8,265 research outputs found

    Raman signatures of classical and quantum phases in coupled dots: A theoretical prediction

    Get PDF
    We study electron molecules in realistic vertically coupled quantum dots in a strong magnetic field. Computing the energy spectrum, pair correlation functions, and dynamical form factor as a function of inter-dot coupling via diagonalization of the many-body Hamiltonian, we identify structural transitions between different phases, some of which do not have a classical counterpart. The calculated Raman cross section shows how such phases can be experimentally singled out.Comment: 9 pages, 2 postscript figures, 1 colour postscript figure, Latex 2e, Europhysics Letters style and epsfig macros. Submitted to Europhysics Letter

    Background light measurements at the DUMAND site

    Get PDF
    Ambient light intensities at the DUMAND site, west of the island of Hawaii were measured around the one photoelectron level. Throughout the water column between 1,500m and 4,700m, a substantial amount of stimulateable bioluminescence is observed with a ship suspended detector. But non-stimulated bioluminescence level is comparable, or less than, K sup 40 background, when measured with a bottom tethered detector typical of a DUMAND optical module

    Path Integral Monte Carlo Simulation of the Low-Density Hydrogen Plasma

    Get PDF
    Restricted path integral Monte Carlo simulations are used to calculate the equilibrium properties of hydrogen in the density and temperature range of 9.83×104ρ0.153gcm39.83 \times 10^{-4}\rm \leq \rho \leq 0.153 \rm gcm^{-3} and 5000T250000K5000 \leq T \leq 250 000 \rm K. We test the accuracy of the pair density matrix and analyze the dependence on the system size, on the time step of the path integral and on the type of nodal surface. We calculate the equation of state and compare with other models for hydrogen valid in this regime. Further, we characterize the state of hydrogen and describe the changes from a plasma to an atomic and molecular liquid by analyzing the pair correlation functions and estimating the number of atoms and molecules present.Comment: 12 pages, 21 figures, submitted for Phys. Rev.

    Identification problems of muon and electron events in the Super-Kamiokande detector

    Get PDF
    In the measurement of atmospheric nu_e and nu_mu fluxes, the calculations of the Super Kamiokande group for the distinction between muon-like and electronlike events observed in the water Cerenkov detector have initially assumed a misidentification probability of less than 1 % and later 2 % for the sub-GeV range. In the multi-GeV range, they compared only the observed behaviors of ring patterns of muon and electron events, and claimed a 3 % mis-identification. However, the expressions and the calculation method do not include the fluctuation properties due to the stochastic nature of the processes which determine the expected number of photoelectrons (p.e.) produced by muons and electrons. Our full Monte Carlo (MC) simulations including the fluctuations of photoelectron production show that the total mis-identification rate for electrons and muons should be larger than or equal to 20 % for sub-GeV region. Even in the multi-GeV region we expect a mis-identification rate of several % based on our MC simulations taking into account the ring patterns. The mis-identified events are mostly of muonic origin.Comment: 17 pages, 12 figure

    Effects to Scalar Meson Decays of Strong Mixing between Low and High Mass Scalar Mesons

    Full text link
    We analyze the mass spectroscopy of low and high mass scalar mesons and get the result that the coupling strengths of the mixing between low and high mass scalar mesons are very strong and the strengths of mixing for I=1,1/2I=1, 1/2 scalar mesons and those of I=0 scalar mesons are almost same. Next, we analyze the decay widths and decay ratios of these mesons and get the results that the coupling constants AA' for I=1,1/2I=1, 1/2 which represents the coupling of high mass scalar meson NN' -> two pseudoscalar mesons PPPP are almost same as the coupling AA' for the I=0. On the other hand, the coupling constant AA for I=1,I=1/2I=1, I=1/2 which represents the low mass scalar meson NN -> PPPP are far from the coupling constant AA for I=0. We consider a resolution for this discrepancy. Coupling constant AA'' for glueball GG -> PPPP is smaller than the coupling AA'. θP\theta_P is 405040^\circ \sim 50^\circ.Comment: 15 pages, 6 figure

    Hypersurface homogeneous locally rotationally symmetric spacetimes admitting conformal symmetries

    Full text link
    All hypersurface homogeneous locally rotationally symmetric spacetimes which admit conformal symmetries are determined and the symmetry vectors are given explicitly. It is shown that these spacetimes must be considered in two sets. One set containing Ellis Class II and the other containing Ellis Class I, III LRS spacetimes. The determination of the conformal algebra in the first set is achieved by systematizing and completing results on the determination of CKVs in 2+2 decomposable spacetimes. In the second set new methods are developed. The results are applied to obtain the classification of the conformal algebra of all static LRS spacetimes in terms of geometrical variables. Furthermore all perfect fluid nontilted LRS spacetimes which admit proper conformal symmetries are determined and the physical properties some of them are discussed.Comment: 15 pages; to appear in Classical Quantum Gravity; some misprints in Tables 3,5 and in section 4 correcte

