comparison with the analytically es-

timated relaxation time (based on Eq. (9)) are presented in

Fig. 4. One observes that, firstly, the linear one-exponential
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FIG. 2. (Color online) Temperature dependence of the longitudinal

relaxation times τT M,RE for different values of a), b) Inter-sublattice

coupling strength JT R and c), d) different concentrations and JT R =
J1.

FIG. 3. (Color online) The relaxation times a) τ
||
TM and b) τ

||
RE ob-

tained from the evaluation of 1/ΓT T and 1/ΓRR, respectively, as a

function of the rare-earth concentration for different strength cou-

plings between both sublattices at T = 0.6TC.

approximation is still valid for small coupling strength. Sec-

ondly, at high temperatures the RE accelerates as a function

of temperature while the TM slows down. This phenomena

is also present in the behavior of the matrix elements and the

combined rates in Fig. 1 and in Fig. 2 and can be explained by

the fact that while the TM has a critical behavior at the com-

mon Curie temperature, the RE material presents a strong crit-

ical behavior in the temperature, close to its own Curie tem-

perature. At temperatures close to TC its relaxation time de-

creases. We should stress again that Fig. 4 c) is calculated for

the parameters for which the system is in the strongly coupled

regime and cannot be characterized by one relaxational time.

In this case the LLB and analytical approach give different

results as a function of concentration, namely close to TC the

analytical result predicts the decrease of the relaxation time

with concentration while the direct LLB integration shows a

slight increase.

The analysis of the longitudinal components indicates the

regions of the parameters with different material’s response

which is a necessary condition for switching. However, this is

not a sufficient condition. In fact, Eq. (1) does not describe

FIG. 4. (Color online) The relaxation times τTM and τRE as a func-

tion of the rare-earth concentration, for different reduced tempera-

tures, ζ = T/TC . The lines indicate the relaxation times obtained via

the evaluation of the eigenvalues Eq. (7) while the points indicate the

direct numerical integration of the LLB Equation and fit to the one-

exponential function. The Figs. a), b) correspond to the coupling

strength values JT R = 0.2J1, and Figs. c), d) for JT R = J1.

magnetization switching since the lines with zero magnetisa-

tion cannot be crossed by a pure longitudinal motion. For

a proper switching, the longitudinal motion should transfer

angular momentum to the transverse motion.17 The best ap-

proach to simulate the switching is the atomistic one which we

use below. However, the above results can have consequences

on the switching because the angular momentum transfer is

efficient when at the moment when TM arrives at zero mag-

netisation, the RE has large magnetisation value.

To analyse the consequences of the predicted relaxation

times on the switching of a ferrimagnet, we can first adopt

a usually made simplification by considering a step function

for the electronic temperature (see, for example Refs.11,15)

We also know from atomistic simulations that the switching

occurs well after the laser pulse is gone. Thus although the

electronic temperature may go above the Curie temperature,

the relaxation time of a sublattice during the ultra-fast laser-

induced switching may be approximately characterized by its

relaxation at the final (quasi-equilibrium) electron tempera-

ture which is below TC. The switching in GdFeCo will be

effective if τT M is small and τRE is large, since in this case

we could expect a large field acting on the TM material. This

reasoning indicates that if the quasi-equilibrium temperature

stays close to TC, the switching is ineffective, since in this

case the TM relaxation time is as large as that of the RE. Thus

the switching should be suppressed for large pulse intensities.

The switching diagram as a function of the temperatures can

be found in Ref.7,11,15 and indicates that the switching is in-

deed suppressed for high temperatures. Here we are interested

to understand the phenomena as a function of the RE concen-

tration.

To analyse the switching, we perform atomistic model-

ing of a disordered GdFeCo ferrimagnet under the influence

of ultra-fast laser pulse. The model is described in details
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FIG. 5. (Color online) The reversal time of FeCoGd compound

versus the rare-earth concentration, for different strength coupling

strengths between both sublattices under the pulse fluence 40

mJ/cm2.

in Refs.11,15 The dynamics is modelled by the Langevin dy-

namics based on Landau-Lifshitz-Gilbert equation of motion

for localized atomic magnetic moments. The input electron

temperature is dynamically varied using the two-temperature

model, with parameters from Ref.11 First the system is equi-

librated at T = 300 K, after that the laser pulse with fluence

F = 40 mJ/cm2 is applied. The simulated system has the size

603 magnetic moments with periodic boundary condition and

we have performed averaging over several random configura-

tions. In this case a more realistic coupling to the bath param-

eter λ = 0.02 was used.

In Fig. 5 we present the reversal time of each sublattice

(defined as time elapsed between the initial state and the in-

stant of time at which the average magnetization starts to re-

verse its direction, i.e. crosses mz,TM(RE) = 0 point) versus the

rare-earth concentration for two values of the inter-sublattice

strength couplings. The Gd reversal time also corresponds to

the total system reversal time. Note that apriori one should

not expect direct correspondence between the relaxation and

the switching time since these are two different quantities. In

fact, the dynamics of the switching process is highly nonlinear

and more factors such as a complex temperature profile play

role in the behavior of this characteristic time scale. However,

some features of the linear relaxation time is still seen in the

behavior of this more complex quantity. We should mention

that for JTR = 2J1 no switching is observed for large concen-

trations since the TM relaxation time is too slow. Also, in

agreement with the predictions of the relaxation time which

is larger for more concentrated systems and smaller for larger

coupling strength (see Figs. 2 and 3), the Gd and Fe switch-

ing time also shows similar tendencies. However, the be-

havior of the TM is more complicated. For JT R = J1 (typi-

cal for GdFeCo coupling strength) it has a maximum and at

high concentrations it decreases. These findings are in agree-

ment with the fact that the switching window is larger for

GdFeCo material with larger Gd concentration (although it

will be finally suppressed), also reported in Ref.15 In recently

published experimental results12 using the XMCD measure-

ments in GdFeCo it was shown that the material is not homo-

geneous and the reversal starts in Gd-rich regions. The results

presented in Fig. 5 (for JT R = J1) indicate that the reversal

should start in region with the smallest FeCo reversal time.

Those regions indeed would correspond to the largest Gd con-

centration and the minimum TM reversal time and the maxi-

mum field coming from the RE. For larger coupling strength

JT R = 2J1, however, the TM reversal time as a function of Gd

concentration monotonically increases. This indicates that in

this case the reversal could start in regions with smaller Gd

concentration.

IV. CONCLUSION

To conclude, within the framework of the Landau-Lifshitz-

Bloch model for ferrimagnets we have analysed the temper-

ature and concentration dependence of the relaxation rates of

the ”fast” and ”slow” components of ferrimagnetic alloys. Our

results indicate that the ”fast” (TM) material experiences criti-

cal slowing down at the common Curie temperature, while the

”slow” RE material does not do this. This effect is the reason

of the reversal suppression for high pulse intensities. Both ma-

terials typically slow down as a function of the RE concentra-

tion although this dependence can be reverted for the TM for

large inter-sublattice coupling strengths. This has a remark-

able consequence on the switching time. We show that for the

values of the coupling strength corresponding to typical pa-

rameters of the GdFeCo sublattice the reversal should start in

Gd rich region. The situation may be opposite for compounds

with stronger inter-sublattice couplings. Finally, we have pre-

sented here an analytical framework which allows a fast de-

sign and optimization of this class of materials. Our findings

are important for their future applications in all-optical mag-

netic recording.
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