    SU(3) Mixing for Excited Mesons

    Get PDF
    The SU(3)-flavor symmetry breaking and the quark-antiquark annihilation mechanism are taken into account for describing the singlet-octet mixing for several nonets assigned by Particle Data Group(PDG). This task is approached with the mass matrix formalism

    Pulmonary tumor thrombotic microangiopathy: a systematic review.

    Get PDF
    Pulmonary tumor thrombotic microangiopathy (PTTM) is a fatal disease process in which pulmonary hypertension (PH) develops in the setting of malignancy. The purpose of this study is to present a detailed analysis of cases of PTTM reported in literature in the hopes of achieving more ante-mortem diagnoses. We conducted a systematic review of currently published and available cases of PTTM by searching the term "pulmonary tumor thrombotic microangiopathy" on the Pubmed.gov database. Seventy-nine publications were included consisting of 160 unique cases of PTTM. The most commonly reported malignancy was gastric adenocarcinoma (94 cases, 59%). Cough and dyspnea were reported in 61 (85%) and 102 (94%) cases, respectively. Hypoxemia was reported in 96 cases (95%). Elevation in D-dimer was noted in 36 cases (95%), presence of anemia in 32 cases (84%), and thrombocytopenia in 30 cases (77%). Common findings on chest computed tomography (CT) included ground-glass opacities (GGO) in 28 cases (82%) and nodules in 24 cases (86%). PH on echocardiography was noted in 59 cases (89%) with an average right ventricular systolic pressure of 71 mmHg. Common features of PTTM that are reported across the published literature include presence of dyspnea and cough, hypoxemia, with abnormal CT findings of GGO, nodules, and mediastinal/hilar lymphadenopathy, and PH. PTTM is a universally fatal disease process and this analysis provides a detailed examination of all the available published data that may help clinicians establish an earlier diagnosis of PTTM

    Electrically Tunable Excitonic Light Emitting Diodes based on Monolayer WSe2 p-n Junctions

    Full text link
    Light-emitting diodes are of importance for lighting, displays, optical interconnects, logic and sensors. Hence the development of new systems that allow improvements in their efficiency, spectral properties, compactness and integrability could have significant ramifications. Monolayer transition metal dichalcogenides have recently emerged as interesting candidates for optoelectronic applications due to their unique optical properties. Electroluminescence has already been observed from monolayer MoS2 devices. However, the electroluminescence efficiency was low and the linewidth broad due both to the poor optical quality of MoS2 and to ineffective contacts. Here, we report electroluminescence from lateral p-n junctions in monolayer WSe2 induced electrostatically using a thin boron nitride support as a dielectric layer with multiple metal gates beneath. This structure allows effective injection of electrons and holes, and combined with the high optical quality of WSe2 it yields bright electroluminescence with 1000 times smaller injection current and 10 times smaller linewidth than in MoS2. Furthermore, by increasing the injection bias we can tune the electroluminescence between regimes of impurity-bound, charged, and neutral excitons. This system has the required ingredients for new kinds of optoelectronic devices such as spin- and valley-polarized light-emitting diodes, on-chip lasers, and two-dimensional electro-optic modulators.Comment: 13 pages main text with 4 figures + 4 pages upplemental material

    Control over phase separation and nucleation using a laser-tweezing potential

    Get PDF
    Control over the nucleation of new phases is highly desirable but elusive. Even though there is a long history of crystallization engineering by varying physicochemical parameters, controlling which polymorph crystallizes or whether a molecule crystallizes or forms an amorphous precipitate is still a poorly understood practice. Although there are now numerous examples of control using laser-induced nucleation, the absence of physical understanding is preventing progress. Here we show that the proximity of a liquid–liquid critical point or the corresponding binodal line can be used by a laser-tweezing potential to induce concentration gradients. A simple theoretical model shows that the stored electromagnetic energy of the laser beam produces a free-energy potential that forces phase separation or triggers the nucleation of a new phase. Experiments in a liquid mixture using a low-power laser diode confirm the effect. Phase separation and nucleation using a laser-tweezing potential explains the physics behind non-photochemical laser-induced nucleation and suggests new ways of manipulating matter
    corecore